Ako odstrániť mínus z logaritmu. Logaritmické výrazy. príklady

Logaritmus kladného čísla b na základ a (a>0, a sa nerovná 1) je číslo c také, že a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Všimnite si, že logaritmus nezáporného čísla nie je definovaný. Okrem toho musí byť základ logaritmu kladné číslo, čo sa nerovná 1. Ak napríklad odmocníme -2, dostaneme číslo 4, ale to neznamená, že základný logaritmus -2 čísla 4 je 2.

Základná logaritmická identita

a log a b = b (a > 0, a ≠ 1) (2)

Je dôležité, aby sa domény definície pravej a ľavej časti tohto vzorca líšili. Ľavá strana je definovaná len pre b>0, a>0 a a ≠ 1. Pravá strana je definovaná pre ľubovoľné b a vôbec nezávisí od a. Aplikácia základnej logaritmickej „identity“ pri riešení rovníc a nerovníc teda môže viesť k zmene DPV.

Dva zrejmé dôsledky definície logaritmu

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Skutočne, keď zvýšime číslo a na prvú mocninu, dostaneme rovnaké číslo a keď ho zvýšime na nulu, dostaneme jednotku.

Logaritmus súčinu a logaritmus kvocientu

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Chcel by som varovať školákov pred bezmyšlienkovým uplatňovaním týchto vzorcov pri riešení logaritmické rovnice a nerovnosti. Keď sa používajú „zľava doprava“, ODZ sa zužuje a pri prechode od súčtu alebo rozdielu logaritmov k logaritmu súčinu alebo kvocientu sa ODZ rozširuje.

V skutočnosti je výraz log a (f (x) g (x)) definovaný v dvoch prípadoch: keď sú obe funkcie striktne kladné alebo keď sú f(x) a g(x) obe menšie ako nula.

Premenou tohto výrazu na súčet log a f (x) + log a g (x) sme nútení obmedziť sa iba na prípad, keď f(x)>0 a g(x)>0. Dochádza k zúženiu plochy povolené hodnoty, a to je kategoricky neprijateľné, pretože to môže viesť k strate riešení. Podobný problém existuje pre vzorec (6).

Stupeň možno odobrať zo znamienka logaritmu

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

A opäť by som chcel vyzvať na presnosť. Zvážte nasledujúci príklad:

Log a (f (x) 2 = 2 log a f (x)

Ľavá strana rovnosti je samozrejme definovaná pre všetky hodnoty f(x) okrem nuly. Pravá strana je len pre f(x)>0! Vybratím sily z logaritmu opäť zúžime ODZ. Opačný postup vedie k rozšíreniu rozsahu prípustných hodnôt. Všetky tieto poznámky platia nielen pre mocninu 2, ale aj pre akúkoľvek párnu mocninu.

Vzorec na presťahovanie sa na novú základňu

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ten ojedinelý prípad, keď sa ODZ pri prepočte nemení. Ak ste múdro zvolili základ c (kladný a nie rovný 1), vzorec na prechod na nový základ je úplne bezpečný.

Ak zvolíme číslo b ako nový základ c, dostaneme dôležité špeciálny prípad vzorce (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Niekoľko jednoduchých príkladov s logaritmami

Príklad 1 Vypočítajte: lg2 + lg50.
rozhodnutie. lg2 + lg50 = lg100 = 2. Použili sme vzorec pre súčet logaritmov (5) a definíciu desiatkového logaritmu.


Príklad 2 Vypočítajte: lg125/lg5.
rozhodnutie. lg125/lg5 = log 5 125 = 3. Použili sme nový základný prechodový vzorec (8).

Tabuľka vzorcov súvisiacich s logaritmami

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

odvodené z jeho definície. A teda logaritmus čísla b podľa rozumu a definovaný ako exponent, na ktorý sa musí číslo zvýšiť a získať číslo b(logaritmus existuje len pre kladné čísla).

