Vzorec pre n-té číslo geometrickej postupnosti. Geometrická postupnosť na príkladoch

Lekcia a prezentácia na tému: "Číselné postupnosti. Geometrická postupnosť"

Dodatočné materiály
Vážení používatelia, nezabudnite zanechať svoje komentáre, spätnú väzbu, návrhy! Všetky materiály sú kontrolované antivírusovým programom.

Učebné pomôcky a simulátory v internetovom obchode "Integral" pre ročník 9
Funkcie a grafy mocnin a koreňov

Chlapci, dnes sa zoznámime s iným typom progresie.
Témou dnešnej hodiny je geometrická postupnosť.

Geometrická progresia

Definícia. Číselná postupnosť, v ktorej sa každý člen počnúc druhým rovná súčinu predchádzajúceho a nejakého pevného čísla, sa nazýva geometrická postupnosť.
Definujme našu postupnosť rekurzívne: $b_(1)=b$, $b_(n)=b_(n-1)*q$,
kde b a q sú určité dané čísla. Číslo q sa nazýva menovateľ progresie.

Príklad. 1,2,4,8,16… Geometrická postupnosť, v ktorej sa prvý člen rovná jednej a $q=2$.

Príklad. 8,8,8,8… Geometrická postupnosť, ktorej prvý člen je osem,
a $q=1$.

Príklad. 3,-3,3,-3,3... Geometrická postupnosť, ktorej prvý člen je tri,
a $q=-1$.

Geometrický postup má vlastnosti monotónnosti.
Ak $b_(1)>0$, $q>1$,
potom sa postupnosť zvyšuje.
Ak $b_(1)>0$, $0 Postupnosť sa zvyčajne označuje ako: $b_(1), b_(2), b_(3), ..., b_(n), ...$.

Rovnako ako v aritmetickej postupnosti, ak je počet prvkov v geometrickej postupnosti konečný, potom sa postupnosť nazýva konečná geometrická postupnosť.

$b_(1), b_(2), b_(3), ..., b_(n-2), b_(n-1), b_(n)$.
Všimnite si, že ak je postupnosť geometrickou progresiou, potom postupnosť umocnených členov je tiež geometrická postupnosť. Druhá postupnosť má prvý člen $b_(1)^2$ a menovateľ $q^2$.

Vzorec n-tého člena geometrickej postupnosti

Geometrická postupnosť môže byť špecifikovaná aj v analytickej forme. Pozrime sa, ako na to:
$b_(1)=b_(1)$.
$b_(2)=b_(1)*q$.
$b_(3)=b_(2)*q=b_(1)*q*q=b_(1)*q^2$.
$b_(4)=b_(3)*q=b_(1)*q^3$.
$b_(5)=b_(4)*q=b_(1)*q^4$.
Môžeme ľahko vidieť vzor: $b_(n)=b_(1)*q^(n-1)$.
Náš vzorec sa nazýva "vzorec n-tého člena geometrickej postupnosti".

Vráťme sa k našim príkladom.

Príklad. 1,2,4,8,16… geometrická postupnosť, ktorej prvý člen sa rovná jednej,
a $q=2$.
$b_(n)=1*2^(n)=2^(n-1)$.

Príklad. 16,8,4,2,1,1/2… Geometrická postupnosť, ktorej prvý člen je šestnásť a $q=\frac(1)(2)$.
$b_(n)=16*(\frac(1)(2))^(n-1)$.

Príklad. 8,8,8,8… Geometrická postupnosť, kde prvý člen je osem a $q=1$.
$b_(n)=8*1^(n-1)=8$.

Príklad. 3,-3,3,-3,3… Geometrická postupnosť, ktorej prvý člen je tri a $q=-1$.
$b_(n)=3*(-1)^(n-1)$.

Príklad. Daná geometrická postupnosť $b_(1), b_(2), …, b_(n), … $.
a) Je známe, že $b_(1)=6, q=3$. Nájdite $b_(5)$.
b) Je známe, že $b_(1)=6, q=2, b_(n)=768$. Nájsť n.
c) Je známe, že $q=-2, b_(6)=96$. Nájdite $b_(1)$.
d) Je známe, že $b_(1)=-2, b_(12)=4096$. Nájdite q.

Riešenie.
a) $b_(5)=b_(1)*q^4=6*3^4=486$.
b) $b_n=b_1*q^(n-1)=6*2^(n-1)=768$.
$2^(n-1)=\frac(768)(6)=128$ keďže $2^7=128 => n-1=7; n = 8 $.
c) $b_(6)=b_(1)*q^5=b_(1)*(-2)^5=-32*b_(1)=96 => b_(1)=-3$.
d) $b_(12)=b_(1)*q^(11)=-2*q^(11)=4096 => q^(11)=-2048 => q=-2$.

Príklad. Rozdiel medzi siedmym a piatym členom geometrickej postupnosti je 192, súčet piateho a šiesteho člena geometrickej postupnosti je 192. Nájdite desiaty člen tejto postupnosti.

