Logaritmy s rovnakým základom. Rovnice a nerovnice. Čo je logaritmus

Logaritmus kladného čísla b na základ a (a>0, a sa nerovná 1) je číslo c také, že a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Všimnite si, že logaritmus nezáporného čísla nie je definovaný. Okrem toho musí byť základ logaritmu kladné číslo, čo sa nerovná 1. Ak napríklad odmocníme -2, dostaneme číslo 4, ale to neznamená, že základný logaritmus -2 čísla 4 je 2.

Základná logaritmická identita

a log a b = b (a > 0, a ≠ 1) (2)

Je dôležité, aby sa domény definície pravej a ľavej časti tohto vzorca líšili. Ľavá strana je definovaná len pre b>0, a>0 a a ≠ 1. Pravá strana je definovaná pre ľubovoľné b a vôbec nezávisí od a. Aplikácia základnej logaritmickej „identity“ pri riešení rovníc a nerovníc teda môže viesť k zmene DPV.

Dva zrejmé dôsledky definície logaritmu

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Skutočne, keď zvýšime číslo a na prvú mocninu, dostaneme rovnaké číslo a keď ho zvýšime na nulu, dostaneme jednotku.

Logaritmus súčinu a logaritmus kvocientu

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Chcel by som varovať školákov pred bezmyšlienkovým používaním týchto vzorcov pri riešení logaritmických rovníc a nerovníc. Keď sa používajú „zľava doprava“, ODZ sa zužuje a pri prechode od súčtu alebo rozdielu logaritmov k logaritmu súčinu alebo kvocientu sa ODZ rozširuje.

V skutočnosti je výraz log a (f (x) g (x)) definovaný v dvoch prípadoch: keď sú obe funkcie striktne kladné alebo keď sú f(x) a g(x) obe menšie ako nula.

Premenou tohto výrazu na súčet log a f (x) + log a g (x) sme nútení obmedziť sa iba na prípad, keď f(x)>0 a g(x)>0. Dochádza k zúženiu plochy povolené hodnoty, a to je kategoricky neprijateľné, pretože to môže viesť k strate riešení. Podobný problém existuje pre vzorec (6).

Stupeň možno odobrať zo znamienka logaritmu

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

A opäť by som chcel vyzvať na presnosť. Zvážte nasledujúci príklad:

Log a (f (x) 2 = 2 log a f (x)

Ľavá strana rovnosti je samozrejme definovaná pre všetky hodnoty f(x) okrem nuly. Pravá strana je len pre f(x)>0! Vybratím sily z logaritmu opäť zúžime ODZ. Opačný postup vedie k rozšíreniu rozsahu prípustných hodnôt. Všetky tieto poznámky platia nielen pre mocninu 2, ale aj pre akúkoľvek párnu mocninu.

Vzorec na presťahovanie sa na novú základňu

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ten ojedinelý prípad, keď sa ODZ pri prepočte nemení. Ak ste múdro zvolili základ c (kladný a nie rovný 1), vzorec na prechod na nový základ je úplne bezpečný.

Ak zvolíme číslo b ako nový základ c, dostaneme dôležité špeciálny prípad vzorce (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Niekoľko jednoduchých príkladov s logaritmami

Príklad 1 Vypočítajte: lg2 + lg50.
rozhodnutie. lg2 + lg50 = lg100 = 2. Použili sme vzorec pre súčet logaritmov (5) a definíciu desiatkového logaritmu.


Príklad 2 Vypočítajte: lg125/lg5.
rozhodnutie. lg125/lg5 = log 5 125 = 3. Použili sme nový základný prechodový vzorec (8).

Tabuľka vzorcov súvisiacich s logaritmami

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

\(a^(b)=c\) \(\šípka doľava\) \(\log_(a)(c)=b\)

Poďme si to vysvetliť jednoduchšie. Napríklad \(\log_(2)(8)\) sa rovná výkonu, na ktorý sa \(2\) musí zvýšiť, aby ste dostali \(8\). Z toho je jasné, že \(\log_(2)(8)=3\).

Príklady:

\(\log_(5)(25)=2\)

pretože \(5^(2)=25\)

\(\log_(3)(81)=4\)

pretože \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

pretože \(2^(-5)=\)\(\frac(1)(32)\)

Argument a základ logaritmu

Každý logaritmus má nasledujúcu „anatómiu“:

Argument logaritmu sa zvyčajne zapisuje na jeho úrovni a základňa sa píše dolným indexom bližšie k znamienku logaritmu. A tento záznam sa číta takto: "logaritmus dvadsaťpäť k základu päť."

Ako vypočítať logaritmus?

Ak chcete vypočítať logaritmus, musíte odpovedať na otázku: Do akej miery by sa mala základňa zvýšiť, aby ste dostali argument?

napríklad, vypočítajte logaritmus: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7)\) e) \(\log_(3)(\sqrt(3))\)

a) Na akú mocninu sa musí zvýšiť \(4\), aby ste dostali \(16\)? Očividne to druhé. Takže:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Na akú mocninu sa musí zvýšiť \(\sqrt(5)\), aby ste dostali \(1\)? A aký stupeň robí z akéhokoľvek čísla jednotku? Nula, samozrejme!