Z tejto formulácie vyplýva, že výpočet x=log a b, je ekvivalentné riešeniu rovnice ax=b. Napríklad, log 2 8 = 3 pretože 8 = 2 3 . Formulácia logaritmu umožňuje zdôvodniť, že ak b = a c, potom logaritmus čísla b podľa rozumu a rovná sa s. Je tiež zrejmé, že téma logaritmu úzko súvisí s témou sily čísla.

S logaritmami, ako s akýmikoľvek číslami, môžete vykonávať operácie sčítania, odčítania a transformovať všetkými možnými spôsobmi. Ale vzhľadom na to, že logaritmy nie sú celkom bežné čísla, platia tu ich vlastné špeciálne pravidlá, tzv. základné vlastnosti.

Sčítanie a odčítanie logaritmov.

Zoberme si dva logaritmy rovnaké dôvody: log x a prihlásiť sa y. Potom je možné vykonať operácie sčítania a odčítania:

log a x+ log a y= log a (x y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = log x 1 + log x 2 + log x 3 + ... + log a x k.

Od kvocientové logaritmické vety možno získať ešte jednu vlastnosť logaritmu. Je dobre známe, že log a 1 = 0, teda

log a 1 /b= log a 1 - log a b= -log a b.

Existuje teda rovnosť:

log a 1 / b = - log a b.

Logaritmy dvoch vzájomne recipročných čísel na rovnakom základe sa budú od seba líšiť iba znakom. Takže:

Log 3 9= - log 3 1/9 ; log 5 1/125 = -log 5 125.

Jedným z prvkov algebry primitívnych úrovní je logaritmus. Názov pochádzal z grécky od slova „číslo“ alebo „moc“ a znamená silu, na ktorú je potrebné zvýšiť číslo v základni, aby sa zistilo konečné číslo.

Typy logaritmov

  • log a b je logaritmus čísla b k základu a (a > 0, a ≠ 1, b > 0);
  • lg b - desiatkový logaritmus (základ logaritmu 10, a = 10);
  • ln b - prirodzený logaritmus (základ logaritmu e, a = e).

Ako vyriešiť logaritmy?

Logaritmus čísla b k základu a je exponent, ktorý vyžaduje, aby základ a bol zvýšený na číslo b. Výsledok sa vyslovuje takto: „logaritmus b k základu a“. Riešenie logaritmických problémov je, že musíte určiť tento stupeň po číslach po zadaných číslach. Existuje niekoľko základných pravidiel na určenie alebo riešenie logaritmu, ako aj na transformáciu samotného zápisu. Pomocou nich sa riešia logaritmické rovnice, nachádzajú sa derivácie, riešia sa integrály a vykonáva sa mnoho ďalších operácií. V zásade je riešením samotného logaritmu jeho zjednodušený zápis. Nižšie sú uvedené hlavné vzorce a vlastnosti:

Pre akékoľvek a ; a > 0; a ≠ 1 a pre ľubovoľné x; y > 0.

  • a log a b = b je základná logaritmická identita
  • log a 1 = 0
  • log a a = 1
  • log a (x y ) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, pre k ≠ 0
  • log a x = log a c x c
  • log a x \u003d log b x / log b a - vzorec pre prechod na nový základ
  • log a x = 1/log x a


Ako riešiť logaritmy - pokyny na riešenie krok za krokom

  • Najprv si zapíšte požadovanú rovnicu.

Poznámka: ak je základný logaritmus 10, záznam sa skráti a získa sa desiatkový logaritmus. Ak stojí za to prirodzené číslo e, potom zapíšeme a zredukujeme na prirodzený logaritmus. Znamená to, že výsledkom všetkých logaritmov je mocnina, na ktorú sa základné číslo zvýši, aby sa získalo číslo b.


Priamo riešenie spočíva vo výpočte tohto stupňa. Pred riešením výrazu s logaritmom je potrebné ho zjednodušiť podľa pravidla, teda pomocou vzorcov. Hlavné identity nájdete tak, že sa v článku vrátite trochu späť.

Sčítanie a odčítanie logaritmov s dvoma rôzne čísla, ale s rovnakými základmi nahraďte jedným logaritmom súčin alebo delenie čísel b a c. V tomto prípade môžete použiť vzorec prechodu na iný základ (pozri vyššie).