Riešenie.
Vieme, že: $b_(7)-b_(5)=192$ a $b_(5)+b_(6)=192$.
Tiež vieme: $b_(5)=b_(1)*q^4$; $b_(6)=b_(1)*q^5$; $b_(7)=b_(1)*q^6$.
potom:
$b_(1)*q^6-b_(1)*q^4=192 $.
$b_(1)*q^4+b_(1)*q^5=192$.
Dostali sme systém rovníc:
$\začiatok(prípady)b_(1)*q^4(q^2-1)=192\\b_(1)*q^4(1+q)=192\koniec (prípady)$.
Ak dávame rovnítko, naše rovnice dostanú:
$b_(1)*q^4(q^2-1)=b_(1)*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Máme dve riešenia q: $q_(1)=2, q_(2)=-1$.
Dosadzujte postupne do druhej rovnice:
$b_(1)*2^4*3=192 => b_(1)=4$.
$b_(1)*(-1)^4*0=192 =>$ žiadne riešenia.
Dostali sme, že: $b_(1)=4, q=2$.
Poďme nájsť desiaty člen: $b_(10)=b_(1)*q^9=4*2^9=2048$.

Súčet konečnej geometrickej progresie

Predpokladajme, že máme konečnú geometrickú postupnosť. Vypočítajme, rovnako ako pre aritmetickú postupnosť, súčet jej členov.

Nech je daná konečná geometrická postupnosť: $b_(1),b_(2),…,b_(n-1),b_(n)$.
Uveďme si zápis súčtu jeho členov: $S_(n)=b_(1)+b_(2)+⋯+b_(n-1)+b_(n)$.
V prípade, keď $q=1$. Všetky členy geometrickej postupnosti sa rovnajú prvému členu, potom je zrejmé, že $S_(n)=n*b_(1)$.
Zvážte teraz prípad $q≠1$.
Vynásobte vyššie uvedené množstvo q.
$S_(n)*q=(b_(1)+b_(2)+⋯+b_(n-1)+b_(n))*q=b_(1)*q+b_(2)*q+⋯ +b_(n-1)*q+b_(n)*q=b_(2)+b_(3)+⋯+b_(n)+b_(n)*q$.
Poznámka:
$S_(n)=b_(1)+(b_(2)+⋯+b_(n-1)+b_(n))$.
$S_(n)*q=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q$.

$S_(n)*q-S_(n)=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q-b_(1)-(b_(2) )+⋯+b_(n-1)+b_(n))=b_(n)*q-b_(1)$.

$S_(n)(q-1)=b_(n)*q-b_(1)$.

$S_(n)=\frac(b_(n)*q-b_(1))(q-1)=\frac(b_(1)*q^(n-1)*q-b_(1)) (q-1)=\frac(b_(1)(q^(n)-1))(q-1)$.

$S_(n)=\frac(b_(1)(q^(n)-1))(q-1)$.

Získali sme vzorec pre súčet konečnej geometrickej postupnosti.


Príklad.
Nájdite súčet prvých siedmich členov geometrickej postupnosti, ktorej prvý člen je 4 a menovateľ je 3.

Riešenie.
$S_(7)=\frac(4*(3^(7)-1))(3-1)=2*(3^(7)-1)=4372$.

Príklad.
Nájdite piaty člen geometrickej postupnosti, ktorý je známy: $b_(1)=-3$; $b_(n)=-3072$; $S_(n)=-4095 $.

Riešenie.
$b_(n)=(-3)*q^(n-1)=-3072$.
$q^(n-1)=1024 $.
$q^(n)=1024q$.

$S_(n)=\frac(-3*(q^(n)-1))(q-1)=-4095$.
$-4095(q-1)=-3*(q^(n)-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
341 $ q=1 364 $.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Charakteristická vlastnosť geometrickej postupnosti

Chlapci, vzhľadom na geometrický postup. Zoberme si jeho tri po sebe idúce členy: $b_(n-1),b_(n),b_(n+1)$.
My to vieme:
$\frac(b_(n))(q)=b_(n-1)$.
$b_(n)*q=b_(n+1)$.
potom:
$\frac(b_(n))(q)*b_(n)*q=b_(n)^(2)=b_(n-1)*b_(n+1)$.
$b_(n)^(2)=b_(n-1)*b_(n+1)$.
Ak je postupnosť konečná, potom táto rovnosť platí pre všetky členy okrem prvého a posledného.
Ak nie je vopred známe, aký druh postupnosti sekvencia má, ale je známe, že: $b_(n)^(2)=b_(n-1)*b_(n+1)$.
Potom môžeme s istotou povedať, že ide o geometrickú progresiu.

Číselná postupnosť je geometrická postupnosť iba vtedy, ak sa druhá mocnina každého z jej členov rovná súčinu dvoch susedných členov postupnosti. Nezabúdajme na to pre konečná progresia táto podmienka nie je splnená pre prvého a posledného člena.


Pozrime sa na túto identitu: $\sqrt(b_(n)^(2))=\sqrt(b_(n-1)*b_(n+1))$.
$|b_(n)|=\sqrt(b_(n-1)*b_(n+1))$.
$\sqrt(a*b)$ sa nazýva priemer geometrické čísla a a b.

Modul ktoréhokoľvek člena geometrickej progresie sa rovná geometrickému priemeru dvoch susedných členov.


Príklad.
Nájdite x také, že $x+2; 2x+2; 3x+3$ boli tri po sebe idúce členy geometrickej progresie.