\(\log_(\sqrt(5))(1)=0\)

d) Na akú mocninu sa musí zvýšiť \(\sqrt(7)\), aby sa dostalo \(\sqrt(7)\)? V prvom - akékoľvek číslo v prvom stupni sa rovná sebe.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Na akú mocninu sa musí zvýšiť \(3\), aby sme dostali \(\sqrt(3)\)? Z toho vieme, že ide o zlomkovú mocnosť, čo znamená Odmocnina je stupeň \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Príklad : Vypočítajte logaritmus \(\log_(4\sqrt(2))(8)\)

rozhodnutie :

\(\log_(4\sqrt(2))(8)=x\)

Musíme nájsť hodnotu logaritmu, označme ho ako x. Teraz použijeme definíciu logaritmu:
\(\log_(a)(c)=b\) \(\Šípka doľava\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Aké odkazy sú \(4\sqrt(2)\) a \(8\)? Dve, ​​pretože obe čísla môžu byť reprezentované dvojkami:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Vľavo používame vlastnosti stupňov: \(a^(m)\cdot a^(n)=a^(m+n)\) a \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Základy sú rovnaké, pristúpime k rovnosti ukazovateľov

\(\frac(5x)(2)\) \(=3\)


Vynásobte obe strany rovnice \(\frac(2)(5)\)


Výsledný koreň je hodnota logaritmu

Odpoveď : \(\log_(4\sqrt(2))(8)=1,2\)

Prečo bol logaritmus vynájdený?

Aby sme to pochopili, vyriešme rovnicu: \(3^(x)=9\). Stačí priradiť \(x\), aby rovnosť fungovala. Samozrejme, \(x=2\).

Teraz vyriešte rovnicu: \(3^(x)=8\) Čomu sa rovná x? To je podstata.

Tí najdômyselnejší povedia: "X je o niečo menej ako dva." Ako presne sa má toto číslo zapísať? Na zodpovedanie tejto otázky prišli s logaritmom. Vďaka nemu tu môže byť odpoveď napísaná ako \(x=\log_(3)(8)\).

Chcem zdôrazniť, že \(\log_(3)(8)\), ako aj každý logaritmus je len číslo. Áno, vyzerá to nezvyčajne, ale je to krátke. Lebo keby sme to chceli napísať do formulára desatinný zlomok, potom by to vyzeralo takto: \(1.892789260714.....\)

Príklad : Vyriešte rovnicu \(4^(5x-4)=10\)

rozhodnutie :

\(4^(5x-4)=10\)

\(4^(5x-4)\) a \(10\) nemožno zredukovať na rovnaký základ. Takže tu sa bez logaritmu nezaobídete.

Použime definíciu logaritmu:
\(a^(b)=c\) \(\šípka doľava\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Otočte rovnicu tak, aby x bolo vľavo

\(5x-4=\log_(4)(10)\)

Pred nami. Presuňte \(4\) doprava.

A nebojte sa logaritmu, zaobchádzajte s ním ako s bežným číslom.

\(5x=\log_(4)(10)+4\)

Rozdeľte rovnicu číslom 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Tu je náš koreň. Áno, vyzerá to nezvyčajne, ale odpoveď nie je vybraná.

Odpoveď : \(\frac(\log_(4)(10)+4)(5)\)

Desatinné a prirodzené logaritmy

Ako je uvedené v definícii logaritmu, jeho základom môže byť akékoľvek kladné číslo okrem jedného \((a>0, a\neq1)\). A medzi všetkými možnými základmi sú dve, ktoré sa vyskytujú tak často, že na logaritmy s nimi bol vynájdený špeciálny krátky zápis:

Prirodzený logaritmus: logaritmus, ktorého základom je Eulerovo číslo \(e\) (rovná sa približne \(2,7182818…\)) a logaritmus sa zapíše ako \(\ln(a)\).

t.j. \(\ln(a)\) je to isté ako \(\log_(e)(a)\)

Desatinný logaritmus: Logaritmus, ktorého základ je 10, sa zapíše \(\lg(a)\).

t.j. \(\lg(a)\) je to isté ako \(\log_(10)(a)\), kde \(a\) je nejaké číslo.

Základná logaritmická identita

Logaritmy majú veľa vlastností. Jedna z nich sa nazýva „Základná logaritmická identita“ a vyzerá takto:

\(a^(\log_(a)(c))=c\)

Táto vlastnosť vyplýva priamo z definície. Pozrime sa, ako presne sa tento vzorec objavil.