Ak používate výrazy na zjednodušenie logaritmu, existujú určité obmedzenia, o ktorých si musíte uvedomiť. A to je: základ logaritmu a je iba kladné číslo, ale nie je rovné jednej. Číslo b, podobne ako a, musí byť väčšie ako nula.

Existujú prípady, keď po zjednodušení výrazu nebudete môcť vypočítať logaritmus v číselnej forme. Stáva sa, že takýto výraz nedáva zmysel, pretože mnohé stupne sú iracionálne čísla. Za tejto podmienky ponechajte mocninu čísla ako logaritmus.



Ako viete, pri násobení výrazov mocninami sa ich exponenty vždy sčítajú (a b * a c = a b + c). Tento matematický zákon odvodil Archimedes a neskôr, v 8. storočí, vytvoril matematik Virasen tabuľku celočíselných ukazovateľov. Boli to oni, ktorí slúžili na ďalšie objavovanie logaritmov. Príklady použitia tejto funkcie nájdeme takmer všade tam, kde je potrebné zjednodušiť ťažkopádne násobenie na jednoduché sčítanie. Ak strávite 10 minút čítaním tohto článku, vysvetlíme vám, čo sú to logaritmy a ako s nimi pracovať. Jednoduchý a prístupný jazyk.

Definícia v matematike

Logaritmus je vyjadrením nasledujúceho tvaru: log a b=c, to znamená logaritmus akéhokoľvek nie záporné číslo(t. j. akékoľvek kladné) "b" na jeho základ "a" sa považuje za mocninu "c", na ktorú musí byť základ "a" povýšený, aby sa nakoniec dostala hodnota "b". Analyzujme logaritmus na príkladoch, povedzme, že existuje výraz log 2 8. Ako nájsť odpoveď? Je to veľmi jednoduché, musíte nájsť taký stupeň, aby ste od 2 do požadovaného stupňa dostali 8. Po vykonaní niekoľkých výpočtov vo vašej mysli dostaneme číslo 3! A je to tak správne, pretože 2 na mocninu 3 dáva v odpovedi číslo 8.

Odrody logaritmov

Pre mnohých žiakov a študentov sa táto téma zdá zložitá a nepochopiteľná, ale v skutočnosti logaritmy nie sú také strašidelné, hlavnou vecou je pochopiť ich všeobecný význam a zapamätať si ich vlastnosti a niektoré pravidlá. Sú tam tri určité typy logaritmické výrazy:

  1. Prirodzený logaritmus ln a, kde základom je Eulerovo číslo (e = 2,7).
  2. Desatinné a, kde základ je 10.
  3. Logaritmus ľubovoľného čísla b so základom a>1.

Každý z nich je rozhodnutý štandardným spôsobom, ktorá zahŕňa zjednodušenie, redukciu a následnú redukciu na jeden logaritmus pomocou logaritmických viet. Aby ste získali správne hodnoty logaritmov, mali by ste si pamätať ich vlastnosti a poradie akcií pri ich rozhodnutiach.

Pravidlá a určité obmedzenia

V matematike existuje niekoľko pravidiel-obmedzení, ktoré sú akceptované ako axióma, to znamená, že nie sú predmetom diskusie a sú pravdivé. Napríklad nie je možné deliť čísla nulou a tiež nie je možné extrahovať odmocninu párneho stupňa zo záporných čísel. Logaritmy majú tiež svoje pravidlá, podľa ktorých sa ľahko naučíte pracovať aj s dlhými a objemnými logaritmickými výrazmi:

  • základ „a“ musí byť vždy väčší ako nula a zároveň sa nesmie rovnať 1, inak výraz stratí svoj význam, pretože „1“ a „0“ sa v akomkoľvek stupni vždy rovnajú svojim hodnotám;
  • ak a > 0, potom a b > 0, ukáže sa, že "c" musí byť väčšie ako nula.

Ako vyriešiť logaritmy?