Riešenie.
Využime charakteristickú vlastnosť:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_(1)=2$ a $x_(2)=-1$.
Postupne nahraďte v pôvodnom výraze naše riešenia:
S $x=2$ sme dostali postupnosť: 4;6;9 je geometrická progresia s $q=1,5$.
S $x=-1$ sme dostali postupnosť: 1;0;0.
Odpoveď: $x=2.$

Úlohy na samostatné riešenie

1. Nájdite ôsmy prvý člen geometrickej postupnosti 16; -8; 4; -2 ....
2. Nájdite desiaty člen geometrickej postupnosti 11,22,44….
3. Je známe, že $b_(1)=5, q=3$. Nájdite $b_(7)$.
4. Je známe, že $b_(1)=8, q=-2, b_(n)=512$. Nájsť n.
5. Nájdite súčet prvých 11 členov geometrickej postupnosti 3;12;48….
6. Nájdite x také, že $3x+4; 2x+4; x+5$ sú tri po sebe idúce členy geometrickej postupnosti.

Uvažujme o sérii.

7 28 112 448 1792...

Je úplne jasné, že hodnota ktoréhokoľvek z jeho prvkov je presne štyrikrát väčšia ako u predchádzajúceho. Takže táto séria je pokroková.

Geometrická postupnosť je nekonečná postupnosť čísel Hlavná prednosťčo je, že nasledujúce číslo sa získa z predchádzajúceho vynásobením nejakým konkrétnym číslom. To je vyjadrené nasledujúcim vzorcom.

a z +1 =a z q, kde z je číslo vybraného prvku.

Preto z ∈ N.

Obdobie, keď sa v škole študuje geometrický postup, je 9. ročník. Príklady vám pomôžu pochopiť tento koncept:

0.25 0.125 0.0625...

Na základe tohto vzorca možno nájsť menovateľa progresie takto:

Ani q, ani b z nemôže byť nula. Každý z prvkov progresie by sa tiež nemal rovnať nule.

Preto, aby ste zistili ďalšie číslo v rade, musíte vynásobiť posledné číslo q.

Ak chcete určiť túto postupnosť, musíte zadať jej prvý prvok a menovateľ. Potom je možné nájsť ktorýkoľvek z nasledujúcich výrazov a ich súčet.

Odrody

V závislosti od q a a 1 je táto progresia rozdelená do niekoľkých typov:

  • Ak sú a 1 aj q väčšie ako jedna, potom je takáto postupnosť geometrickou postupnosťou, ktorá sa zvyšuje s každým ďalším prvkom. Príklad takéhoto je uvedený nižšie.

Príklad: a 1 =3, q=2 - oba parametre sú väčšie ako jedna.

Potom možno číselnú postupnosť zapísať takto:

3 6 12 24 48 ...

  • Ak |q| menej ako jedna, teda násobenie ňou je ekvivalentné deleniu, potom je progresia s podobnými podmienkami klesajúca geometrická progresia. Príklad takéhoto je uvedený nižšie.

Príklad: a 1 = 6, q = 1/3 - a 1 je väčšie ako jedna, q je menšie.

Potom možno číselnú postupnosť zapísať takto:

6 2 2/3 ... - ktorýkoľvek prvok je 3-krát väčší ako prvok, ktorý za ním nasleduje.

  • Znamenková premenná. Ak q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Príklad: a 1 = -3 , q = -2 - oba parametre sú menšie ako nula.

Potom môže byť postupnosť napísaná takto:

3, 6, -12, 24,...

Vzorce

Pre pohodlné používanie geometrických postupností existuje veľa vzorcov:

  • Vzorec z-tého člena. Umožňuje vypočítať prvok pod konkrétnym číslom bez výpočtu predchádzajúcich čísel.

Príklad:q = 3, a 1 = 4. Je potrebné vypočítať štvrtý prvok progresie.

Riešenie:a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Súčet prvých prvkov, ktorých číslo je z. Umožňuje vypočítať súčet všetkých prvkov sekvencie až doa zvrátane.

Od (1-q) je v menovateli, potom (1 - q)≠ 0, teda q sa nerovná 1.

Poznámka: ak q=1, potom by postupnosť bola radom nekonečne sa opakujúcich čísel.

Súčet geometrickej postupnosti, príklady:a 1 = 2, q= -2. Vypočítajte S 5 .

Riešenie:S 5 = 22 - výpočet podľa vzorca.

  • Suma, ak |q| < 1 и если z стремится к бесконечности.

Príklad:a 1 = 2 , q= 0,5. Nájdite množstvo.

Riešenie:Sz = 2 · = 4

Sz = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Niektoré vlastnosti:

  • charakteristickú vlastnosť. Ak je splnená nasledujúca podmienka vykonávané pre akékoľvekz, potom je daný číselný rad geometrickou postupnosťou:

a z 2 = a z -1 · az+1

  • Druhá mocnina ľubovoľného čísla geometrickej postupnosti sa tiež nájde sčítaním druhých mocnín akýchkoľvek ďalších dvoch čísel v danom rade, ak sú od tohto prvku rovnako vzdialené.

a z 2 = a z - t 2 + a z + t 2 , kdetje vzdialenosť medzi týmito číslami.