Pripomeňme si krátku definíciu logaritmu:

ak \(a^(b)=c\), potom \(\log_(a)(c)=b\)

To znamená, že \(b\) je to isté ako \(\log_(a)(c)\). Potom môžeme do vzorca \(a^(b)=c\) namiesto \(b\) napísať \(\log_(a)(c)\) . Ukázalo sa, že \(a^(\log_(a)(c))=c\) - hlavná logaritmická identita.

Môžete nájsť zvyšok vlastností logaritmov. S ich pomocou môžete zjednodušiť a vypočítať hodnoty výrazov pomocou logaritmov, ktoré je ťažké vypočítať priamo.

Príklad : Nájdite hodnotu výrazu \(36^(\log_(6)(5))\)

rozhodnutie :

Odpoveď : \(25\)

Ako napísať číslo ako logaritmus?

Ako bolo uvedené vyššie, každý logaritmus je len číslo. Platí to aj naopak: ľubovoľné číslo možno zapísať ako logaritmus. Napríklad vieme, že \(\log_(2)(4)\) sa rovná dvom. Potom môžete namiesto dvoch napísať \(\log_(2)(4)\).

Ale \(\log_(3)(9)\) sa tiež rovná \(2\), takže môžete napísať aj \(2=\log_(3)(9)\) . Podobne s \(\log_(5)(25)\) as \(\log_(9)(81)\) atď. To znamená, že sa ukazuje

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Ak teda potrebujeme, môžeme dvojku zapísať ako logaritmus s ľubovoľným základom kdekoľvek (dokonca aj v rovnici, dokonca aj vo výraze, dokonca aj pri nerovnosti) - stačí napísať druhú mocninu základu ako argument.

Rovnako je to s trojkou – možno ju zapísať ako \(\log_(2)(8)\), alebo ako \(\log_(3)(27)\), alebo ako \(\log_(4)( 64) \) ... Tu napíšeme základ v kocke ako argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

A so štyrmi:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

A s mínusom jedna:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1) (7)\)\(...\)

A s jednou tretinou:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Akékoľvek číslo \(a\) môže byť vyjadrené ako logaritmus so základom \(b\): \(a=\log_(b)(b^(a))\)

Príklad : Nájdite hodnotu výrazu \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

rozhodnutie :

Odpoveď : \(1\)

Ako viete, pri násobení výrazov mocninami sa ich exponenty vždy sčítajú (a b * a c = a b + c). Tento matematický zákon odvodil Archimedes a neskôr, v 8. storočí, vytvoril matematik Virasen tabuľku celočíselných ukazovateľov. Boli to oni, ktorí slúžili na ďalšie objavovanie logaritmov. Príklady použitia tejto funkcie nájdeme takmer všade tam, kde je potrebné zjednodušiť ťažkopádne násobenie na jednoduché sčítanie. Ak strávite 10 minút čítaním tohto článku, vysvetlíme vám, čo sú to logaritmy a ako s nimi pracovať. Jednoduchý a prístupný jazyk.

Definícia v matematike

Logaritmus je vyjadrením nasledujúceho tvaru: log a b=c, to znamená logaritmus ľubovoľného nezáporného čísla (to znamená akéhokoľvek kladného čísla) "b" jeho základom "a" sa považuje za mocninu "c" , na ktorý musí byť základ "a" zdvihnutý, aby nakoniec dostal hodnotu "b". Analyzujme logaritmus na príkladoch, povedzme, že existuje výraz log 2 8. Ako nájsť odpoveď? Je to veľmi jednoduché, musíte nájsť taký stupeň, aby ste od 2 do požadovaného stupňa dostali 8. Po vykonaní niekoľkých výpočtov vo vašej mysli dostaneme číslo 3! A je to tak správne, pretože 2 na mocninu 3 dáva v odpovedi číslo 8.

Odrody logaritmov

Pre mnohých žiakov a študentov sa táto téma zdá zložitá a nepochopiteľná, ale v skutočnosti logaritmy nie sú také strašidelné, hlavnou vecou je pochopiť ich všeobecný význam a zapamätať si ich vlastnosti a niektoré pravidlá. Sú tam tri určité typy logaritmické výrazy:

  1. Prirodzený logaritmus ln a, kde základom je Eulerovo číslo (e = 2,7).
  2. Desatinné a, kde základ je 10.
  3. Logaritmus ľubovoľného čísla b so základom a>1.

Každý z nich je rozhodnutý štandardným spôsobom, ktorá zahŕňa zjednodušenie, redukciu a následnú redukciu na jeden logaritmus pomocou logaritmických viet. Aby ste získali správne hodnoty logaritmov, mali by ste si pamätať ich vlastnosti a poradie akcií pri ich rozhodnutiach.

Pravidlá a určité obmedzenia

V matematike existuje niekoľko pravidiel-obmedzení, ktoré sú akceptované ako axióma, to znamená, že nie sú predmetom diskusie a sú pravdivé. Čísla napríklad nemôžete deliť nulou a nie je možné použiť ani párny koreň záporné čísla. Logaritmy majú tiež svoje pravidlá, podľa ktorých sa ľahko naučíte pracovať aj s dlhými a objemnými logaritmickými výrazmi:

  • základ „a“ musí byť vždy väčší ako nula a zároveň sa nesmie rovnať 1, inak výraz stratí svoj význam, pretože „1“ a „0“ sa v akomkoľvek stupni vždy rovnajú svojim hodnotám;
  • ak a > 0, potom a b > 0, ukáže sa, že "c" musí byť väčšie ako nula.

