Derivácia komplexnej funkcie pre figuríny. Príklady použitia vzorca pre deriváciu komplexnej funkcie. Derivácia zloženej funkcie

Je veľmi ľahké si to zapamätať.

No nepôjdeme ďaleko, hneď zvážime inverznú funkciu. Čo je inverzná funkcia exponenciálnej funkcie? Logaritmus:

V našom prípade je základom číslo:

Takýto logaritmus (teda logaritmus so základom) sa nazýva „prirodzený“ a používame preň špeciálny zápis: namiesto toho píšeme.

čo sa rovná? Samozrejme, .

Derivácia prirodzeného logaritmu je tiež veľmi jednoduchá:

Príklady:

  1. Nájdite deriváciu funkcie.
  2. Aká je derivácia funkcie?

odpovede: Exponent a prirodzený logaritmus sú funkcie, ktoré sú z hľadiska derivácie jedinečne jednoduché. Exponenciálne a logaritmické funkcie s akoukoľvek inou bázou budú mať inú deriváciu, ktorú budeme analyzovať neskôr, keď si prejdeme pravidlá diferenciácie.

Pravidlá diferenciácie

aké pravidlá? Opäť nový termín?!...

Diferenciácia je proces hľadania derivátu.

Len a všetko. Aké je iné slovo pre tento proces? Nie proizvodnovanie... Diferenciál matematiky sa nazýva samotný prírastok funkcie at. Tento výraz pochádza z latinského differentia – rozdiel. Tu.

Pri odvodzovaní všetkých týchto pravidiel použijeme dve funkcie, napríklad a. Budeme tiež potrebovať vzorce pre ich prírastky:

Celkovo existuje 5 pravidiel.

Konštanta je vyňatá zo znamienka derivácie.

Ak - nejaké konštantné číslo (konštanta), potom.

Je zrejmé, že toto pravidlo funguje aj pre rozdiel: .

Poďme to dokázať. Nechajte, alebo jednoduchšie.

Príklady.

Nájdite deriváty funkcií:

  1. v bode;
  2. v bode;
  3. v bode;
  4. v bode.

Riešenia:

  1. (derivácia je vo všetkých bodoch rovnaká, keďže je to lineárna funkcia, pamätáte?);

Derivát produktu

Všetko je tu podobné: predstavujeme novú funkciu a nájdeme jej prírastok:

odvodený:

Príklady:

  1. Nájdite deriváty funkcií a;
  2. Nájdite deriváciu funkcie v bode.

Riešenia:

Derivácia exponenciálnej funkcie

Teraz vaše znalosti stačia na to, aby ste sa naučili nájsť deriváciu akejkoľvek exponenciálnej funkcie, a nielen exponenta (zabudli ste už, čo to je?).

Tak kde je nejaké číslo.

Deriváciu funkcie už poznáme, takže skúsme preniesť našu funkciu na nový základ:

Aby sme to dosiahli, používame jednoduché pravidlo: . potom:

No podarilo sa. Teraz skúste nájsť deriváciu a nezabudnite, že táto funkcia je zložitá.

Stalo?

Tu sa presvedčte sami:

Ukázalo sa, že vzorec je veľmi podobný derivátu exponentu: ako to bolo, zostalo, objavil sa iba faktor, ktorý je len číslom, ale nie premennou.

Príklady:
Nájdite deriváty funkcií:

odpovede:

Toto je len číslo, ktoré sa nedá vypočítať bez kalkulačky, teda nedá sa napísať v jednoduchšej forme. Preto je v odpovedi ponechaná v tejto podobe.

    Všimnite si, že tu je kvocient dvoch funkcií, takže použijeme príslušné pravidlo diferenciácie:

    V tomto príklade súčin dvoch funkcií:

Derivácia logaritmickej funkcie

Tu je to podobné: deriváciu prirodzeného logaritmu už poznáte:

Preto nájsť ľubovoľný z logaritmu s iným základom, napríklad:

Tento logaritmus musíme preniesť na základňu. Ako zmeníte základ logaritmu? Dúfam, že si pamätáte tento vzorec:

Len teraz namiesto napíšeme:

Menovateľ sa ukázal byť len konštanta (konštantné číslo, bez premennej). Derivát je veľmi jednoduchý:

Deriváty exponenciálnych a logaritmických funkcií sa v skúške takmer nikdy nenachádzajú, ale nebude zbytočné ich poznať.

Derivácia komplexnej funkcie.