  • Prvkysa líšia v qraz.
  • Logaritmy prvkov postupu tiež tvoria postupnosť, ale už aritmetiku, to znamená, že každý z nich je o určité číslo väčší ako predchádzajúci.

Príklady niektorých klasických problémov

Aby ste lepšie pochopili, čo je geometrická progresia, môžu vám pomôcť príklady s riešením pre 9. ročník.

  • Podmienky:a 1 = 3, a 3 = 48. Nájdiq.

Riešenie: každý nasledujúci prvok je väčší ako predchádzajúciq raz.Niektoré prvky je potrebné vyjadriť prostredníctvom iných pomocou menovateľa.

v dôsledku tohoa 3 = q 2 · a 1

Pri striedaníq= 4

  • Podmienky:a 2 = 6, a 3 = 12. Vypočítajte S6.

Riešenie:Na to stačí nájsť q, prvý prvok a dosadiť ho do vzorca.

a 3 = q· a 2 , V dôsledku toho,q= 2

a 2 = q a 1,preto a 1 = 3

S6 = 189

  • · a 1 = 10, q= -2. Nájdite štvrtý prvok postupu.

Riešenie: na to stačí vyjadriť štvrtý prvok cez prvý a cez menovateľ.

a 4 = q 3· a 1 = -80

Príklad aplikácie:

  • Klient banky vložil zálohu vo výške 10 000 rubľov, podľa ktorej každý rok klient pridá 6% z nej k sume istiny. Koľko peňazí bude na účte po 4 rokoch?

Riešenie: Počiatočná suma je 10 tisíc rubľov. Takže rok po investícii bude na účte suma rovnajúca sa 10 000 + 10 000 · 0,06 = 10 000 1,06

V súlade s tým bude suma na účte po ďalšom roku vyjadrená takto:

(10 000 1,06) 0,06 + 10 000 1,06 = 1,06 1,06 10 000

To znamená, že každý rok sa táto suma zvyšuje 1,06-krát. To znamená, že na zistenie množstva prostriedkov na účte po 4 rokoch stačí nájsť štvrtý prvok progresie, ktorý je daný prvým prvkom rovným 10 tisíc a menovateľom rovným 1,06.

S = 1,06 1,06 1,06 1,06 10 000 = 12625

Príklady úloh na výpočet súčtu:

V rôznych úlohách sa používa geometrická postupnosť. Príklad na nájdenie súčtu možno uviesť takto:

a 1 = 4, q= 2, vypočítajteS5.

Riešenie: všetky údaje potrebné na výpočet sú známe, stačí ich dosadiť do vzorca.

S 5 = 124

  • a 2 = 6, a 3 = 18. Vypočítajte súčet prvých šiestich prvkov.

Riešenie:

Geom. postupnosť, každý ďalší prvok je q-krát väčší ako predchádzajúci, to znamená, že na výpočet súčtu musíte prvok poznaťa 1 a menovateľq.

a 2 · q = a 3

q = 3

Podobne musíme nájsťa 1 , vediaca 2 aq.

a 1 · q = a 2

a 1 =2

S 6 = 728.

Ak každé prirodzené číslo n zodpovedať skutočnému číslu a n , potom hovoria, že daný číselná postupnosť :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Takže číselná postupnosť je funkciou prirodzeného argumentu.

číslo a 1 volal prvý člen postupnosti , číslo a 2 druhý člen postupnosti , číslo a 3 tretí a tak ďalej. číslo a n volal n-tý člen postupnosti , a prirodzené číslo njeho číslo .

Od dvoch susedných členov a n a a n +1 členské sekvencie a n +1 volal následné (smerom k a n ), a a n predchádzajúce (smerom k a n +1 ).

Ak chcete zadať sekvenciu, musíte zadať metódu, ktorá vám umožní nájsť člena sekvencie s ľubovoľným číslom.

Často sa postupnosť uvádza s vzorce n-tého členu , teda vzorec, ktorý umožňuje určiť člen sekvencie podľa jeho čísla.

Napríklad,

postupnosť kladných nepárnych čísel môže byť daná vzorcom

a n= 2n- 1,

a postupnosť striedania 1 a -1 - vzorec

b n = (-1)n +1 .

Poradie sa dá určiť opakujúci sa vzorec, teda vzorec, ktorý vyjadruje ľubovoľný člen postupnosti, počnúc niektorým, cez predchádzajúce (jeden alebo viacero) členov.

Napríklad,

ak a 1 = 1 , a a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Ak 1= 1, a 2 = 1, a n +2 = a n + a n +1 , potom sa prvých sedem členov číselnej postupnosti nastaví takto:

1 = 1,

a 2 = 1,

a 3 = 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sekvencie môžu byť finálny, konečný a nekonečné .

Sekvencia je tzv konečný ak má konečný počet členov. Sekvencia je tzv nekonečné ak má nekonečne veľa členov.

Napríklad,

postupnosť dvojciferných prirodzených čísel:

10, 11, 12, 13, . . . , 98, 99

finálny, konečný.

Poradie prvočísel:

2, 3, 5, 7, 11, 13, . . .

nekonečné.

Sekvencia je tzv zvyšujúci sa , ak je každý jeho člen, počnúc druhým, väčší ako predchádzajúci.