Ako vyriešiť logaritmy?

Napríklad vzhľadom na úlohu nájsť odpoveď na rovnicu 10 x \u003d 100. Je to veľmi jednoduché, musíte si vybrať takú silu zvýšením čísla desať, na ktoré dostaneme 100. Toto je, samozrejme, 10 2 \u003d 100.

Teraz si predstavme tento výraz ako logaritmický. Dostaneme log 10 100 = 2. Pri riešení logaritmov všetky akcie prakticky konvergujú k zisteniu miery, do akej je potrebné zadať základ logaritmu, aby sme získali dané číslo.

Ak chcete presne určiť hodnotu neznámeho stupňa, musíte sa naučiť pracovať s tabuľkou stupňov. Vyzerá to takto:

Ako vidíte, niektoré exponenty sa dajú uhádnuť intuitívne, ak máte technické myslenie a znalosti násobilky. Avšak, pre veľké hodnoty potrebujete tabuľku stupňov. Využiť ho môžu aj tí, ktorí v zložitých matematických témach nerozumejú vôbec ničomu. Ľavý stĺpec obsahuje čísla (základ a), horný rad čísel je hodnota mocniny c, na ktorú je číslo a umocnené. Na priesečníku buniek sa určia hodnoty čísel, ktoré sú odpoveďou (a c = b). Zoberme si napríklad úplne prvú bunku s číslom 10 a odmocnime ju, dostaneme hodnotu 100, ktorá je naznačená na priesečníku našich dvoch buniek. Všetko je také jednoduché a ľahké, že to pochopí aj ten najskutočnejší humanista!

Rovnice a nerovnice

Ukazuje sa, že za určitých podmienok je exponentom logaritmus. Preto akékoľvek matematické numerické výrazy možno zapísať ako logaritmickú rovnicu. Napríklad 3 4 = 81 možno zapísať ako logaritmus 81 k základu 3, čo je štyri (log 3 81 = 4). Pre záporné mocniny sú pravidlá rovnaké: 2 -5 = 1/32 zapíšeme ako logaritmus, dostaneme log 2 (1/32) = -5. Jednou z najfascinujúcejších častí matematiky je téma „logaritmov“. Príklady a riešenia rovníc zvážime o niečo nižšie, hneď po preštudovaní ich vlastností. Teraz sa pozrime na to, ako vyzerajú nerovnosti a ako ich odlíšiť od rovníc.

Je daný výraz v nasledujúcom tvare: log 2 (x-1) > 3 - ide o logaritmickú nerovnosť, keďže neznáma hodnota "x" je pod znamienkom logaritmu. A tiež vo výraze sa porovnávajú dve veličiny: logaritmus požadovaného čísla v základe dva je väčší ako číslo tri.

Najdôležitejší rozdiel medzi logaritmickými rovnicami a nerovnosťami je v tom, že rovnice s logaritmami (napríklad logaritmus 2 x = √9) zahŕňajú jednu alebo viac konkrétnych číselných hodnôt v odpovedi, zatiaľ čo pri riešení nerovnosti oba rozsahy prijateľné hodnoty a body porušujúce túto funkciu. V dôsledku toho odpoveď nie je jednoduchá množina jednotlivých čísel ako v odpovedi rovnice, ale súvislý rad alebo množina čísel.

Základné vety o logaritmoch

Pri riešení primitívnych úloh pri hľadaní hodnôt logaritmu nemusia byť jeho vlastnosti známe. Pokiaľ však ide o logaritmické rovnice alebo nerovnice, v prvom rade je potrebné jasne pochopiť a prakticky aplikovať všetky základné vlastnosti logaritmov. S príkladmi rovníc sa zoznámime neskôr, najprv si každú vlastnosť podrobnejšie rozoberieme.

  1. Základná identita vyzerá takto: a logaB =B. Platí len vtedy, ak a je väčšie ako 0, nerovná sa jednej a B je väčšie ako nula.
  2. Logaritmus súčinu môže byť vyjadrený v nasledujúcom vzorci: log d (s 1 * s 2) = log d s 1 + log d s 2. predpokladom je: d, s1 a s2 > 0; a≠1. Môžete poskytnúť dôkaz pre tento vzorec logaritmov s príkladmi a riešením. Nech log a s 1 = f 1 a log a s 2 = f 2, potom a f1 = s 1, a f2 = s 2. Dostaneme, že s 1 *s 2 = a f1 *a f2 = a f1+f2 (vlastnosti stupňov ), a ďalej podľa definície: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, čo sa malo dokázať.
  3. Logaritmus kvocientu vyzerá takto: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Veta vo forme vzorca má tento tvar: log a q b n = n/q log a b.