Čo je to „komplexná funkcia“? Nie, toto nie je logaritmus ani arkus tangens. Tieto funkcie môžu byť ťažko pochopiteľné (hoci ak sa vám logaritmus zdá ťažký, prečítajte si tému „Logaritmy“ a všetko bude fungovať), ale z hľadiska matematiky slovo „zložitý“ neznamená „ťažký“.

Predstavte si malý dopravník: dvaja ľudia sedia a robia nejaké akcie s nejakými predmetmi. Napríklad prvý zabalí čokoládovú tyčinku do obalu a druhý ju previaže stuhou. Ukazuje sa taký zložený objekt: čokoládová tyčinka zabalená a zviazaná stuhou. Ak chcete jesť čokoládovú tyčinku, musíte urobiť opačné kroky v opačnom poradí.

Vytvorme podobný matematický pipeline: najprv nájdeme kosínus čísla a potom odmocníme výsledné číslo. Takže nám dajú číslo (čokoládu), ja nájdem jeho kosínus (obal) a potom zarovnáte, čo som dostal (previažte to stuhou). Čo sa stalo? Funkcia. Toto je príklad komplexnej funkcie: keď, aby sme našli jej hodnotu, vykonáme prvú akciu priamo s premennou a potom ďalšiu druhú akciu s tým, čo sa stalo ako výsledok prvej.

Inými slovami, Komplexná funkcia je funkcia, ktorej argumentom je iná funkcia: .

Pre náš príklad, .

Môžeme urobiť tie isté kroky v opačnom poradí: najprv odmocni a potom hľadám kosínus výsledného čísla:. Je ľahké uhádnuť, že výsledok bude takmer vždy iný. Dôležitá vlastnosť komplexných funkcií: keď sa zmení poradie akcií, funkcia sa zmení.

Druhý príklad: (rovnaký). .

Posledná akcia, ktorú vykonáme, bude tzv „vonkajšiu“ funkciu, a úkon vykonaný ako prvý – resp „vnútorná“ funkcia(sú to neformálne názvy, používam ich len na vysvetlenie látky jednoduchým jazykom).

Skúste sami určiť, ktorá funkcia je vonkajšia a ktorá vnútorná:

odpovede: Oddelenie vnútorných a vonkajších funkcií je veľmi podobné zmene premenných: napríklad vo funkcii

  1. Aké kroky podnikneme ako prvé? Najprv vypočítame sínus a až potom ho zdvihneme na kocku. Ide teda o vnútornú funkciu, nie vonkajšiu.
    A pôvodnou funkciou je ich zloženie: .
  2. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  3. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  4. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  5. Vnútorné: ; vonkajší: .
    Vyšetrenie: .

zmeníme premenné a dostaneme funkciu.

Teraz vyberieme našu čokoládu - hľadajte derivát. Postup je vždy opačný: najprv hľadáme deriváciu vonkajšej funkcie, potom výsledok vynásobíme deriváciou vnútornej funkcie. Pre pôvodný príklad to vyzerá takto:

Ďalší príklad:

Poďme teda konečne sformulovať oficiálne pravidlo:

Algoritmus na nájdenie derivácie komplexnej funkcie:

Zdá sa to byť jednoduché, však?

Pozrime sa na príklady:

Riešenia:

1) Interné: ;

Vonkajšie: ;

2) Interné: ;

(len sa teraz nepokúšajte znížiť! Spod kosínusu sa nič nevyberá, pamätáte?)

3) Interné: ;

Vonkajšie: ;

Okamžite je jasné, že tu existuje trojúrovňová komplexná funkcia: koniec koncov, toto je už sama o sebe zložitá funkcia a stále z nej extrahujeme koreň, to znamená, že vykonávame tretiu akciu (vložiť čokoládu do obalu a so stuhou v kufríku). Nie je však dôvod na strach: každopádne túto funkciu „rozbalíme“ v rovnakom poradí ako obvykle: od konca.

To znamená, že najprv diferencujeme koreň, potom kosínus a až potom výraz v zátvorkách. A potom to všetko vynásobíme.

V takýchto prípadoch je vhodné akcie očíslovať. To znamená, predstavme si, čo vieme. V akom poradí vykonáme akcie na výpočet hodnoty tohto výrazu? Pozrime sa na príklad:

Čím neskôr sa akcia vykoná, tým „externejšia“ bude zodpovedajúca funkcia. Postupnosť akcií - ako predtým:

Tu je hniezdenie vo všeobecnosti 4-úrovňové. Stanovme si postup.

1. Radikálny výraz. .

2. Koreň. .

3. Sínus. .

4. Štvorec. .