Sekvencia je tzv ubúdanie , ak je každý jeho člen, počnúc druhým, menší ako predchádzajúci.

Napríklad,

2, 4, 6, 8, . . . , 2n, . . . je vzostupná sekvencia;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . je zostupná postupnosť.

Postupnosť, ktorej prvky s rastúcim počtom neklesajú, alebo naopak nepribúdajú, sa nazýva monotónna postupnosť .

Monotónne sekvencie sú najmä rastúce sekvencie a klesajúce sekvencie.

Aritmetický postup

Aritmetický postup volá sa postupnosť, ktorej každý člen od druhého sa rovná predchádzajúcemu, ku ktorému sa pridá rovnaké číslo.

a 1 , a 2 , a 3 , . . . , a n, . . .

je aritmetický postup pre akékoľvek prirodzené číslo n podmienka je splnená:

a n +1 = a n + d,

kde d - nejaké číslo.

Rozdiel medzi nasledujúcim a predchádzajúcim členom danej aritmetickej progresie je teda vždy konštantný:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

číslo d volal rozdiel aritmetického postupu.

Na nastavenie aritmetického postupu stačí zadať jeho prvý člen a rozdiel.

Napríklad,

ak a 1 = 3, d = 4 , potom prvých päť členov postupnosti nájdete takto:

1 =3,

a 2 = 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Pre aritmetický postup s prvým členom a 1 a rozdiel d jej n

a n = 1 + (n- 1)d.

Napríklad,

nájsť tridsiaty člen aritmetického postupu

1, 4, 7, 10, . . .

1 =1, d = 3,

30 = 1 + (30 - 1)d= 1 + 29· 3 = 88.

a n-1 = 1 + (n- 2)d,

a n= 1 + (n- 1)d,

a n +1 = a 1 + nd,

potom samozrejme

a n=
a n-1 + a n+1
2

každý člen aritmetického postupu od druhého sa rovná aritmetickému priemeru predchádzajúceho a nasledujúceho člena.

čísla a, b a c sú po sebe idúcimi členmi nejakej aritmetickej postupnosti vtedy a len vtedy, ak sa jedno z nich rovná aritmetickému priemeru ostatných dvoch.

Napríklad,

a n = 2n- 7 , je aritmetický postup.

Využime vyššie uvedené tvrdenie. Máme:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

v dôsledku toho

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Poznač si to n -tý člen aritmetického postupu možno nájsť nielen cez a 1 , ale aj akékoľvek predchádzajúce a k

a n = a k + (n- k)d.

Napríklad,

pre a 5 dá sa napísať

5 = 1 + 4d,

5 = a 2 + 3d,

5 = a 3 + 2d,

5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

potom samozrejme

a n=
a n-k +a n+k
2

ktorýkoľvek člen aritmetickej postupnosti, počínajúc druhým, sa rovná polovici súčtu členov tejto aritmetickej postupnosti rovnako vzdialených od nej.

Okrem toho pre akúkoľvek aritmetickú progresiu platí rovnosť:

a m + a n = a k + a l,

m + n = k + l.

Napríklad,

v aritmetickej progresii

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, pretože

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

najprv n členov aritmetickej progresie sa rovná súčinu polovice súčtu extrémnych členov počtom členov:

Z toho najmä vyplýva, že ak je potrebné sčítať termíny

a k, a k +1 , . . . , a n,

potom si predchádzajúci vzorec zachová svoju štruktúru:

Napríklad,

v aritmetickej progresii 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ak je daný aritmetická progresia, potom množstvá a 1 , a n, d, n aS n spojené dvoma vzorcami:

Preto, ak sú uvedené hodnoty troch z týchto veličín, potom zodpovedajúce hodnoty ďalších dvoch veličín sú určené z týchto vzorcov kombinovaných do systému dvoch rovníc s dvoma neznámymi.

Aritmetický postup je monotónna postupnosť. kde:

  • ak d > 0 , potom sa zvyšuje;
  • ak d < 0 , potom sa znižuje;
  • ak d = 0 , potom bude sekvencia nehybná.

Geometrická progresia

geometrický postup volá sa postupnosť, ktorej každý člen od druhého sa rovná predchádzajúcemu, vynásobený rovnakým číslom.

b 1 , b 2 , b 3 , . . . , b n, . . .

je geometrická postupnosť pre akékoľvek prirodzené číslo n podmienka je splnená:

b n +1 = b n · q,

kde q ≠ 0 - nejaké číslo.

Pomer nasledujúceho člena tejto geometrickej postupnosti k predchádzajúcemu je teda konštantné číslo:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

číslo q volal menovateľ geometrickej postupnosti.

Na nastavenie geometrickej progresie stačí zadať jej prvý člen a menovateľa.

Napríklad,

ak b 1 = 1, q = -3 , potom prvých päť členov postupnosti nájdete takto:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 a menovateľ q jej n -tý člen možno nájsť podľa vzorca:

b n = b 1 · q n -1 .

Napríklad,

nájdite siedmy člen geometrickej postupnosti 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

bn-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

potom samozrejme

b n 2 = b n -1 · b n +1 ,

každý člen geometrickej postupnosti, začínajúc od druhého, sa rovná geometrickému priemeru (proporcionálnemu) predchádzajúceho a nasledujúceho člena.