Tento vzorec sa nazýva "vlastnosť stupňa logaritmu". Pripomína vlastnosti bežných stupňov a nie je to prekvapujúce, pretože celá matematika spočíva na pravidelných postulátoch. Pozrime sa na dôkaz.

Nechaj log a b \u003d t, ukáže sa t \u003d b. Ak zdvihnete obe časti na mocninu m: a tn = b n ;

ale keďže a tn = (a q) nt/q = b n , teda log a q b n = (n*t)/t, potom log a q b n = n/q log a b. Veta bola dokázaná.

Príklady problémov a nerovností

Najbežnejšími typmi logaritmických problémov sú príklady rovníc a nerovníc. Nachádzajú sa takmer vo všetkých problémových knihách a sú zahrnuté aj v povinnej časti skúšok z matematiky. Na vstup na univerzitu alebo absolvovanie vstupných testov z matematiky musíte vedieť, ako takéto úlohy správne riešiť.

Bohužiaľ neexistuje jednotný plán alebo schéma na riešenie a určenie neznámej hodnoty logaritmu, avšak na každú matematickú nerovnosť alebo logaritmickú rovnicu možno použiť určité pravidlá. Najprv by ste mali zistiť, či sa výraz dá zjednodušiť alebo zredukovať všeobecný pohľad. Dlhé logaritmické výrazy môžete zjednodušiť, ak správne použijete ich vlastnosti. Poďme sa s nimi čoskoro zoznámiť.

Pri riešení logaritmických rovníc je potrebné určiť, aký logaritmus máme pred sebou: príklad výrazu môže obsahovať prirodzený logaritmus alebo desiatkový.

Tu sú príklady ln100, ln1026. Ich riešenie sa scvrkáva na skutočnosť, že musíte určiť, do akej miery sa základ 10 bude rovnať 100 a 1026. Pre riešenia prirodzené logaritmy treba použiť logaritmické identity alebo ich vlastnosti. Pozrime sa na príklady riešenia logaritmických problémov rôznych typov.

Ako používať logaritmické vzorce: s príkladmi a riešeniami

Pozrime sa teda na príklady použitia hlavných teorémov na logaritmy.

  1. Vlastnosť logaritmu súčinu môže byť použitá v úlohách, kde je potrebné expandovať veľký významčísla b do jednoduchších faktorov. Napríklad log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odpoveď je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - ako vidíte, pomocou štvrtej vlastnosti stupňa logaritmu sa nám podarilo vyriešiť na prvý pohľad zložitý a neriešiteľný výraz. Je potrebné iba faktorizovať základ a potom odobrať hodnoty exponentov zo znamienka logaritmu.

Úlohy zo skúšky

Logaritmy sa často vyskytujú pri prijímacích skúškach, najmä veľa logaritmických problémov pri Jednotnej štátnej skúške (štátna skúška pre všetkých absolventov škôl). Zvyčajne sa tieto úlohy nachádzajú nielen v časti A (najľahšia testovacia časť skúšky), ale aj v časti C (najťažšie a najobsiahlejšie úlohy). Skúška predpokladá presnú a dokonalú znalosť témy "Prirodzené logaritmy".

Príklady a riešenia problémov sú prevzaté z oficiálnych verzií skúšky. Pozrime sa, ako sa takéto úlohy riešia.

Dané log 2 (2x-1) = 4. Riešenie:
prepíšme výraz, trochu ho zjednodušíme log 2 (2x-1) = 2 2 , definíciou logaritmu dostaneme, že 2x-1 = 2 4 , teda 2x = 17; x = 8,5.

  • Všetky logaritmy je najlepšie zredukovať na rovnaký základ, aby riešenie nebolo ťažkopádne a mätúce.
  • Všetky výrazy pod znamienkom logaritmu sú označené ako kladné, preto pri vyberaní exponentu exponentu výrazu, ktorý je pod znamienkom logaritmu a ako jeho základu, musí byť výraz zostávajúci pod logaritmom kladný.

Logaritmy, ako každé číslo, možno sčítať, odčítať a previesť všetkými možnými spôsobmi. Ale keďže logaritmy nie sú celkom bežné čísla, existujú tu pravidlá, ktoré sa nazývajú základné vlastnosti.

Tieto pravidlá musia byť známe - bez nich nemožno vyriešiť žiadny vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakým základom: log a X a log a r. Potom ich možno sčítať a odčítať a:

  1. log a X+ denník a r= log a (X · r);
  2. log a X−log a r= log a (X : r).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel je logaritmus kvocientu. Poznámka: kľúčový moment tu - rovnaké dôvody. Ak sú základy odlišné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

denník 6 4 + denník 6 9.

Keďže základy logaritmov sú rovnaké, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Opäť platí, že základy sú rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré sa neuvažujú samostatne. Ale po transformáciách sa ukážu celkom normálne čísla. Na základe tejto skutočnosti mnohí testovacie papiere. Áno, kontrola – na skúške sú ponúkané podobné výrazy úplne vážne (niekedy – prakticky bez zmien).

