Preskúmajte funkciu online kalkulačky s podrobným riešením. MOJE šikovné cestovateľské poznámky

Ak si to úloha vyžaduje úplné štúdium funkcie f (x) \u003d x 2 4 x 2 - 1 s konštrukciou jeho grafu, potom tento princíp podrobne zvážime.

Na vyriešenie problému tohto typu by mali používať vlastnosti a grafy hlavnej elementárne funkcie. Algoritmus výskumu zahŕňa nasledujúce kroky:

Yandex.RTB R-A-339285-1

Nájdenie domény definície

Keďže výskum sa vykonáva na doméne funkcie, je potrebné začať týmto krokom.

Príklad 1

pozadu uvedený príklad zahŕňa nájdenie núl menovateľa s cieľom vylúčiť ich z DPV.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2; 1 2 ∪ 1 2; +∞

V dôsledku toho môžete získať korene, logaritmy atď. Potom možno ODZ hľadať pre koreň párneho stupňa typu g (x) 4 pomocou nerovnosti g (x) ≥ 0 , pre logaritmus log a g (x) pomocou nerovnosti g (x) > 0 .

Skúmanie hraníc ODZ a hľadanie vertikálnych asymptot

Na hraniciach funkcie sú vertikálne asymptoty, kedy sú jednostranné limity v takýchto bodoch nekonečné.

Príklad 2

Uvažujme napríklad hraničné body rovné x = ± 1 2 .

Potom je potrebné študovať funkciu na nájdenie jednostrannej limity. Potom dostaneme, že: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1 ) (2 x + 1) = 1 4 (- 2) - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = limit x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) 2 = - ∞ limit x → 1 2 - 0 f (x) = limit x → 1 2 - 0 x 2 4 x 2 - 1 = = limit x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 ( + 0) 2 = + ∞

To ukazuje, že jednostranné limity sú nekonečné, čo znamená, že čiary x = ± 1 2 sú zvislé asymptoty grafu.

Vyšetrenie funkcie a pre párne alebo nepárne

Keď je splnená podmienka y (- x) = y (x), funkcia sa považuje za párnu. To naznačuje, že graf je umiestnený symetricky vzhľadom na O y. Keď je splnená podmienka y (- x) = - y (x), funkcia sa považuje za nepárnu. To znamená, že symetria ide vzhľadom na pôvod súradníc. Ak zlyhá aspoň jedna nerovnosť, získame funkciu všeobecného tvaru.

Splnenie rovnosti y (- x) = y (x) znamená, že funkcia je párna. Pri konštrukcii je potrebné počítať s tým, že vzhľadom na O y bude symetria.

Na vyriešenie nerovnosti sa používajú intervaly nárastu a poklesu s podmienkami f "(x) ≥ 0 a f" (x) ≤ 0.

Definícia 1

Stacionárne body sú body, ktoré otočia deriváciu na nulu.

Kritické body sú vnútorné body z oblasti, kde sa derivácia funkcie rovná nule alebo neexistuje.

Pri rozhodovaní je potrebné vziať do úvahy nasledujúce body:

  • pre existujúce intervaly nárastu a poklesu nerovnosti tvaru f "(x) > 0 nie sú kritické body zahrnuté do riešenia;
  • body, v ktorých je funkcia definovaná bez konečnej derivácie, musia byť zahrnuté do intervalov nárastu a poklesu (napríklad y \u003d x 3, kde bod x \u003d 0 robí funkciu definovanú, derivácia má hodnotu nekonečna v tomto bode je y " \u003d 1 3 x 2 3, y " (0) = 1 0 = ∞, x = 0 zahrnuté do intervalu nárastu);
  • aby sa predišlo nezhodám, odporúča sa používať matematickú literatúru, ktorú odporúča ministerstvo školstva.

Zahrnutie kritických bodov do intervalov zvyšovania a znižovania v prípade, že spĺňajú definičný obor funkcie.

Definícia 2

Pre určenie intervalov nárastu a poklesu funkcie, je potrebné nájsť:

  • derivát;
  • kritické body;
  • rozdeliť oblasť definície pomocou kritických bodov na intervaly;
  • určite znamienko derivácie v každom z intervalov, kde + je nárast a - je pokles.