Keďže platí aj opak, platí nasledujúce tvrdenie:

čísla a, b a c sú po sebe idúce členy nejakej geometrickej postupnosti vtedy a len vtedy, ak sa druhá mocnina jedného z nich rovná súčinu ostatných dvoch, to znamená, že jedno z čísel je geometrickým priemerom ostatných dvoch.

Napríklad,

dokážme, že postupnosť daná vzorcom b n= -3 2 n , je geometrický postup. Využime vyššie uvedené tvrdenie. Máme:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

v dôsledku toho

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) (-3 2 n +1 ) = b n -1 · b n +1 ,

ktorý dokazuje požadované tvrdenie.

Poznač si to n člen geometrickej progresie možno nájsť nielen cez b 1 , ale aj akékoľvek predchádzajúce obdobie b k , na čo stačí použiť vzorec

b n = b k · q n - k.

Napríklad,

pre b 5 dá sa napísať

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

potom samozrejme

b n 2 = b n - k· b n + k

druhá mocnina ktoréhokoľvek člena geometrickej postupnosti, počínajúc druhým, sa rovná súčinu členov tejto postupnosti, ktoré sú od nej rovnako vzdialené.

Okrem toho pre akúkoľvek geometrickú progresiu platí rovnosť:

b m· b n= b k· b l,

m+ n= k+ l.

Napríklad,

exponenciálne

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , pretože

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

najprv n členy geometrickej postupnosti s menovateľom q 0 vypočítané podľa vzorca:

A kedy q = 1 - podľa vzorca

S n= n.b. 1

Všimnite si, že ak potrebujeme sčítať podmienky

b k, b k +1 , . . . , b n,

potom sa použije vzorec:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Napríklad,

exponenciálne 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ak je daná geometrická postupnosť, potom množstvá b 1 , b n, q, n a S n spojené dvoma vzorcami:

Preto, ak sú uvedené hodnoty akýchkoľvek troch z týchto veličín, potom zodpovedajúce hodnoty ďalších dvoch veličín sú určené z týchto vzorcov kombinovaných do systému dvoch rovníc s dvoma neznámymi.

Pre geometrický postup s prvým členom b 1 a menovateľ q prebieha nasledovné vlastnosti monotónnosti :

  • progresia sa zvyšuje, ak je splnená jedna z nasledujúcich podmienok:

b 1 > 0 a q> 1;

b 1 < 0 a 0 < q< 1;

  • Progresia sa znižuje, ak je splnená jedna z nasledujúcich podmienok:

b 1 > 0 a 0 < q< 1;

b 1 < 0 a q> 1.

Ak q< 0 , potom je geometrická postupnosť znamienkovo ​​striedavá: jej nepárne členy majú rovnaké znamienko ako jej prvý člen a párne členy majú opačné znamienko. Je jasné, že striedavý geometrický postup nie je monotónny.

Produkt prvého n členy geometrickej progresie možno vypočítať podľa vzorca:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Napríklad,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Nekonečne klesajúca geometrická progresia

Nekonečne klesajúca geometrická progresia sa nazýva nekonečná geometrická postupnosť, ktorej modul menovateľa je menší ako 1 , teda

|q| < 1 .

Všimnite si, že nekonečne klesajúca geometrická progresia nemusí byť klesajúca postupnosť. Toto sa hodí na prípad

1 < q< 0 .

S takýmto menovateľom je postupnosť znamienkovo ​​striedavá. Napríklad,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Súčet nekonečne klesajúcej geometrickej progresie pomenujte číslo, ku ktorému je súčet prvého n podmienky postupu s neobmedzeným nárastom počtu n . Toto číslo je vždy konečné a vyjadruje sa vzorcom

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Napríklad,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Vzťah medzi aritmetickými a geometrickými postupnosťami

Aritmetické a geometrický postupúzko súvisia. Uvažujme len o dvoch príkladoch.

a 1 , a 2 , a 3 , . . . d , potom

b a 1 , b a 2 , b a 3 , . . . b d .

Napríklad,

1, 3, 5, . . . — aritmetický postup s rozdielom 2 a

7 1 , 7 3 , 7 5 , . . . je geometrická postupnosť s menovateľom 7 2 .

b 1 , b 2 , b 3 , . . . je geometrická postupnosť s menovateľom q , potom

log a b 1, log a b 2, log a b 3, . . . — aritmetický postup s rozdielom log aq .

Napríklad,

2, 12, 72, . . . je geometrická postupnosť s menovateľom 6 a

lg 2, lg 12, lg 72, . . . — aritmetický postup s rozdielom lg 6 .

Geometrická postupnosť spolu s aritmetikou je dôležitá číselný rad, ktorý sa študuje v kurze školskej algebry v 9. ročníku. V tomto článku sa budeme zaoberať menovateľom geometrickej progresie a tým, ako jej hodnota ovplyvňuje jej vlastnosti.

Definícia geometrickej progresie

Najprv si to definujme číselný rad. Geometrická postupnosť je séria racionálne čísla, ktorý vzniká postupným násobením jeho prvého prvku konštantným číslom nazývaným menovateľ.