5. Daj to všetko dokopy:

DERIVÁT. STRUČNE O HLAVNOM

Derivácia funkcie- pomer prírastku funkcie k prírastku argumentu s nekonečne malým prírastkom argumentu:

Základné deriváty:

Pravidlá diferenciácie:

Konštanta je vyňatá zo znamienka derivácie:

Derivát súčtu:

odvodený produkt:

Derivát kvocientu:

Derivácia komplexnej funkcie:

Algoritmus na nájdenie derivácie komplexnej funkcie:

  1. Definujeme „internú“ funkciu, nájdeme jej deriváciu.
  2. Definujeme „vonkajšiu“ funkciu, nájdeme jej deriváciu.
  3. Výsledky prvého a druhého bodu vynásobíme.

Keďže ste sem prišli, pravdepodobne ste už tento vzorec stihli vidieť v učebnici

a urobte tvár takto:

Priateľ, neboj sa! V skutočnosti je všetko jednoduché zahanbiť. Určite všetko pochopíte. Iba jedna žiadosť - prečítajte si článok pomaly snažte sa pochopiť každý krok. Napísal som čo najjednoduchšie a najzrozumiteľnejšie, ale stále sa musíte ponoriť do myšlienky. A nezabudnite vyriešiť úlohy z článku.

Čo je to komplexná funkcia?

Predstavte si, že sa sťahujete do iného bytu a preto balíte veci do veľkých krabíc. Nech je potrebné zbierať nejaké drobnosti, napríklad školské písacie potreby. Ak ich len hodíte do obrovskej krabice, okrem iného sa stratia. Aby ste tomu zabránili, najskôr ich vložíte napríklad do vrecka, ktoré potom vložíte do veľkej škatule, ktorú následne zalepíte. Tento „najťažší“ proces je znázornený na obrázku nižšie:

Zdalo by sa, kde je matematika? A okrem toho sa komplexná funkcia tvorí PRESNE ROVNAKÝM spôsobom! Len my „balíme“ nie zošity a perá, ale \ (x \), pričom slúžia rôzne „balíky“ a „škatule“.

Vezmime si napríklad x a „zabalíme“ ho do funkcie:


Výsledkom je, samozrejme, \(\cos⁡x\). Toto je naša „taška vecí“. A teraz to dáme do „škatuľky“ – balíme napríklad do kubickej funkcie.


Čo sa nakoniec stane? Áno, je to tak, bude tam "balík s vecami v krabici", teda "kosínus x kociek."

Výsledná konštrukcia má komplexnú funkciu. V tom sa líši od jednoduchého NIEKOĽKO „dopadov“ (balíčkov) sa aplikuje na jeden X v rade a ukázalo sa, ako to bolo, „funkcia z funkcie“ - „balík v balíku“.

V školskom kurze existuje len veľmi málo typov tých istých „balíčkov“, iba štyri:

Poďme teraz „zabaliť“ x najprv do exponenciálnej funkcie so základom 7 a potom do goniometrickej funkcie. Dostaneme:

\(x → 7^x → tg⁡(7^x)\)

A teraz „zabalíme“ x dvakrát do goniometrických funkcií, najprv do a potom do:

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Jednoduché, však?

Teraz napíšte funkcie sami, kde x:
- najprv sa „zabalí“ do kosínusu a potom do exponenciálnej funkcie so základom \(3\);
- najprv k piatej mocnine a potom k dotyčnici;
- najprv k základnému logaritmu \(4\) , potom na mocninu \(-2\).

Pozrite si odpovede na túto otázku na konci článku.

Môžeme sa však „zbaliť“ x nie dva, ale trikrát? Žiaden problém! A štyri, päť a dvadsaťpäťkrát. Tu je napríklad funkcia, v ktorej je x "zbalené" \(4\)-krát:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Ale takéto vzorce sa v školskej praxi nenájde (študenti majú viac šťastia - môžu byť náročnejší☺).

"Rozbalenie" komplexnej funkcie

Znova sa pozrite na predchádzajúcu funkciu. Dokážete zistiť postupnosť „balenia“? Do čoho sa X napchalo ako prvé, do čoho potom a tak ďalej až do úplného konca. To znamená, ktorá funkcia je vnorená do ktorej? Vezmite si kus papiera a napíšte, čo si myslíte. Môžete to urobiť reťazou šípok, ako sme písali vyššie, alebo akýmkoľvek iným spôsobom.