Príklad 3

Nájdite deriváciu na doméne f "(x) = x 2" (4 x 2 - 1) - x 2 4 x 2 - 1 "(4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2.

rozhodnutie

Na vyriešenie potrebujete:

  • nájdite stacionárne body, tento príklad má x = 0 ;
  • nájdite nuly menovateľa, príklad má hodnotu nula v x = ± 1 2 .

Vystavíme body na číselnej osi, aby sme určili deriváciu na každom intervale. Na to stačí zobrať ľubovoľný bod z intervalu a vykonať výpočet. o pozitívny výsledok na grafe zobrazujeme +, čo znamená zvýšenie funkcie a - znamená jej zníženie.

Napríklad f "(- 1) \u003d - 2 (- 1) 4 - 1 2 - 1 2 \u003d 2 9\u003e 0, čo znamená, že prvý interval vľavo má znamienko +. Zvážte číslo riadok.

odpoveď:

  • dochádza k nárastu funkcie na intervale - ∞ ; -12 a (-12; 0];
  • dochádza k poklesu na intervale [0; 12) a 12; +∞ .

V diagrame je pomocou + a - znázornená pozitivita a negativita funkcie a šípky označujú klesanie a zvyšovanie.

Extrémne body funkcie sú body, kde je funkcia definovaná a cez ktoré derivácia mení znamienko.

Príklad 4

Ak vezmeme do úvahy príklad, kde x \u003d 0, potom hodnota funkcie v ňom je f (0) \u003d 0 2 4 0 2 - 1 \u003d 0. Keď sa znamienko derivácie zmení z + na - a prechádza bodom x \u003d 0, za maximálny bod sa považuje bod so súradnicami (0; 0). Keď sa znamienko zmení z - na +, dostaneme minimálny bod.

Konvexnosť a konkávnosť sú určené riešením nerovností tvaru f "" (x) ≥ 0 a f "" (x) ≤ 0 . Menej často používajú názov vydutie nadol namiesto konkávnosti a vydutie nahor namiesto vydutie.

Definícia 3

Pre určenie medzier konkávnosti a konvexnosti potrebné:

  • nájsť druhú deriváciu;
  • nájdite nuly funkcie druhej derivácie;
  • zlomiť doménu definície bodmi, ktoré sa objavujú v intervaloch;
  • určiť znamienko medzery.

Príklad 5

Nájdite druhú deriváciu z oblasti definície.

rozhodnutie

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2" (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Nájdeme nuly v čitateli a menovateli, kde podľa nášho príkladu platí, že nuly v menovateli x = ± 1 2

Teraz musíte umiestniť body na číselnú os a určiť znamienko druhej derivácie z každého intervalu. Chápeme to

odpoveď:

  • funkcia je konvexná z intervalu - 1 2 ; 12;
  • funkcia je konkávna z medzier - ∞ ; - 1 2 a 1 2; +∞ .

Definícia 4

inflexný bod je bod v tvare x 0 ; f(x0) . Keď má dotyčnicu ku grafu funkcie, potom keď prechádza cez x 0, funkcia zmení znamienko na opačné.

Inými slovami, toto je taký bod, cez ktorý prechádza druhá derivácia a mení znamienko a v samotných bodoch sa rovná nule alebo neexistuje. Všetky body sa považujú za doménu funkcie.

V príklade bolo vidieť, že neexistujú žiadne inflexné body, pretože druhá derivácia mení znamienko pri prechode cez body x = ± 1 2 . Na druhej strane nie sú zahrnuté do oblasti definície.

Hľadanie horizontálnych a šikmých asymptot

Pri definovaní funkcie v nekonečne treba hľadať vodorovné a šikmé asymptoty.

Definícia 5

Šikmé asymptoty sú nakreslené pomocou čiar daných rovnicou y = k x + b, kde k = lim x → ∞ f (x) x a b = lim x → ∞ f (x) - k x .

Pre k = 0 a b, ktoré sa nerovná nekonečnu, zistíme, že šikmá asymptota sa stáva horizontálne.

Inými slovami, asymptoty sú čiary, ku ktorým sa graf funkcie približuje v nekonečne. To prispieva k rýchlej konštrukcii grafu funkcie.