Napríklad vzhľadom na úlohu nájsť odpoveď na rovnicu 10 x \u003d 100. Je to veľmi jednoduché, musíte si vybrať takú silu zvýšením čísla desať, na ktoré dostaneme 100. Toto je, samozrejme, 10 2 \u003d 100.

Teraz si predstavme tento výraz ako logaritmický. Dostaneme log 10 100 = 2. Pri riešení logaritmov všetky akcie prakticky konvergujú k zisteniu miery, do akej je potrebné zadať základ logaritmu, aby sme získali dané číslo.

Ak chcete presne určiť hodnotu neznámeho stupňa, musíte sa naučiť pracovať s tabuľkou stupňov. Vyzerá to takto:

Ako vidíte, niektoré exponenty sa dajú uhádnuť intuitívne, ak máte technické myslenie a znalosti násobilky. Avšak, pre veľké hodnoty potrebujete tabuľku stupňov. Využiť ho môžu aj tí, ktorí v zložitých matematických témach nerozumejú vôbec ničomu. Ľavý stĺpec obsahuje čísla (základ a), horný rad čísel je hodnota mocniny c, na ktorú je číslo a umocnené. Na priesečníku buniek sa určia hodnoty čísel, ktoré sú odpoveďou (a c = b). Zoberme si napríklad úplne prvú bunku s číslom 10 a odmocnime ju, dostaneme hodnotu 100, ktorá je naznačená na priesečníku našich dvoch buniek. Všetko je také jednoduché a ľahké, že to pochopí aj ten najskutočnejší humanista!

Rovnice a nerovnice

Ukazuje sa, že za určitých podmienok je exponentom logaritmus. Preto akékoľvek matematické numerické výrazy možno zapísať ako logaritmickú rovnicu. Napríklad 3 4 = 81 možno zapísať ako logaritmus 81 k základu 3, čo je štyri (log 3 81 = 4). Pre záporné mocniny sú pravidlá rovnaké: 2 -5 = 1/32 zapíšeme ako logaritmus, dostaneme log 2 (1/32) = -5. Jednou z najfascinujúcejších častí matematiky je téma „logaritmov“. Príklady a riešenia rovníc zvážime o niečo nižšie, hneď po preštudovaní ich vlastností. Teraz sa pozrime na to, ako vyzerajú nerovnosti a ako ich odlíšiť od rovníc.

Je daný výraz v nasledujúcom tvare: log 2 (x-1) > 3 - ide o logaritmickú nerovnosť, keďže neznáma hodnota "x" je pod znamienkom logaritmu. A tiež vo výraze sa porovnávajú dve veličiny: logaritmus požadovaného čísla v základe dva je väčší ako číslo tri.

Najdôležitejší rozdiel medzi logaritmickými rovnicami a nerovnosťami je v tom, že rovnice s logaritmami (napríklad logaritmus 2 x = √9) zahŕňajú jednu alebo viac konkrétnych číselných hodnôt v odpovedi, zatiaľ čo pri riešení nerovnosti oba rozsahy prijateľné hodnoty a body porušujúce túto funkciu. V dôsledku toho odpoveď nie je jednoduchá množina jednotlivých čísel ako v odpovedi rovnice, ale súvislý rad alebo množina čísel.

Základné vety o logaritmoch

Pri riešení primitívnych úloh pri hľadaní hodnôt logaritmu nemusia byť jeho vlastnosti známe. Pokiaľ však ide o logaritmické rovnice alebo nerovnice, v prvom rade je potrebné jasne pochopiť a prakticky aplikovať všetky základné vlastnosti logaritmov. S príkladmi rovníc sa zoznámime neskôr, najprv si každú vlastnosť podrobnejšie rozoberieme.