Teraz je správna odpoveď: najprv sa x „zabalilo“ do \(4\)-tej mocniny, potom sa výsledok zabalil do sínusu, ten sa zase umiestnil do logaritmickej základne \(2\) a v koniec sa celá konštrukcia šupla do presilových pätiek.

To znamená, že je potrebné rozvinúť sekvenciu V OPAČNOM PORADÍ. A tu je návod, ako to urobiť jednoduchšie: stačí sa pozrieť na X - musíte z neho tancovať. Pozrime sa na pár príkladov.

Napríklad tu je funkcia: \(y=tg⁡(\log_2⁡x)\). Pozeráme sa na X – čo sa mu stane ako prvé? Prevzaté od neho. A potom? Zoberie sa tangens výsledku. A postupnosť bude rovnaká:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Ďalší príklad: \(y=\cos⁡((x^3))\). Analyzujeme - najprv bolo x kubické a potom bol z výsledku prevzatý kosínus. Takže postupnosť bude: \(x → x^3 → \cos⁡((x^3))\). Venujte pozornosť, funkcia sa zdá byť podobná úplne prvej (kde s obrázkami). Ale toto je úplne iná funkcia: tu v kocke x (teda \(\cos⁡((x x x)))\) a tam v kocke kosínus \(x\) (teda \(\ cos⁡ x·\cos⁡x·\cos⁡x\)). Tento rozdiel vyplýva z rôznych „baliacich“ sekvencií.

Posledný príklad (s dôležitými informáciami v ňom): \(y=\sin⁡((2x+5))\). Je jasné, že tu sme najskôr vykonali aritmetické operácie s x, potom sa z výsledku zobral sínus: \(x → 2x+5 → \sin⁡((2x+5))\). A to je dôležitý bod: napriek tomu, že aritmetické operácie nie sú samy osebe funkciami, tu fungujú aj ako spôsob „zbalenia“. Poďme sa ponoriť trochu hlbšie do tejto jemnosti.

Ako som povedal vyššie, v jednoduchých funkciách je x "zabalené" raz a v zložitých funkciách - dva alebo viac. Navyše, každá kombinácia jednoduchých funkcií (to znamená ich súčet, rozdiel, násobenie alebo delenie) je tiež jednoduchou funkciou. Napríklad \(x^7\) je jednoduchá funkcia, rovnako ako \(ctg x\). Všetky ich kombinácie sú teda jednoduché funkcie:

\(x^7+ ctg x\) - jednoduché,
\(x^7 ctg x\) je jednoduché,
\(\frac(x^7)(ctg x)\) je jednoduché a tak ďalej.

Ak sa však na takúto kombináciu použije ešte jedna funkcia, bude to už komplexná funkcia, pretože budú existovať dva „balíky“. Pozri diagram:



Dobre, poďme na to. Napíšte postupnosť „baliacich“ funkcií:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Odpovede sú opäť na konci článku.

Vnútorné a vonkajšie funkcie

Prečo musíme rozumieť vnoreniu funkcií? Čo nám to dáva? Ide o to, že bez takejto analýzy nebudeme schopní spoľahlivo nájsť deriváty funkcií diskutovaných vyššie.

A aby sme sa pohli ďalej, budeme potrebovať ešte dva pojmy: interné a externé funkcie. Je to veľmi jednoduchá vec, navyše sme ich už analyzovali vyššie: ak si spomenieme na našu analógiu na úplnom začiatku, potom vnútorná funkcia je „balík“ a vonkajšia je „škatuľa“. Tie. to, v čom je X „zabalené“ ako prvé, je vnútorná funkcia a to, do čoho je „zabalené“ interné, je už externé. Je pochopiteľné, prečo - je to vonku, to znamená vonkajšie.

Tu v tomto príklade: \(y=tg⁡(log_2⁡x)\), funkcia \(\log_2⁡x\) je interná a
- vonkajší.

A v tomto: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) je interné a
- vonkajší.

Vykonajte poslednú prax analýzy komplexných funkcií a nakoniec prejdime k bodu, pre ktorý sa všetko začalo - nájdeme deriváty komplexných funkcií:

Doplňte medzery v tabuľke:


Derivácia zloženej funkcie

Bravo, ešte sme sa dostali k "šéfovi" tejto témy - vlastne k derivácii komplexnej funkcie a konkrétne k tej strašnej formulke z úvodu článku.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Tento vzorec znie takto:

Derivácia komplexnej funkcie sa rovná súčinu derivácie vonkajšej funkcie vzhľadom na konštantnú vnútornú funkciu a deriváciu vnútornej funkcie.