Ak neexistujú žiadne asymptoty, ale funkcia je definovaná v oboch nekonečnách, je potrebné vypočítať limitu funkcie v týchto nekonečnách, aby sme pochopili, ako sa bude graf funkcie správať.

Príklad 6

Zvážte to napríklad

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

je horizontálna asymptota. Po preskúmaní funkcie ju môžete začať budovať.

Výpočet hodnoty funkcie v medziľahlých bodoch

Aby bolo vykresľovanie čo najpresnejšie, odporúča sa nájsť niekoľko hodnôt funkcie v medziľahlých bodoch.

Príklad 7

Z príkladu, ktorý sme zvážili, je potrebné nájsť hodnoty funkcie v bodoch x \u003d - 2, x \u003d - 1, x \u003d - 3 4, x \u003d - 1 4. Keďže funkcia je párna, dostaneme, že hodnoty sa zhodujú s hodnotami v týchto bodoch, to znamená, že dostaneme x \u003d 2, x \u003d 1, x \u003d 3 4, x \u003d 1 4.

Napíšeme a vyriešime:

F (- 2) = f (2) = 2 2 4 2 2 - 1 = 4 15 ≈ 0, 27 f (- 1) - f (1) = 1 2 4 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 1 4 2 - 1 = - 1 12 ≈ - 0,08

Na určenie maxím a miním funkcie, inflexných bodov, medziľahlých bodov je potrebné postaviť asymptoty. Pre pohodlné označenie sú stanovené intervaly nárastu, poklesu, konvexnosti, konkávnosti. Zvážte obrázok nižšie.

Cez označené body je potrebné nakresliť čiary grafu, čo vám umožní priblížiť sa k asymptotám podľa šípok.

Týmto sa kompletná štúdia funkcie končí. Existujú prípady konštrukcie niektorých elementárnych funkcií, na ktoré sa používajú geometrické transformácie.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Pre úplnú štúdiu funkcie a vykreslenie jej grafu sa odporúča použiť nasledujúcu schému:

1) nájsť rozsah funkcie;

2) nájdite body diskontinuity funkcie a vertikálne asymptoty (ak existujú);

3) skúmať správanie funkcie v nekonečne, nájsť horizontálne a šikmé asymptoty;

4) skúmať funkciu pre rovnomernosť (nepárnosť) a pre periodicitu (pre goniometrické funkcie);

5) nájsť extrémy a intervaly monotónnosti funkcie;

6) určiť intervaly konvexnosti a inflexných bodov;

7) nájdite priesečníky so súradnicovými osami, ak je to možné, a niektoré ďalšie body, ktoré spresňujú graf.

Štúdium funkcie sa vykonáva súčasne s konštrukciou jej grafu.

Príklad 9 Preskúmajte funkciu a vytvorte graf.

1. Oblasť definície: ;

2. Funkcia sa zlomí v bodoch
,
;

Skúmame funkciu na prítomnosť vertikálnych asymptot.

;
,
─ vertikálna asymptota.

;
,
─ vertikálna asymptota.

3. Vyšetrujeme funkciu na prítomnosť šikmých a horizontálnych asymptot.

Rovno
─ šikmá asymptota, ak
,
.

,
.

Rovno
─ horizontálna asymptota.

4. Funkcia je rovnomerná, pretože
. Parita funkcie udáva symetriu grafu vzhľadom na os y.

5. Nájdite intervaly monotónnosti a extrémy funkcie.

Nájdite kritické body, t.j. body, kde je derivácia 0 alebo neexistuje:
;
. Máme tri body
;

. Tieto body rozdeľujú celú skutočnú os na štyri intervaly. Poďme definovať znaky na každom z nich.

Na intervaloch (-∞; -1) a (-1; 0) funkcia rastie, na intervaloch (0; 1) a (1; +∞) klesá. Pri prechode cez bod
derivácia mení znamienko z plus na mínus, preto má funkcia v tomto bode maximum
.

6. Nájdite intervaly konvexnosti, inflexné body.

Poďme nájsť body, kde je 0 alebo neexistuje.

nemá skutočné korene.
,
,

bodov
a
rozdeliť skutočnú os na tri intervaly. Definujme znamenie v každom intervale.