  1. Základná identita vyzerá takto: a logaB =B. Platí len vtedy, ak a je väčšie ako 0, nerovná sa jednej a B je väčšie ako nula.
  2. Logaritmus súčinu môže byť vyjadrený v nasledujúcom vzorci: log d (s 1 * s 2) = log d s 1 + log d s 2. predpokladom je: d, s1 a s2 > 0; a≠1. Môžete poskytnúť dôkaz pre tento vzorec logaritmov s príkladmi a riešením. Nech log a s 1 = f 1 a log a s 2 = f 2, potom a f1 = s 1, a f2 = s 2. Dostaneme, že s 1 *s 2 = a f1 *a f2 = a f1+f2 (vlastnosti stupňov ), a ďalej podľa definície: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, čo sa malo dokázať.
  3. Logaritmus kvocientu vyzerá takto: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Veta vo forme vzorca nadobúda ďalší pohľad: log a q b n = n/q log a b.

Tento vzorec sa nazýva "vlastnosť stupňa logaritmu". Pripomína vlastnosti bežných stupňov a nie je to prekvapujúce, pretože celá matematika spočíva na pravidelných postulátoch. Pozrime sa na dôkaz.

Nechaj log a b \u003d t, ukáže sa t \u003d b. Ak zdvihnete obe časti na mocninu m: a tn = b n ;

ale keďže a tn = (a q) nt/q = b n , teda log a q b n = (n*t)/t, potom log a q b n = n/q log a b. Veta bola dokázaná.

Príklady problémov a nerovností

Najbežnejšími typmi logaritmických problémov sú príklady rovníc a nerovníc. Nachádzajú sa takmer vo všetkých problémových knihách a sú zahrnuté aj v povinnej časti skúšok z matematiky. Na vstup na univerzitu alebo absolvovanie vstupných testov z matematiky musíte vedieť, ako takéto úlohy správne riešiť.

Bohužiaľ neexistuje jednotný plán alebo schéma na riešenie a určenie neznámej hodnoty logaritmu, avšak na každú matematickú nerovnosť alebo logaritmickú rovnicu možno použiť určité pravidlá. Najprv by ste mali zistiť, či sa výraz dá zjednodušiť alebo zredukovať všeobecný pohľad. Dlhé logaritmické výrazy môžete zjednodušiť, ak správne použijete ich vlastnosti. Poďme sa s nimi čoskoro zoznámiť.

Pri riešení logaritmických rovníc je potrebné určiť, aký logaritmus máme pred sebou: príklad výrazu môže obsahovať prirodzený logaritmus alebo desiatkový.

Tu sú príklady ln100, ln1026. Ich riešenie sa scvrkáva na skutočnosť, že musíte určiť, do akej miery sa základ 10 bude rovnať 100 a 1026. Pre riešenia prirodzené logaritmy treba použiť logaritmické identity alebo ich vlastnosti. Pozrime sa na príklady riešenia logaritmických problémov rôznych typov.

Ako používať logaritmické vzorce: s príkladmi a riešeniami

Pozrime sa teda na príklady použitia hlavných teorémov na logaritmy.

  1. Vlastnosť logaritmu súčinu môže byť použitá v úlohách, kde je potrebné expandovať veľký významčísla b do jednoduchších faktorov. Napríklad log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odpoveď je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - ako vidíte, aplikáciou štvrtej vlastnosti stupňa logaritmu sa nám podarilo vyriešiť na prvý pohľad zložitý a neriešiteľný výraz. Je potrebné iba faktorizovať základ a potom odobrať hodnoty exponentov zo znamienka logaritmu.

Úlohy zo skúšky

Logaritmy sa často vyskytujú pri prijímacích skúškach, najmä veľa logaritmických problémov pri Jednotnej štátnej skúške (štátna skúška pre všetkých absolventov škôl). Zvyčajne sa tieto úlohy nachádzajú nielen v časti A (najľahšia testovacia časť skúšky), ale aj v časti C (najťažšie a najobsiahlejšie úlohy). Skúška predpokladá presnú a dokonalú znalosť témy "Prirodzené logaritmy".

Príklady a riešenia problémov sú prevzaté z oficiálnych verzií skúšky. Pozrime sa, ako sa takéto úlohy riešia.

Dané log 2 (2x-1) = 4. Riešenie:
prepíšme výraz, trochu ho zjednodušíme log 2 (2x-1) = 2 2 , definíciou logaritmu dostaneme, že 2x-1 = 2 4 , teda 2x = 17; x = 8,5.