A okamžite sa pozrite na schému analýzy „slovami“, aby ste pochopili, k čomu sa má vzťahovať:

Dúfam, že výrazy „derivát“ a „produkt“ nespôsobujú ťažkosti. "Komplexná funkcia" - už sme demontovali. Háčik je v „deriváte vonkajšej funkcie vzhľadom na konštantu internú“. Čo to je?

Odpoveď: toto je obvyklá derivácia vonkajšej funkcie, pri ktorej sa mení iba vonkajšia funkcia, zatiaľ čo vnútorná zostáva rovnaká. Stále nejasné? Dobre, zoberme si príklad.

Povedzme, že máme funkciu \(y=\sin⁡(x^3)\). Je jasné, že vnútorná funkcia je tu \(x^3\) a vonkajšia
. Nájdime teraz deriváciu vonkajšieho vzhľadom na konštantu vnútorné.

Uvádzame príklady výpočtu derivácií pomocou vzorca pre deriváciu komplexnej funkcie.

Obsah

Pozri tiež: Dôkaz vzorca pre deriváciu komplexnej funkcie

Základné vzorce

Tu uvádzame príklady výpočtu derivácií nasledujúcich funkcií:
; ; ; ; .

Ak funkcia môže byť reprezentovaná ako komplexná funkcia v nasledujúcom tvare:
,
potom je jeho derivát určený vzorcom:
.
V nižšie uvedených príkladoch napíšeme tento vzorec v nasledujúcom tvare:
.
kde .
Tu dolné indexy alebo , umiestnené pod znamienkom derivátu, označujú premennú, vzhľadom na ktorú sa vykonáva diferenciácia.

Zvyčajne sú v tabuľkách derivácií uvedené derivácie funkcií od premennej x. X je však formálny parameter. Premenná x môže byť nahradená akoukoľvek inou premennou. Preto pri derivácii funkcie z premennej jednoducho zmeníme v tabuľke derivácií premennú x na premennú u .

Jednoduché príklady

Príklad 1

Nájdite deriváciu komplexnej funkcie
.

Danú funkciu zapíšeme v ekvivalentnom tvare:
.
V tabuľke derivátov nájdeme:
;
.

Podľa vzorca pre deriváciu komplexnej funkcie máme:
.
Tu .

Príklad 2

Nájdite derivát
.

Vyberieme konštantu 5 za znamienkom derivácie a z tabuľky derivácií nájdeme:
.


.
Tu .

Príklad 3

Nájdite derivát
.

Vyberieme konštantu -1 pre znamienko derivácie a z tabuľky derivácií nájdeme:
;
Z tabuľky derivátov zistíme:
.

Použijeme vzorec pre deriváciu komplexnej funkcie:
.
Tu .

Zložitejšie príklady

V zložitejších príkladoch aplikujeme pravidlo diferenciácie zloženej funkcie niekoľkokrát. Pritom vypočítame deriváciu od konca. To znamená, že funkciu rozdelíme na jednotlivé časti a pomocou nich nájdeme derivácie najjednoduchších častí derivačná tabuľka. Uplatňujeme tiež pravidlá diferenciácie súčtu, produkty a frakcie . Potom urobíme substitúcie a použijeme vzorec pre deriváciu komplexnej funkcie.

Príklad 4

Nájdite derivát
.

Vyberieme najjednoduchšiu časť vzorca a nájdeme jeho deriváciu. .



.
Tu sme použili notáciu
.

Nájdeme deriváciu ďalšej časti pôvodnej funkcie použitím získaných výsledkov. Aplikujeme pravidlo diferenciácie súčtu:
.

Opäť aplikujeme pravidlo diferenciácie komplexnej funkcie.

.
Tu .

Príklad 5

Nájdite deriváciu funkcie
.

Vyberieme najjednoduchšiu časť vzorca a z tabuľky derivácií nájdeme jeho deriváciu. .

Uplatňujeme pravidlo diferenciácie komplexnej funkcie.
.
Tu
.

Ďalšiu časť diferencujeme aplikovaním získaných výsledkov.
.
Tu
.

Ďalšiu časť rozlíšime.

.
Tu
.

Teraz nájdeme deriváciu požadovanej funkcie.

.
Tu
.

Pozri tiež:

Je absolútne nemožné riešiť fyzikálne problémy alebo príklady v matematike bez znalosti derivácie a metód na jej výpočet. Derivát je jedným z najdôležitejších konceptov matematickej analýzy. Tejto zásadnej téme sme sa rozhodli venovať dnešný článok. Čo je to derivácia, aký je jej fyzikálny a geometrický význam, ako vypočítať deriváciu funkcie? Všetky tieto otázky možno spojiť do jednej: ako porozumieť derivátu?