Odstránenie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak existuje stupeň v základe alebo argumente logaritmu? Potom možno exponent tohto stupňa odobrať zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje ich prvé dve. Ale je lepšie si to aj tak zapamätať – v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá majú zmysel, ak sa dodrží logaritmus ODZ: a > 0, a ≠ 1, X> 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak, t.j. môžete zadať čísla pred znamienkom logaritmu do samotného logaritmu. To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente podľa prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite hodnotu výrazu:

[Titul obrázku]

Všimnite si, že menovateľ je logaritmus, ktorého základ a argument sú presné mocniny: 16 = 2 4 ; 49 = 72. Máme:

[Titul obrázku]

Myslím, že posledný príklad potrebuje objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli základ a argument stojaceho logaritmu vo forme stupňov a vybrali ukazovatele - dostali „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ majú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa stalo. Výsledkom je odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základňami. Čo ak sú základy odlišné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na novú základňu. Formulujeme ich vo forme vety:

Nechajte logaritmus logovať a X. Potom pre ľubovoľné číslo c také že c> 0 a c≠ 1, platí rovnosť:

[Titul obrázku]

Najmä ak dáme c = X, dostaneme:

[Titul obrázku]

Z druhého vzorca vyplýva, že je možné zameniť základ a argument logaritmu, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus je v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však úlohy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do nového základu. Uvažujme o niekoľkých z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov sú presné exponenty. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz otočme druhý logaritmus:

[Titul obrázku]

Keďže súčin sa nemení permutáciou faktorov, pokojne sme vynásobili štyri a dva a potom sme vypočítali logaritmy.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

[Titul obrázku]

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

[Titul obrázku]

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu vzorce:

V prvom prípade číslo n sa stáva exponentom argumentu. číslo n môže byť úplne čokoľvek, pretože je to len hodnota logaritmu.

Druhý vzorec je vlastne parafrázovaná definícia. Nazýva sa to základná logaritmická identita.

Vskutku, čo sa stane, ak číslo b zdvihnúť k moci tak, že b do tejto miery dáva číslo a? Správne: toto je rovnaké číslo a. Pozorne si prečítajte tento odsek ešte raz - veľa ľudí na ňom „visí“.

Rovnako ako nové základné konverzné vzorce, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite hodnotu výrazu:

[Titul obrázku]

Všimnite si, že log 25 64 = log 5 8 - práve vytiahol štvorec zo základne a argument logaritmu. Vzhľadom na pravidlá násobenia právomocí s rovnakým základom dostaneme:

[Titul obrázku]

Ak niekto nevie, toto bola skutočná úloha zo skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré je ťažké nazvať vlastnosťami – skôr ide o dôsledky z definície logaritmu. Neustále sa nachádzajú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a= 1 je logaritmická jednotka. Pamätajte si raz a navždy: logaritmus na akúkoľvek základňu a z tejto základne sa rovná jednej.
  2. log a 1 = 0 je logaritmická nula. Základňa a môže byť čokoľvek, ale ak je argument jedna, logaritmus je nula! pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.


Pokračujeme v štúdiu logaritmov. V tomto článku budeme hovoriť o výpočet logaritmov, tento proces sa nazýva logaritmus. Najprv sa budeme zaoberať výpočtom logaritmov podľa definície. Ďalej zvážte, ako sa nachádzajú hodnoty logaritmov pomocou ich vlastností. Potom sa budeme zaoberať výpočtom logaritmov prostredníctvom pôvodne zadaných hodnôt iných logaritmov. Nakoniec sa naučíme používať tabuľky logaritmov. Celá teória je vybavená príkladmi s podrobným riešením.

Navigácia na stránke.

Výpočet logaritmov podľa definície

V najjednoduchších prípadoch je možné rýchlo a jednoducho vykonať nájdenie logaritmu podľa definície. Pozrime sa bližšie na to, ako tento proces prebieha.

Jeho podstatou je reprezentovať číslo b v tvare a c , odkiaľ je podľa definície logaritmu číslo c hodnotou logaritmu. To znamená, že nájdenie logaritmu podľa definície zodpovedá nasledujúcemu reťazcu rovnosti: log a b=log a a c =c .

Výpočet logaritmu teda podľa definície vedie k nájdeniu takého čísla c, že ​​a c \u003d b a samotné číslo c je požadovaná hodnota logaritmu.

Vzhľadom na informácie z predchádzajúcich odsekov, keď je číslo pod znamienkom logaritmu dané určitým stupňom základne logaritmu, môžete okamžite uviesť, čomu sa logaritmus rovná - rovná sa exponentu. Ukážme si príklady.

Príklad.

Nájdite log 2 2 −3 a tiež vypočítajte prirodzený logaritmus e 5,3.

rozhodnutie.