Teda krivka na intervaloch
a
konvexné nadol, na intervale (-1;1) konvexné nahor; neexistujú žiadne inflexné body, pretože funkcia v bodoch
a
nešpecifikované.

7. Nájdite priesečníky s osami.

s nápravou
graf funkcie sa pretína v bode (0; -1) a s osou
graf nepretína, lebo čitateľ tejto funkcie nemá skutočné korene.

Graf danej funkcie je na obrázku 1.

Obrázok 1 ─ Graf funkcie

Aplikácia konceptu derivátu v ekonómii. Funkčná elasticita

Študovať ekonomické procesy a riešiť iné aplikované úlohyČasto sa používa pojem elasticita funkcie.

Definícia. Funkčná elasticita
sa nazýva limita pomeru relatívneho prírastku funkcie k relatívnemu prírastku premennej pri
, . (VII)

Elasticita funkcie ukazuje približne o koľko percent sa funkcia zmení
pri zmene nezávislej premennej o 1 %.

Elasticita funkcie sa používa pri analýze dopytu a spotreby. Ak elasticita dopytu (v absolútnej hodnote)
, potom sa dopyt považuje za elastický, ak
─ neutrálne, ak
─ neelastické vzhľadom na cenu (alebo príjem).

Príklad 10 Vypočítajte elasticitu funkcie
a nájdite hodnotu indexu elasticity pre = 3.

Riešenie: podľa vzorca (VII) elasticita funkcie:

Potom nech x=3
To znamená, že ak sa nezávislá premenná zvýši o 1 %, potom sa hodnota závisle premennej zvýši o 1,42 %.

Príklad 11 Nech funguje dopyt ohľadom ceny má formu
, kde ─ konštantný koeficient. Nájdite hodnotu indexu elasticity funkcie dopytu pri cene x = 3 deny. Jednotky

Riešenie: vypočítajte elasticitu funkcie dopytu pomocou vzorca (VII)

Za predpokladu
peňažné jednotky, dostaneme
. To znamená, že za cenu
peňažná jednotka zvýšenie ceny o 1 % spôsobí pokles dopytu o 6 %, t.j. dopyt je elastický.

Vaše súkromie je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si prosím naše zásady ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné údaje sú údaje, ktoré možno použiť na identifikáciu konkrétnej osoby alebo jej kontaktovanie.

Kedykoľvek nás budete kontaktovať, môžete byť požiadaní o poskytnutie svojich osobných údajov.

Nasleduje niekoľko príkladov typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zbierať rôzne informácie vrátane vášho mena, telefónneho čísla, adresy Email atď.

Ako používame vaše osobné údaje:

  • Nami zozbierané osobné informácie nám umožňuje kontaktovať vás a informovať vás o jedinečné ponuky, propagačné akcie a iné udalosti a nadchádzajúce udalosti.
  • Z času na čas môžeme použiť vaše osobné údaje, aby sme vám mohli posielať dôležité oznámenia a oznámenia.
  • Osobné údaje môžeme použiť aj na interné účely, ako je vykonávanie auditov, analýza údajov a rôzne výskumy, aby sme zlepšili služby, ktoré poskytujeme, a poskytli vám odporúčania týkajúce sa našich služieb.
  • Ak sa zúčastníte žrebovania o ceny, súťaže alebo podobného stimulu, môžeme použiť informácie, ktoré nám poskytnete, na spravovanie takýchto programov.

Sprístupnenie tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby - v súlade so zákonom, súdnym poriadkom, v súdnom konaní a/alebo na základe žiadostí verejnosti alebo žiadostí od vládne agentúry na území Ruskej federácie - zverejnite svoje osobné údaje. Môžeme tiež zverejniť informácie o vás, ak zistíme, že takéto zverejnenie je potrebné alebo vhodné na účely bezpečnosti, presadzovania práva alebo iného verejného záujmu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušnú tretiu stranu, nástupcu.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj pred neoprávneným prístupom, zverejnením, zmenou a zničením.

Zachovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o postupoch ochrany osobných údajov a zabezpečenia a prísne presadzujeme postupy ochrany osobných údajov.