Geometrický a fyzikálny význam derivácie

Nech existuje funkcia f(x) , uvedené v nejakom intervale (a,b) . Do tohto intervalu patria body x a x0. Keď sa zmení x, zmení sa aj samotná funkcia. Zmena argumentu - rozdiel jeho hodnôt x-x0 . Tento rozdiel je napísaný ako delta x a nazýva sa prírastok argumentov. Zmena alebo prírastok funkcie je rozdiel medzi hodnotami funkcie v dvoch bodoch. Definícia derivátu:

Derivácia funkcie v bode je limitom pomeru prírastku funkcie v danom bode k prírastku argumentu, keď ten má tendenciu k nule.

Inak sa to dá napísať aj takto:

Aký zmysel má nájsť takúto hranicu? Ale ktorý:

derivácia funkcie v bode sa rovná dotyčnici uhla medzi osou OX a dotyčnici ku grafu funkcie v danom bode.


Fyzikálny význam derivátu: časová derivácia dráhy sa rovná rýchlosti priamočiareho pohybu.

Skutočne, už od školských čias každý vie, že rýchlosť je súkromná cesta. x=f(t) a čas t . Priemerná rýchlosť za určité časové obdobie:

Ak chcete zistiť rýchlosť pohybu v čase t0 musíte vypočítať limit:

Pravidlo prvé: odstráňte konštantu

Konštantu možno vyňať zo znamienka derivácie. Navyše sa to musí urobiť. Pri riešení príkladov v matematike berte ako pravidlo - ak môžete zjednodušiť výraz, určite zjednodušte .

Príklad. Vypočítajme deriváciu:

Pravidlo dva: derivácia súčtu funkcií

Derivácia súčtu dvoch funkcií sa rovná súčtu derivácií týchto funkcií. To isté platí pre deriváciu rozdielu funkcií.

Nebudeme dávať dôkazy o tejto vete, ale uvažujme skôr o praktickom príklade.

Nájdite deriváciu funkcie:

Pravidlo tri: derivácia súčinu funkcií

Derivácia súčinu dvoch diferencovateľných funkcií sa vypočíta podľa vzorca:

Príklad: nájdite deriváciu funkcie:

rozhodnutie:

Tu je dôležité povedať o výpočte derivácií komplexných funkcií. Derivácia komplexnej funkcie sa rovná súčinu derivácie tejto funkcie vzhľadom na stredný argument deriváciou stredného argumentu vzhľadom na nezávislú premennú.

Vo vyššie uvedenom príklade sa stretneme s výrazom:

V tomto prípade je stredný argument 8-násobok k piatej mocnine. Aby sme mohli vypočítať deriváciu takéhoto výrazu, najprv zvážime deriváciu externej funkcie vzhľadom na stredný argument a potom vynásobíme deriváciou samotného stredného argumentu vzhľadom na nezávislú premennú.

Pravidlo štyri: Derivácia podielu dvoch funkcií

Vzorec na určenie derivácie kvocientu dvoch funkcií:

Pokúsili sme sa hovoriť o derivátoch pre figuríny od začiatku. Táto téma nie je taká jednoduchá, ako to znie, takže buďte upozornení: v príkladoch sa často vyskytujú úskalia, preto buďte opatrní pri výpočte derivátov.

S akoukoľvek otázkou na túto a iné témy sa môžete obrátiť na študentský servis. V krátkom čase vám pomôžeme vyriešiť to najťažšie ovládanie a vysporiadať sa s úlohami, aj keď ste sa výpočtom derivátov nikdy predtým nezaoberali.

Ak budeme postupovať podľa definície, potom derivácia funkcie v bode je limita pomeru prírastku funkcie Δ r na prírastok argumentu Δ X:

Zdá sa, že všetko je jasné. Ale skúste vypočítať podľa tohto vzorca, povedzme, deriváciu funkcie f(X) = X 2 + (2X+ 3) · e X hriech X. Ak robíte všetko podľa definície, potom po niekoľkých stránkach výpočtov jednoducho zaspíte. Preto existujú jednoduchšie a efektívnejšie spôsoby.

Na začiatok si všimneme, že takzvané elementárne funkcie možno odlíšiť od celej škály funkcií. Ide o pomerne jednoduché výrazy, ktorých deriváty sú už dávno vypočítané a zapísané do tabuľky. Takéto funkcie sa dajú ľahko zapamätať spolu s ich derivátmi.