Definícia logaritmu nám umožňuje hneď povedať, že log 2 2 −3 = −3 . V skutočnosti sa číslo pod znamienkom logaritmu rovná základu 2 až -3.

Podobne nájdeme druhý logaritmus: lne 5,3 = 5,3.

odpoveď:

log 2 2 −3 = −3 a lne 5.3 = 5.3.

Ak číslo b pod znamienkom logaritmu nie je uvedené ako mocnina základu logaritmu, potom musíte dôkladne zvážiť, či je možné prísť so zobrazením čísla b v tvare a c . Toto znázornenie je často celkom zrejmé, najmä ak sa číslo pod znamienkom logaritmu rovná základu s mocninou 1, alebo 2, alebo 3, ...

Príklad.

Vypočítajte logaritmy log 5 25 a .

rozhodnutie.

Je ľahké vidieť, že 25=5 2 , to vám umožňuje vypočítať prvý logaritmus: log 5 25 = log 5 5 2 = 2 .

Prejdeme k výpočtu druhého logaritmu. Číslo môže byť vyjadrené ako mocnina 7: (pozri v prípade potreby). teda .

Prepíšme tretí logaritmus nasledujúci formulár. Teraz to môžete vidieť , z čoho sme dospeli k záveru, že . Preto podľa definície logaritmu .

Stručne povedané, riešenie by sa dalo napísať takto:

odpoveď:

log 5 25=2 , a .

Keď je pod znamienkom logaritmu dostatočne veľká hodnota prirodzené číslo, potom nezaškodí rozložiť ho na hlavné faktory. Často pomáha reprezentovať také číslo ako nejakú mocninu základu logaritmu, a preto tento logaritmus vypočítať podľa definície.

Príklad.

Nájdite hodnotu logaritmu.

rozhodnutie.

Niektoré vlastnosti logaritmov umožňujú okamžite určiť hodnotu logaritmov. Tieto vlastnosti zahŕňajú vlastnosť logaritmu jednotky a vlastnosť logaritmu čísla rovného základu: log 1 1=log a a 0 =0 a log a a=log a a 1 =1 . To znamená, že keď číslo 1 alebo číslo a je pod znamienkom logaritmu, rovná sa základu logaritmu, potom sú v týchto prípadoch logaritmy 0 a 1.

Príklad.

Aké sú logaritmy a lg10?

rozhodnutie.

Od , to vyplýva z definície logaritmu .

V druhom príklade sa číslo 10 pod znamienkom logaritmu zhoduje so základom, takže desiatkový logaritmus desiatich sa rovná jednej, teda lg10=lg10 1 =1 .

odpoveď:

A lg10=1.

Všimnite si, že výpočet logaritmov podľa definície (o ktorej sme hovorili v predchádzajúcom odseku) predpokladá použitie logaritmu rovnosti a a p =p , čo je jedna z vlastností logaritmov.

V praxi, keď je číslo pod znamienkom logaritmu a základ logaritmu ľahko reprezentované ako mocnina nejakého čísla, je veľmi vhodné použiť vzorec , čo zodpovedá jednej z vlastností logaritmov. Zvážte príklad nájdenia logaritmu, ktorý ilustruje použitie tohto vzorca.

Príklad.

Vypočítajte logaritmus .

rozhodnutie.

odpoveď:

.

Pri výpočte sa využívajú aj vyššie neuvedené vlastnosti logaritmov, ale o tom si povieme v nasledujúcich odstavcoch.

Hľadanie logaritmov z hľadiska iných známych logaritmov

Informácie v tomto odseku pokračujú v téme využitia vlastností logaritmov pri ich výpočte. Ale tu je hlavný rozdiel v tom, že vlastnosti logaritmov sa používajú na vyjadrenie pôvodného logaritmu pomocou iného logaritmu, ktorého hodnota je známa. Pre objasnenie si uveďme príklad. Povedzme, že vieme, že log 2 3≈1,584963 , potom môžeme nájsť napríklad log 2 6 vykonaním malej transformácie pomocou vlastností logaritmu: log 2 6 = log 2 (2 3) = log 2 2 + log 2 3≈ 1+1,584963=2,584963 .

Vo vyššie uvedenom príklade nám stačilo použiť vlastnosť logaritmu súčinu. Oveľa častejšie však musíte použiť širší arzenál vlastností logaritmov, aby ste vypočítali pôvodný logaritmus z hľadiska daných.

Príklad.

Vypočítajte logaritmus 27 k základu 60, ak je známe, že log 60 2=a a log 60 5=b .

rozhodnutie.

Musíme teda nájsť log 60 27 . Je ľahké vidieť, že 27=3 3 a pôvodný logaritmus možno vďaka vlastnosti logaritmu stupňa prepísať ako 3·log 60 3 .