  • Všetky logaritmy je najlepšie zredukovať na rovnaký základ, aby riešenie nebolo ťažkopádne a mätúce.
  • Všetky výrazy pod znamienkom logaritmu sú označené ako kladné, preto pri vyberaní exponentu exponentu výrazu, ktorý je pod znamienkom logaritmu a ako jeho základu, musí byť výraz zostávajúci pod logaritmom kladný.
  1. Skontrolujte, či sú pod znamienkom logaritmu záporné čísla alebo jedno. Táto metóda použiteľné na vyjadrenia formulára log b ⁡ (x) log b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Nie je však vhodný pre niektoré špeciálne prípady:

    • Logaritmus záporného čísla nie je definovaný v žiadnom základe (napr. log ⁡ (− 3) (\displaystyle \log(-3)) alebo log 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). V tomto prípade napíšte „žiadne riešenie“.
    • Logaritmus nuly na akúkoľvek základňu tiež nie je definovaný. Ak ťa chytili ln ⁡ (0) (\displaystyle \ln(0)), napíšte „žiadne riešenie“.
    • Logaritmus jednoty v akejkoľvek základni ( log ⁡ (1) (\displaystyle \log(1))) je vždy nula, pretože x 0 = 1 (\displaystyle x^(0)=1) pre všetky hodnoty X. Napíšte namiesto takéhoto logaritmu 1 a nepoužívajte nižšie uvedenú metódu.
    • Ak majú logaritmy rôzne základy, napr l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))) a nie sú redukované na celé čísla, hodnotu výrazu nemožno nájsť ručne.
  2. Preveďte výraz na jeden logaritmus. Ak výraz nie je jedným z vyššie uvedených špeciálne príležitosti, môže byť reprezentovaný ako jeden logaritmus. Použite na to nasledujúci vzorec: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • Príklad 1: zvážte výraz log ⁡ 16 log ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      Najprv predstavme výraz ako jeden logaritmus pomocou vyššie uvedeného vzorca: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • Tento vzorec "zmeny bázy" pre logaritmus je odvodený od základných vlastností logaritmov.
  3. Ak je to možné, vypočítajte hodnotu výrazu ručne. Nájsť log a ⁡ (x) (\displaystyle \log _(a)(x)) predstavte si výraz " a? = x (\displaystyle a^(?)=x)“, to znamená, položte si nasledujúcu otázku: „Na akú moc je potrebné pozdvihnúť a, Získať X?". Táto otázka môže vyžadovať kalkulačku, ale ak budete mať šťastie, môžete ju nájsť ručne.

    • Príklad 1 (pokračovanie): Prepíšte ako 2? = 16 (\displaystyle 2^(?)=16). Je potrebné nájsť, aké číslo má stáť namiesto znaku "?". Dá sa to urobiť pokusom a omylom:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      Požadované číslo je teda 4: log 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Nechajte odpoveď v logaritmickej forme, ak ju nemôžete zjednodušiť. Mnoho logaritmov je veľmi ťažké vypočítať ručne. V tomto prípade budete potrebovať kalkulačku, aby ste získali presnú odpoveď. Ak však na hodine riešite problém, učiteľ sa s najväčšou pravdepodobnosťou uspokojí s odpoveďou v logaritmickej forme. Nižšie uvedená metóda sa používa na riešenie zložitejšieho príkladu:

    • príklad 2: čo sa rovná log 3 ⁡ (58) log 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Skonvertujme tento výraz na jeden logaritmus: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log_(7)(58)). Všimnite si, že základ 3 spoločný pre oba logaritmy zmizne; to platí pre akúkoľvek základňu.
    • Prepíšme výraz vo forme 7? = 58 (\displaystyle 7^(?)=58) a pokúsiť sa nájsť hodnotu?:
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      Keďže 58 je medzi týmito dvoma číslami, nie je vyjadrené ako celé číslo.
    • Odpoveď ponecháme v logaritmickej forme: log 7 ⁡ (58) (\displaystyle \log _(7)(58)).