Derivácie elementárnych funkcií

Všetky základné funkcie sú uvedené nižšie. Deriváty týchto funkcií musia byť známe naspamäť. Navyše nie je ťažké si ich zapamätať – preto sú elementárne.

Takže deriváty elementárnych funkcií:

názov Funkcia Derivát
Neustále f(X) = C, CR 0 (áno, áno, nula!)
Stupeň s racionálnym exponentom f(X) = X n n · X n − 1
Sinus f(X) = hriech X cos X
Kosínus f(X) = cos X − hriech X(mínus sinus)
Tangenta f(X) = tg X 1/cos 2 X
Kotangens f(X) = ctg X − 1/sin2 X
prirodzený logaritmus f(X) = log X 1/X
Ľubovoľný logaritmus f(X) = log a X 1/(X ln a)
Exponenciálna funkcia f(X) = e X e X(nič sa nezmenilo)

Ak sa elementárna funkcia vynásobí ľubovoľnou konštantou, potom sa derivácia novej funkcie tiež ľahko vypočíta:

(C · f)’ = C · f ’.

Vo všeobecnosti možno zo znamienka derivácie vyňať konštanty. Napríklad:

(2X 3)' = 2 ( X 3) = 2 3 X 2 = 6X 2 .

Je zrejmé, že elementárne funkcie sa dajú navzájom sčítať, násobiť, deliť a mnoho iného. Takto sa objavia nové funkcie, už nie veľmi elementárne, ale aj diferencovateľné podľa určitých pravidiel. Tieto pravidlá sú popísané nižšie.

Derivácia súčtu a rozdielu

Nechajte funkcie f(X) a g(X), ktorých deriváty sú nám známe. Môžete si napríklad vziať základné funkcie diskutované vyššie. Potom môžete nájsť deriváciu súčtu a rozdielu týchto funkcií:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Takže derivácia súčtu (rozdielu) dvoch funkcií sa rovná súčtu (rozdielu) derivácií. Termínov môže byť viac. Napríklad, ( f + g + h)’ = f ’ + g ’ + h ’.

Presne povedané, v algebre neexistuje pojem „odčítanie“. Existuje pojem „negatívny prvok“. Preto ten rozdiel fg možno prepísať ako súčet f+ (-1) g a potom zostane len jeden vzorec - derivácia súčtu.

f(X) = X 2 + sinx; g(X) = X 4 + 2X 2 − 3.

Funkcia f(X) je súčet dvoch základných funkcií, takže:

f ’(X) = (X 2+ hriech X)’ = (X 2) + (hriech X)’ = 2X+ cosx;

Podobne argumentujeme aj pri funkcii g(X). Len už existujú tri pojmy (z hľadiska algebry):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

odpoveď:
f ’(X) = 2X+ cosx;
g ’(X) = 4X · ( X 2 + 1).

Derivát produktu

Matematika je logická veda, takže veľa ľudí verí, že ak sa derivácia súčtu rovná súčtu derivácií, potom derivácia súčinu štrajk"\u003e sa rovná súčinu derivátov. Ale pre vás! Derivát súčinu sa vypočíta pomocou úplne iného vzorca. Konkrétne:

(f · g) ’ = f ’ · g + f · g

Vzorec je jednoduchý, ale často zabudnutý. A to nielen školákov, ale aj študentov. Výsledkom sú nesprávne vyriešené problémy.

Úloha. Nájdite deriváty funkcií: f(X) = X 3 cosx; g(X) = (X 2 + 7X− 7) · e X .

Funkcia f(X) je produktom dvoch základných funkcií, takže všetko je jednoduché:

f ’(X) = (X 3 kos X)’ = (X 3)' cos X + X 3 (kos X)’ = 3X 2 kos X + X 3 (- hriech X) = X 2 (3 cos XX hriech X)

Funkcia g(X) prvý multiplikátor je trochu komplikovanejší, ale všeobecná schéma sa od toho nemení. Je zrejmé, že prvý multiplikátor funkcie g(X) je polynóm a jeho derivácia je deriváciou súčtu. Máme:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X(2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

odpoveď:
f ’(X) = X 2 (3 cos XX hriech X);
g ’(X) = X(X+ 9) · e X .

Všimnite si, že v poslednom kroku sa derivácia faktorizuje. Formálne to nie je potrebné, ale väčšina derivátov sa nevypočítava samostatne, ale na preskúmanie funkcie. To znamená, že derivácia sa bude ďalej rovnať nule, zistia sa jej znamienka atď. Pre takýto prípad je lepšie mať výraz rozložený na faktory.