Teraz sa pozrime, ako možno log 60 3 vyjadriť pomocou známych logaritmov. Vlastnosť logaritmu čísla rovného základu vám umožňuje zapísať logaritmus rovnosti 60 60=1 . Na druhej strane log 60 60=log60(2 2 3 5)= log 60 2 2 + log 60 3+ log 60 5= 2 log 60 2+log 60 3+log 60 5 . teda 2 log 60 2+log 60 3+log 60 5=1. teda log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

Nakoniec vypočítame pôvodný logaritmus: log 60 27=3 log 60 3= 3 (1-2 a-b) = 3-6 a-3 b.

odpoveď:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Samostatne stojí za zmienku o význame vzorca pre prechod na nový základ logaritmu formulára . Umožňuje vám prejsť od logaritmov s ľubovoľným základom k logaritmom s konkrétnym základom, ktorých hodnoty sú známe alebo je možné ich nájsť. Zvyčajne z pôvodného logaritmu podľa prechodového vzorca prechádzajú na logaritmy v jednej zo základov 2, e alebo 10, pretože pre tieto základy existujú tabuľky logaritmov, ktoré umožňujú vypočítať ich hodnoty s určitým stupňom presnosti. V ďalšej časti si ukážeme, ako sa to robí.

Logaritmické tabuľky, ich použitie

Na približný výpočet hodnôt logaritmov je možné použiť logaritmické tabuľky. Najčastejšie sa používa základná tabuľka 2 logaritmov, tabuľka prirodzených logaritmov a tabuľka desiatkových logaritmov. Pri práci v desiatkovej číselnej sústave je vhodné použiť tabuľku logaritmov so základom desať. S jeho pomocou sa naučíme nájsť hodnoty logaritmov.










Predložená tabuľka umožňuje s presnosťou na jednu desaťtisícinu nájsť hodnoty dekadických logaritmov čísel od 1,000 do 9,999 (s tromi desatinnými miestami). Princíp hľadania hodnoty logaritmu pomocou tabuľky desiatkových logaritmov bude analyzovaný v konkrétny príklad- oveľa jasnejšie. Poďme nájsť lg1,256 .

V ľavom stĺpci tabuľky desiatkových logaritmov nájdeme prvé dve číslice čísla 1,256, teda nájdeme 1,2 (toto číslo je kvôli prehľadnosti zakrúžkované modrou farbou). Tretia číslica čísla 1,256 (číslo 5) sa nachádza v prvom alebo poslednom riadku naľavo od dvojitého riadku (toto číslo je zakrúžkované červenou farbou). Štvrtá číslica pôvodného čísla 1,256 (číslo 6) sa nachádza v prvom alebo poslednom riadku napravo od dvojitého riadku (toto číslo je zakrúžkované zelenou farbou). Teraz nájdeme čísla v bunkách tabuľky logaritmov na priesečníku označeného riadku a označených stĺpcov (tieto čísla sú zvýraznené oranžová). Súčet označených čísel dáva požadovanú hodnotu desiatkového logaritmu až do štvrtý znak za čiarkou, tzn. log1,236≈0,0969+0,0021=0,0990.

Je možné pomocou vyššie uvedenej tabuľky nájsť hodnoty desiatkových logaritmov čísel, ktoré majú viac ako tri číslice za desatinnou čiarkou, a tiež prekročiť limity od 1 do 9,999? Áno môžeš. Ukážme si, ako sa to robí na príklade.

Vypočítajme lg102,76332 . Najprv musíte napísať číslo v štandardná forma : 102,76332=1,0276332 10 2 . Potom by sa mantisa mala zaokrúhliť na tretie desatinné miesto, máme 1,0276332 10 2 ≈1,028 10 2, pričom pôvodný dekadický logaritmus sa približne rovná logaritmu výsledného čísla, to znamená, že vezmeme lg102.76332≈lg1.028·10 2 . Teraz použite vlastnosti logaritmu: lg1,028 10 2 = lg1,028+lg102 = lg1,028+2. Nakoniec zistíme hodnotu logaritmu lg1,028 podľa tabuľky desiatkových logaritmov lg1,028≈0,0086+0,0034=0,012. Výsledkom je, že celý proces výpočtu logaritmu vyzerá takto: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1,028+lg102 = lg1,028+2≈0,012+2=2,012.

Na záver stojí za zmienku, že pomocou tabuľky desiatkových logaritmov môžete vypočítať približnú hodnotu ľubovoľného logaritmu. Na to stačí použiť prechodový vzorec na prechod na desiatkové logaritmy, nájsť ich hodnoty v tabuľke a vykonať zostávajúce výpočty.

Napríklad vypočítajme log 2 3 . Podľa vzorca na prechod na nový základ logaritmu máme . Z tabuľky desiatkových logaritmov nájdeme lg3≈0,4771 a lg2≈0,3010. teda .

Bibliografia.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. a iné Algebra a začiatky analýzy: Učebnica pre 10. – 11. ročník všeobecných vzdelávacích inštitúcií.
  • Gusev V.A., Mordkovich A.G. Matematika (príručka pre uchádzačov o štúdium na technických školách).