Napríklad čísla v rade 3, 6, 12, 24, ... sú geometrickou postupnosťou, pretože ak vynásobíme 3 (prvý prvok) 2, dostaneme 6. Ak 6 vynásobíme 2, dostaneme 12 a tak ďalej.

Členy uvažovanej postupnosti sa zvyčajne označujú symbolom ai, kde i je celé číslo označujúce číslo prvku v rade.

Vyššie uvedená definícia progresie môže byť napísaná v jazyku matematiky takto: an = bn-1 * a1, kde b je menovateľ. Je ľahké skontrolovať tento vzorec: ak n = 1, potom b1-1 = 1 a dostaneme a1 = a1. Ak n = 2, potom an = b * a1 a opäť sa dostávame k definícii uvažovaného radu čísel. V podobných úvahách možno pokračovať veľké hodnoty n.

Menovateľ geometrickej progresie


Číslo b úplne určuje, aký charakter bude mať celý číselný rad. Menovateľ b môže byť kladný, záporný a môže mať aj hodnotu väčšiu ako jedna alebo menšiu. Všetky vyššie uvedené možnosti vedú k rôznym sekvenciám:

  • b > 1. Existuje rastúci rad racionálnych čísel. Napríklad 1, 2, 4, 8, ... Ak je prvok a1 záporný, potom sa celá postupnosť zvýši iba modulo, ale zníži sa s prihliadnutím na znamienko čísel.
  • b = 1. Často sa takýto prípad nenazýva progresia, keďže riadny rad rovnaké racionálne čísla. Napríklad -4, -4, -4.

Vzorec pre sumu

Predtým, ako pristúpime k úvahám o konkrétnych problémoch pomocou menovateľa typu uvažovanej progresie, mal by sa uviesť dôležitý vzorec pre súčet jej prvých n prvkov. Vzorec je: Sn = (bn - 1) * a1 / (b - 1).

Tento výraz môžete získať sami, ak vezmete do úvahy rekurzívnu postupnosť členov progresie. Všimnite si tiež, že vo vyššie uvedenom vzorci stačí poznať iba prvý prvok a menovateľ, aby ste našli súčet ľubovoľného počtu členov.

Nekonečne klesajúca sekvencia


Vyššie bolo vysvetlenie, čo to je. Teraz, keď poznáme vzorec pre Sn, aplikujme ho na tento číselný rad. Pretože každé číslo, ktorého modul nepresahuje 1, má sklon k nule, keď sa zvýši na veľké mocniny, to znamená, že b∞ => 0, ak -1

Keďže rozdiel (1 - b) bude vždy kladný, bez ohľadu na hodnotu menovateľa, znamienko súčtu nekonečne klesajúcej geometrickej postupnosti S∞ je jednoznačne určené znamienkom jej prvého prvku a1.

Teraz zvážime niekoľko problémov, kde si ukážeme, ako aplikovať získané poznatky na konkrétne čísla.

Úloha číslo 1. Výpočet neznámych prvkov postupu a súčtu

Pri geometrickej postupnosti je menovateľ postupnosti 2 a jej prvý prvok je 3. Aký bude jej 7. a 10. člen a aký je súčet jej siedmich počiatočných prvkov?

Podmienka problému je pomerne jednoduchá a zahŕňa priame použitie vyššie uvedených vzorcov. Na výpočet prvku s číslom n teda použijeme výraz an = bn-1 * a1. Pre 7. prvok máme: a7 = b6 * a1, dosadením známych údajov dostaneme: a7 = 26 * 3 = 192. To isté urobíme pre 10. člen: a10 = 29 * 3 = 1536.

Pre súčet použijeme známy vzorec a určíme túto hodnotu pre prvých 7 prvkov série. Máme: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Úloha číslo 2. Určenie súčtu ľubovoľných prvkov postupu

Nech -2 je menovateľ exponenciálneho postupu bn-1 * 4, kde n je celé číslo. Je potrebné určiť súčet od 5. do 10. prvku tohto radu vrátane.

Nastolený problém nemožno vyriešiť priamo pomocou známych vzorcov. Môžete to vyriešiť pomocou 2 rôzne metódy. Pre úplnosť uvádzame oboje.

Metóda 1. Jej myšlienka je jednoduchá: musíte vypočítať dva zodpovedajúce súčty prvých členov a potom od jedného odpočítať druhý. Vypočítajte menší súčet: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Teraz vypočítame veľkú sumu: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Všimnite si, že v posledný výraz zrátané boli len 4 termíny, keďže 5. je už zahrnutý do súčtu, ktorý je potrebné vypočítať podľa stavu problému. Nakoniec vezmeme rozdiel: S510 = S10 - S4 = -1364 - (-20) = -1344.

Metóda 2. Pred dosadením čísel a počítaním môžete získať vzorec pre súčet medzi členmi m a n príslušného radu. Postupujeme presne tak, ako pri metóde 1, len najprv pracujeme so symbolickým znázornením súčtu. Máme: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1) . Do výsledného výrazu môžete dosadiť známe čísla a vypočítať konečný výsledok: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Úloha číslo 3. Aký je menovateľ?


Nech a1 = 2, nájdite menovateľa geometrickej postupnosti za predpokladu, že jej nekonečný súčet je 3 a je známe, že ide o klesajúci rad čísel.

Podľa stavu problému nie je ťažké uhádnuť, ktorý vzorec by sa mal použiť na jeho vyriešenie. Samozrejme, za súčet nekonečne klesajúcej progresie. Máme: S∞ = a1 / (1 - b). Odkiaľ vyjadrujeme menovateľa: b = 1 - a1 / S∞. Zostáva nahradiť známe hodnoty a získajte požadované číslo: b = 1 - 2 / 3 = -1 / 3 alebo -0,333(3). Tento výsledok môžeme kvalitatívne skontrolovať, ak si zapamätáme, že pre tento typ sekvencie modul b nesmie prekročiť hodnotu 1. Ako vidíte, |-1 / 3|

Úloha číslo 4. Obnovenie série čísel

Nech sú dané 2 prvky číselného radu, napríklad 5. sa rovná 30 a 10. sa rovná 60. Z týchto údajov je potrebné obnoviť celý rad s vedomím, že spĺňa vlastnosti geometrickej postupnosti.

Ak chcete problém vyriešiť, musíte si najprv zapísať zodpovedajúci výraz pre každý známy člen. Máme: a5 = b4 * a1 a a10 = b9 * a1. Teraz vydelíme druhý výraz prvým, dostaneme: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Odtiaľ určíme menovateľa tak, že odmocninu piateho stupňa z podielu členov známych z podmienky úlohy, b = 1,148698. Výsledné číslo sa dosadí do jedného z výrazov pre známy prvok, dostaneme: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Zistili sme teda, čo je menovateľom progresie bn a geometrickej postupnosti bn-1 * 17,2304966 = an, kde b = 1,148698.

Kde sa používajú geometrické postupnosti?


Ak by neexistovala aplikácia tohto číselného radu v praxi, potom by sa jeho štúdium zredukovalo na čisto teoretický záujem. Ale existuje taká aplikácia.


Nižšie sú uvedené 3 najznámejšie príklady:

  • Zenónov paradox, v ktorom agilný Achilles nestíha pomalú korytnačku, je riešený konceptom nekonečne klesajúcej postupnosti čísel.
  • Ak sú pšeničné zrná umiestnené na každej bunke šachovnice tak, že 1 zrnko je umiestnené na 1. bunke, 2 - na 2., 3 - na 3. atď., potom bude potrebných 18446744073709551615 zŕn na vyplnenie všetkých buniek doska!
  • V hre „Hanojská veža“ je na preskupenie diskov z jednej tyče na druhú potrebné vykonať 2n - 1 operácií, to znamená, že ich počet rastie exponenciálne od počtu použitých diskov n.

Poučenie

10, 30, 90, 270...

Je potrebné nájsť menovateľa geometrickej progresie.
Riešenie:

1 možnosť. Zoberme si ľubovoľný člen postupu (napríklad 90) a vydeľme ho predchádzajúcim (30): 90/30=3.

Ak je známy súčet niekoľkých členov geometrickej postupnosti alebo súčet všetkých členov klesajúcej geometrickej postupnosti, potom na nájdenie menovateľa postupnosti použite príslušné vzorce:
Sn = b1*(1-q^n)/(1-q), kde Sn je súčet prvých n členov geometrickej postupnosti a
S = b1/(1-q), kde S je súčet nekonečne klesajúcej geometrickej postupnosti (súčet všetkých členov postupnosti s menovateľom menším ako jedna).
Príklad.

Prvý člen klesajúcej geometrickej postupnosti sa rovná jednej a súčet všetkých jej členov sa rovná dvom.

Je potrebné určiť menovateľa tejto progresie.
Riešenie:

Doplňte údaje z úlohy do vzorca. Získajte:
2=1/(1-q), odkiaľ – q=1/2.

Postupnosť je postupnosť čísel. V geometrickej postupnosti sa každý nasledujúci člen získa vynásobením predchádzajúceho nejakým číslom q, ktoré sa nazýva menovateľ postupnosti.

Poučenie

Ak sú známe dva susedné členy geometrického b(n+1) a b(n), na získanie menovateľa je potrebné vydeliť číslo s veľkým číslom tým, ktoré mu predchádza: q=b(n +1)/b(n). Vyplýva to z definície progresie a jej menovateľa. Dôležitou podmienkou je, že prvý člen a menovateľ progresie sa nerovnajú nule, inak sa postup považuje za neurčitý.

Medzi členmi postupnosti sú teda vytvorené nasledujúce vzťahy: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. Vzorcom b(n)=b1 q^(n-1) možno vypočítať ľubovoľný člen geometrickej postupnosti, v ktorej je známy menovateľ q a člen b1. Každý modul progresie sa tiež rovná priemeru jeho susedných členov: |b(n)|=√, takže progresia má svoje .

Analógom geometrickej postupnosti je najjednoduchšia exponenciálna funkcia y=a^x, kde x je v exponente, a je nejaké číslo. V tomto prípade sa menovateľ progresie zhoduje s prvým členom a rovná sa číslu a. Hodnotu funkcie y možno chápať ako n-tý člen postupnosti, ak argument x berieme ako prirodzené číslo n (počítadlo).