Ak existujú dve funkcie f(X) a g(X), a g(X) ≠ 0 na množine, ktorá nás zaujíma, môžeme definovať novú funkciu h(X) = f(X)/g(X). Pre takúto funkciu môžete nájsť aj deriváciu:

Nie slabé, však? Kde sa vzalo mínus? Prečo? g 2? Ale takto! Toto je jeden z najkomplexnejších vzorcov - bez fľaše to nezistíte. Preto je lepšie si to naštudovať na konkrétnych príkladoch.

Úloha. Nájdite deriváty funkcií:

V čitateli a menovateli každého zlomku sú elementárne funkcie, takže všetko, čo potrebujeme, je vzorec pre deriváciu kvocientu:


Podľa tradície započítavame čitateľa do faktorov - to výrazne zjednoduší odpoveď:

Komplexná funkcia nie je nevyhnutne vzorec dlhý pol kilometra. Napríklad stačí prevziať funkciu f(X) = hriech X a nahradiť premennú X povedzme ďalej X 2+ln X. Ukázalo sa f(X) = hriech ( X 2+ln X) je komplexná funkcia. Má tiež derivát, ale nebude fungovať nájsť ho podľa vyššie uvedených pravidiel.

Ako byť? V takýchto prípadoch pomôže nahradenie premennej a vzorec pre deriváciu komplexnej funkcie:

f ’(X) = f ’(t) · t', ak X sa nahrádza t(X).

Spravidla je situácia s chápaním tohto vzorca ešte smutnejšia ako s deriváciou kvocientu. Preto je tiež lepšie to vysvetliť na konkrétnych príkladoch, s podrobným popisom každého kroku.

Úloha. Nájdite deriváty funkcií: f(X) = e 2X + 3 ; g(X) = hriech ( X 2+ln X)

Všimnite si, že ak vo funkcii f(X) namiesto výrazu 2 X+ 3 bude ľahké X, potom dostaneme elementárnu funkciu f(X) = e X. Preto urobíme substitúciu: nech 2 X + 3 = t, f(X) = f(t) = e t. Hľadáme deriváciu komplexnej funkcie podľa vzorca:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

A teraz - pozor! Vykonanie spätnej substitúcie: t = 2X+ 3. Získame:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Teraz sa pozrime na funkciu g(X). Očividne treba vymeniť. X 2+ln X = t. Máme:

g ’(X) = g ’(t) · t' = (hriech t)’ · t' = cos t · t

Spätná výmena: t = X 2+ln X. potom:

g ’(X) = cos ( X 2+ln X) · ( X 2+ln X)' = cos ( X 2+ln X) · (2 X + 1/X).

To je všetko! Ako vidno z posledného výrazu, celý problém sa zredukoval na výpočet derivácie súčtu.

odpoveď:
f ’(X) = 2 e 2X + 3 ;
g ’(X) = (2X + 1/X) čos ( X 2+ln X).

Veľmi často na svojich hodinách namiesto výrazu „derivát“ používam slovo „mŕtvica“. Napríklad zdvih súčtu sa rovná súčtu zdvihov. je to jasnejšie? No to je dobre.

Výpočet derivátu teda vedie k zbaveniu sa práve týchto ťahov podľa vyššie uvedených pravidiel. Ako posledný príklad sa vráťme k derivačnej mocnine s racionálnym exponentom:

(X n)’ = n · X n − 1

Málokto to vie v úlohe n môže byť aj zlomkové číslo. Napríklad koreň je X 0,5. Ale čo ak je pod koreňom niečo zložité? Opäť sa ukáže komplexná funkcia - radi dávajú takéto konštrukcie v testoch a skúškach.

Úloha. Nájdite deriváciu funkcie:

Najprv prepíšme odmocninu na mocninu s racionálnym exponentom:

f(X) = (X 2 + 8X − 7) 0,5 .

Teraz urobíme náhradu: nech X 2 + 8X − 7 = t. Deriváciu nájdeme podľa vzorca:

f ’(X) = f ’(t) · t ’ = (t 0,5)' t' = 0,5 t-0,5 t ’.

Urobíme opačnú substitúciu: t = X 2 + 8X− 7. Máme:

f ’(X) = 0,5 ( X 2 + 8X− 7) −0,5 ( X 2 + 8X− 7)' = 0,5 (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

Nakoniec späť ku koreňom: