Степень окисления оксида азота. Азот и его соединения

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.

Чтобы правильно расставлять степени окисления , необходимо держать в голове четыре правила.

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Следует запомнить элементы, для которых характерны постоянные степени окисления . Все они перечислены в таблице.


3) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (например, фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

4) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.

Несколько простых примеров на определение степеней окисления

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3 (+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2 (+1) + х + 4 (-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1 (+3) + 3х + 9 (-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4 (-2) = -3. Ответ: As(+5), O(-2).

Что делать, если неизвестны степени окисления двух элементов

А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.

Как расставлять степени окисления в органических соединениях

Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Не смешивайте понятия "валентность" и "степень окисления"!

Степень окисления часто путают с валентностью . Не совершайте подобной ошибки. Перечислю основные отличия:

  • степень окисления имеет знак (+ или -), валентность - нет;
  • степень окисления может быть равна нулю даже в сложном веществе, равенство валентности нулю означает, как правило, что атом данного элемента не соединен с другими атомами (всякого рода соединения включения и прочую "экзотику" здесь обсуждать не будем);
  • степень окисления - формальное понятие, которое приобретает реальный смысл лишь в соединениях с ионными связями, понятие "валентность", наоборот, наиболее удобно применять по отношению к ковалентным соединениям.

Степень окисления (точнее, ее модуль) часто численно равен валентности, но еще чаще эти величины НЕ совпадают. Например, степень окисления углерода в CO 2 равна +4; валентность С также равна IV. А вот в метаноле (CH 3 OH) валентность углерода остается той же, а степень окисления С равна -1.

Небольшой тест на тему "Степень окисления"

Потратьте несколько минут, проверьте, как вы усвоили эту тему. Вам необходимо ответить на пять несложных вопросов. Успехов!

Кислородные соединения азота. В кислородных соединениях азот проявляет степень окисления от +1 до +5.

В кислородных соединениях азот проявляет степень окисления от +1 до +5.

N 2 O ; NO ; N 2 O 3 ; NO 2 ; N 2 O 4 ; N 2 O 5

Оксиды N 2 O и NO – несолеобразующие, остальные солеобразующие.

Оксид азота (I) и оксид азота (II) – бесцветные газы, оксид азота (III) – синяя жидкость, (IV) – бурый газ, (V) – прозрачные бесцветные кристаллы.

Кроме N 2 O, все они чрезвычайно ядовиты. Закись азота N 2 O обладает весьма своеобразным физиологическим действием, за которые ее часто называют веселящим газом. Вот как описывают действия закиси азота английский химик Хэмфри Дэви, который с помощью этого газа устраивал специальные сеансы: «Одни джентльмены прыгали по столам и стульям, у других развязывались языки, третьи обнаружили чрезвычайную склонность к потасовке». Вдыхание N 2 O вызывает потерю болевых ощущений и поэтому применяется в медицине как анестезирующее средство.

МВС предполагает в молекулеN 2 O наличие ионов N + и N –

sp-гибридизация

За счет sp-гибридизации ион N + дает 2σ связи: одну с N – и другую с атомом кислорода. Эти связи направлены под углом 180º друг к другу и молекула N 2 O линейна. Структуру молекулы определяет направленность σ связей. Оставшиеся у N + два p-электрона образуют еще по одной π-связи: одну с ионом N – и другую с атомом кислорода. Отсюда N 2 O имеет строение

: N – = N + = O :

Склонность NO 2 к димеризации – следствие нечетного числа электронов в молекуле (парамагнитна).

С оксидами азота связаны серьезные экологические проблемы. Увеличение их концентрации в атмосфере приводит к образованию азотной кислоты и соответсвенно кислотных дождей.

N 2 O 3 взаимодействует с водой, образует неустойчивую азотистую кислоту HNO 2 , которая существует только в разбавленных растворах, так как легко разлагается

2HNO 2 = N 2 O 3 + H 2 O.

HNO 2 может быть более сильным восстановителем, чем HNO 3 , о чём свидетельствуют значения стандартных электродных потенциалов.

HNO 3 + 2 Н + + 2е = HNO 2 + Н 2 О Е 0 = + 0,93 В

HNO 2 + Н + + 1е = NO + H 2 O Е 0 = + 1,10 В

HNO 2 + 1e = NO + H + Е 0 = + 1,085 В

Ее соли нитриты – устойчивы. HNO 2 - кислота средней силы (К ≈ 5 · 10 –4). Наряду с кислотной диссоциацией в незначительной степени идет диссоциация с образованием NO + и OH – .

Степень окисления азота в нитритах промежуточная (+3), поэтому в реакциях он может вести себя и как окислитель, и как восстановитель, т.е. обладает окислительно-восстановительной двойственностью.

Сильные окислители переводят NO 2 – в NO 3 – .

5NaNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5NaNO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O

Сильные восстановители обычно восстанавливают HNO 2 до NO.

2NaNO 2 + 2KI + 2H 2 SO 4 = Na 2 SO 4 +2NO + I 2 + K 2 SO 4 +2H 2 O

Может происходить также процесс диспропорционирования, одновременного увеличения и уменьшения степени окисления атомов одного и того же элемента.

3HNO 2 = HNO 3 + 2NO + H 2 O

Нитриты обладают токсичностью: переводят гемоглобин в метгемоглобин, не способный переносить кислород и они служат причиной образования в продуктах питания нитрозааминов R 2 N–NO – канцерогенных веществ.

Важнейшее соединение азота – HNO 3

Азотная кислота – важнейший продукт основной химической промышленности. Идет на приготовление взрывчатых веществ, лекарственных веществ, красителей, пластических масс, искусственных волокон и др. материалов.

HNO 3 – бесцветная жидкость с резким удушливым запахом, дымящая на воздухе. В небольших количествах образуется при грозовых разрядах и присутствует в дождевой воде.

N 2 + O 2 → 2NO

2NO + O 2 → 2NO 2

4NO 2 + O 2 + 2H 2 O → 4HNO 3

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету или при нагревании процесса разложения

4HNO 3 = 4NO 2 + 2H 2 O + O 2

HNO 3 – очень опасное вещество.

Важнейшее химическое свойство HNO 3 состоит в том, что она является сильным окислителем и поэтому взаимодействует почти со всеми металлами кроме Au, Pt, Rh, Ir, Ti, Ta, металлы Al, Fe, Co, Ni и Cr она «пассивирует». Кислота же в зависимости от концентрации и активности металла может восстанавливаться до соединений:

+4 +3 +2 +1 0 -3 -3

NO 2 → HNO 2 → NO → N 2 O → N 2 → NH 3 (NH 4 NO 3)

и также образуется соль азотной кислоты.

Как правило, при взаимодействии азотной кислоты с металлами не происходит выделения водорода. При действии HNO 3 на активные металлы может получаться водород. Однако атомарный водород в момент выделения обладает сильными восстановительными свойствами, а азотная кислота – сильный окислитель. Поэтому водород окисляется до воды.

Свойства концентрированной и разбавленной HNO 3

1) Действие концентрированной HNO 3 на малоактивные металлы (Cu, Hg, Ag)

Cu + 4 HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

2) Действие разбавленной HNO 3 на малоактивные металлы

3Cu + 8 HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O

3) Действие концентрированной кислоты на активные металлы

4Ca + 10HNO 3 = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4) Действие разбавленной HNO 3 на активные металлы

4Ca + 10 HNO 3 = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Одна из наиболее сильных кислот, характерны все реакции кислот: реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами. Специфичное свойство – ярко выраженная окислительная. В зависимости от условий (концентрации, природы восстановителя, температуры)HNO 3 может принимать от 1 до 8 электронов.

Ряд соединений N с различными степенями окисления:

NH 3 ; N 2 H 4 ; NH 2 OH ; N 2 O ; NO ; N 2 O 3 ; NO 2 ; N 2 O 5

NO 3 – + 2H + + 1e = NO 2 + H 2 O

NO 3 – + 4H + + 3e = NO + 2H 2 O

2NO 3 – +10H + + 8e = N 2 O + 5H 2 O

2NO 3 – +12H + + 10e = N 2 + 6H 2 O

NO 3 – + 10H + + 8e = NH 4 – + 3H 2 O

Образование продуктов зависит от концентрации, чем выше концентрация, тем менее глубоко она восстанавливается. Реагирует со всеми металлами, кроме Au, Pt, W. Концентрированная HNO 3 не взаимодействует при обычных условиях с Fe, Cr, Al, которым она пассивирует, но при очень сильном нагревании реагирует с этими металлами.



Большинство неметаллов и сложных веществ восстанавливается HNO 3 до NO (реже NO 2).

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO

S + HNO 3 = H 2 SO 4 + 2NO

3C + 4HNO 3 = 3CO 2 + 4NO + 2H 2 O

ZnS + 8HNO 3 k = ZnSO 4 + 8NO 2 + 4H 2 O

6HCl + 2HNO 3 k =3Cl 2 + 2NO + 4H 2 O

Запись окислительно-восстановительной реакции с участием HNO 3 обычно условна, т.к. образуется смесь азотсодержащих соединений, а указывают тот продукт восстановления, который образовался в большем количестве.

Золото и платиновые металлы растворяются в «царской водке» – смеси 3 объемов концентрированной соляной кислоты и 1 объема концентрированной азотной кислоты, которая обладает сильнейшим окислительным свойством, растворяет «царя металлов» – золото.

Au + HNO 3 +4HCl = H + NO + 2H 2 O

HNO 3 – сильная одноосновная кислота, образует только средние соли -нитраты, которые получают действием ее на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Их растворы обладают незначительными окислительными свойствами.

При нагревании нитраты разлагаются; нитраты щелочных металлов превращаются в нитриты и выделяется кислород.

2KNO 3 = 2KNO 2 + O 2

Состав других продуктов зависит от положения металла в РСЭП.

Левее Mg = MeNO 2 + O 2 до магния

MeNO 3 = Mg – Cu = MeO + NO 2 + O 2 правее магния.

правее Cu = Me + NO 2 + O 2 менее активных металлов

Вариант 1.



1. Число нейтронов в атоме 4N14:
А. 7.


Б. Азоту.

3. Азот имеет степень окисления +5 в соединении с формулой:
Г. HN03.

4. Минимальная степень окисления азота в соединении (из перечисленных ниже) с формулой:
А. N2.


Б. Фосфор.

6. Наименьший радиус у атома:
Г. F.


Б. Са3Р2.

8. Азотистой кислоте соответствует оксид с формулой:
Б. N203.

10. Коэффициент перед окислителем в реакции, схема которой
Ag + HN03(KOHЦ) -> AgN03 + N02 + Н20:

Б. 4.


11. Составьте молекулярные уравнения реакций следующих превращений:
Р -> Р205 -> H3P04 -> Na3P04.

1. 4Р + 5О2 = 2Р2О5
P0 -5e →P+5 восстановитель
O20 + 2*2e→2O-2 окислитель
2. Р2О5 + 3Н2О = 2Н3РО4
3. Н3РО4 + 3NaOH = Na3PO4 + 3H2O
3Н+ + 3OH- = 3H2O

12. Дополните фразу: «Аллотропия - это...»
существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам.

13. С какими из веществ, формулы которых: КОН, С02, Zn, CuO, НС1, СаС03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 + КOH → КNO3 + H2O
3CuO + 6HNO3 = 3Cu(NO3)2 + 3H2O
10HNO3 разбавл. + 4Zn = 4Zn(NO3)2 + NH4NO3 + 3H2O
2HNO3 + CaCO3 = Ca(NO3)2 + H2O + CO2

14. Закончите схему термического разложения нитрата меди (II):
Cu(N03)2 --> CuO + X + 02.

2Cu(NO3)2 = 2CuO + 4NO2 + O2
Сумма коэфф. = 9

15. При взаимодействии 37 г гидроксида кальция с сульфатом аммония было получено 15 г аммиака. Вычислите массовую долю выхода аммиака от теоретически возможного.
Ca(OH) 2 +(NH4)2 SO4 =CaSO4+2NH3*H2O
M Ca(OH)2=40+32+2=74г/моль.
n Ca(OH)2 =37: 74=0.5 моль
1 моль Са(ОH)2: 2 моль NH3
0.5:1 моль
M NH3 = 17г \моль
масса 17*1=17 г.
выход (NH3)=15: 17=0.88=88%

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 7N15:
А. 8.


В. Фосфору.

3. Азот имеет степень окисления +4 в соединении с формулой:
B. N02.

4. Минимальная степень окисления фосфора в соединении с формулой:
Б. РН3.

5. Из перечисленных химических элементов наибольшей электроотрицательностью в соединениях обладает:
В. Сера

6. Наименьший радиус у атома, символ которого:
Г. С1.

7. Только восстановителем может быть вещество с формулой:
B. NH3.

8. Фосфористой кислоте Н3Р03 соответствует оксид с формулой:
В. Р2О3


Сu + HN03(KOHЦ) -> CU(N03)2 + N02 + Н20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций, идущих по схеме
NO → N02 → HN03 → NaN03.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. HNO3 + NaOH = NaNO3 + H2O
H+ + OH- = H2O

12. Дополните следующую фразу: «Селитра - это...»
Азотнокислая соль калия, натрия, аммония, употребляемая в технике взрывчатых веществ и в агрономии для удобрений.

13. С какими из веществ, формулы которых: Mg, Ag, AgN03, BaO, C02, KN03, NaOH, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Mg + 2H3PO4 = Mg3(PO4)2↓ + 3H2
2H3PO4 +3BaO = Ba3(PO4)2 + 3H2O
Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3

14. Закончите схему термического разложения нитрата натрия
NaN03 → NaN02 + X.
Найдите сумму коэффициентов в уравнении.

2NaNO3 = 2NaNO2 + O2
Сумма коэффициентов – 5

15. Какой объем аммиака (н. у.) можно получить при взаимодействии 15 м3 азота с избытком водорода, если выход аммиака составляет 10% от теоретически возможного?
N2 + 3H2 = 2NH3
n(N2) = 15 000 /22,4 = 669 (моль)
n(NH3) = 2*669 = 1339,28 (моль)
Vтеор.(NH3) = 1339,28*22,4= 29999 (дм3)
Vпракт. (NH3) = 29999*0,9 = 26999 (дм3) = 26, 999 м3

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 20Са40:
Б. 20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 5е соответствует:
А. Азоту.

3. Азот имеет степень окисления +2 в соединении с формулой:
Б. NO.

4. Максимальная степень окисления азота в соединении с формулой:
Г. HN03.


А. Бор.


А. С.


Г. Н3Р04.

8. Азотной кислоте соответствует оксид с формулой:
Г. N205.

10. Коэффициент перед окислителем в схеме
Ag + HN03(paзб) -> AgN03 + NO + H20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме
N2 → NH3 → NH3 Н20 → (NH4)2S04.
Уравнение 1 рассмотрите с точки зрения теории ОВР, уравнение 3 запишите в ионном виде.

1. N2 + 3H2 = 2NH3
N20 +2*3е→2N-3 окислитель
H20 -2*1е→2H+1 восстановитель
2. NH3 + H2O = NH3*H20
3. 2NH3*H20 + H2SO4 = (NH4)2SO4 +2H2O
2NH3*H20 + 2H+= 2NH4+ +2H2O

12. Дополните фразу: «Число атомов, входящих в катион аммония...»
равно 5.

13. С какими из веществ, формулы которых: S03, КОН, CaO, Mg, N205, Na2C03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 (разб.) + КOH = КNO3 + H2O
2HNO3 + CaO = Ca(NO3)2 + H2O
10HNO3 разбавл. + 4Mg = 4Mg(NO3)2 + N2O + 3H2O
2HNO3 + Na2CO3 = 2NaNO3 + H2O + CO2

14. Закончите схему термического разложения нитрата серебра
AgNOg → Ag + X + 02.
Укажите сумму коэффициентов в уравнении.

2AgNO3 = 2Ag + 2NO2 + O2
7

15. Азот объемом 56 л (н. у.) прореагировал с избытком водорода. Объемная доля выхода аммиака составляет 50% от теоретически возможного. Рассчитайте объем полученного аммиака.
N2 + 3H2 = 2NH3
n(N2) = 56 /22,4 = 2,5 (моль)
n(теор.)(NH3) = 2*2,5 = 5 (моль)
Vпракт. (NH3) = 5*22,4*0,5 = 56 л

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в изотопе 19K39:
В.20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 8е, 5е соответствует:
Б. Фосфору.

3. Азот имеет степень окисления 0 в соединении с формулой:
A. N2.

4. Максимальная степень окисления фосфора в соединении с формулой:
Г. Н3Р04.

5. Из перечисленных химических элементов наименьшей электроотрицательностью в соединениях обладает:
А. Бериллий.

6. Наибольший радиус у атома химического элемента, символ которого:
A. Si.

7. Только окислителем может быть вещество с формулой:
Г. HN03.

8. Ортофосфорной кислоте соответствует оксид с формулой:
Г. Р2О5.

10. Коэффициент перед окислителем в схеме
Си + HN03(paзб) -> CU(N03)2 + NO + Н20:

Г. 8.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме:
NO → N02 → HN03 → NH4N03.
Уравнение 1 рассмотрите с точки зрения ОВР, уравнение 3 запишите в ионном виде.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. NH3 + HNO3 = NH4NO3
NH3 + H+ = NH4+

12. Дополните фразу: «Аллотропными видоизменениями фосфора являются...»
белый, красный и черный фосфор

13. С какими из веществ, формулы которых: Zn, CuO, Си, NaOH, S02, NaN03, K2C03, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Zn + 2H3PO4 = Zn3(PO4)2↓ + 3H2
3CuO + 2H3PO4 = Cu3(PO4)2 + 3H2O
3K2CO3 + 2H3PO4 = 2K3PO4 + 3H2O + 3CO2

14. Закончите схему термического разложения нитрата железа (II):
Fe(N03)2 → FeO + N02 + X.
Найдите сумму коэффициентов в уравнении.

2Fe(NO3)2 = 2FeO + 4NO2 + O2

15. При сжигании в кислороде 62 г фосфора было получено 130 г оксида фосфора (V) от теоретически возможного. Вычислите массовую долю выхода оксида фосфора (V).
4P + 5O2 = 2P2O5
n(P) = 62/31 = 2 моль
nтеор.(P2O5) = 0,5*2 = 1 моль
mтеор.(P2O5) = 1*142 = 142 г
выход = mпракт./mтеор. = 130/142=0.92 = 92%

VА-подгруппу образуют р-элементы: азотN , фосфор

Р , мышьякAs , сурьмаSb и висмутBi .

Элементы N, P – типичные неметаллы,

у неметаллов As и Sb появляются некоторые свойства,

присущие металлам , у висмута металлические свойства

преобладают , хотя типичным металлом он не является.

Общая формула валентных электронов у элемен-

тов VА-группы –ns 2 np 3 .

трона . За счет трех неспаренных электроноввсе элементы в простых веществах образуют три ковалентные связи , но у азота три связи объединяют 2 атома, образуя очень проч-

ную молекулу N N, а у других элементов – каждый атом связан с тремя другими с образованием молекул типа Э4 (бе-

лый фосфор и желтый мышьяк) или полимерных структур.

У азота простое вещество в любом агрегатном состоянии состоит из отдельных молекул, при обычных условиях это газ. У всех остальных элементов простые вещества

– твердые.

Степень окисления (–3) для элементов VА-группы является минимальной.Наиболее устойчива она у N , при

переходе к Bi с увеличением числа электронных слоев ее устойчивость па-

дает. Элементы N, P, As, Sb с водородом образуют гидриды типа ЭН3 ,

проявляющие основные свойства , наиболее ярко они выражены у аммиа-

Исполнитель:

Мероприятие №

ка NH3 . В подгруппе устойчивость соединений ЭН3 и их основные свойст-

ва уменьшаются.

Все элементы VА-группы проявляют высшую степень окисления +5.

Все они образуют оксиды типа Э2 O5 (оксид Bi 2 О 5 – неустойчив) , которым соответствуют кислоты,сила кислот ослабевает при движении вниз по под-

Степень окисления +5 наиболее устойчива у Р. Соединения Bi(+5) –

очень сильные окислители. Сильные окислительные свойства проявляет азотная кислота, особенно концентрированная.

У висмута более устойчива степень окисления (+3), которая также достаточно устойчива у Sb и As. Соединения N(+3), и особенно

Р(+3), проявляют сильные восстановительные свойства.

В степени окисления +3 все элементы VА-группы образуют оксиды

типа Э 2 О 3 . Оксидам N и P соответствуют слабые кислоты. Оксиды и гидрокси-

ды As и Sb – амфотерны, основной характер преобладает у оксида и гидрокси-

да Bi(+3). Таким образом , в подгруппе кислотный характер оксидов и гид-

роксидов элементов в степени окисления (+3) ослабевает, и усиливаются

основные свойства, более характерные для гидроксидов металлов.

Элементы VА-группы, помимо перечисленных степеней окисления

5, +3, –3, проявляют и другие промежуточные степени окисления.

Для азота известны все степени окисления от –1 до +5.

Азот, как и все элементы второго периода, существенно отличается от своих электронных аналогов. По этой причине, а также из-за большого числа степеней окисления и многообразия соединений, химия азота рассматри-

вается отдельно от других элементов VА–подгруппы.

Наиболее распространенным в природе элементом VА-группы явля-

ется фосфор. Его содержание в земной коре – 0,09 масс. %; фосфор находит-

ся главным образом в виде фосфата кальция. Содержание азота – 0,03%, ос-

новная его доля сосредоточена в атмосфере в виде N2 .Содержание азота в

Исполнитель:

Мероприятие №

воздухе по объему составляет ~ 78 %. В очень малых количествах в зем-

ной коре встречаются нитраты натрия и калия (селитры). Мышьяк, сурьма и висмут относятся к редким элементам с содержанием в земной коре 10–5 5. 10–

4 %; в природе они находятся, в основном, в виде сульфидов.

Азот и фосфор – очень важные элементы биосферы, поэтому значи-

тельная часть производимых в химической промышленности нитратов и фос-

фатов используется в качестве удобрений, которые необходимы для жизнедея-

тельности растений. В организме человека N и Р играют важную роль, – азот

входит в состав аминокислот, являющихся составной частью белков, фосфор в

форме Ca5 [(PO4 )3 OH] входит в состав костей. В человеческом организме нахо-

дится в среднем около 1,8 кг N.

Некоторые характеристики атомов элементов VА-группы приведены в

Важнейшие характеристики атомов элементов VА-группы

Электроот-

рицатель-

ность (по

атома, нм

Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии иони-

уменьшение электроотри-

цательности;

Для сравнения – электроотрицательность Н – 2,2; О – 3,44 .

Азот от других элементов подгруппы отличается очень маленьким орби-

тальным радиусом и высокой электроотрицательностью, N – третий по элек-

троотрицательности элемент, после F и О.

Исполнитель:

Мероприятие №

Валентные электроны N –2s2 2p3 .

N 2s

Азот, подобно другим элементам второго периода,

заметно отличается от элементов своей подгруппы:

атом N имеет всего 4 валентные орбитали и в соединениях может обра-

зовать только 4 ковалентные связи;

из-за очень маленького атомного радиуса азот образует очень прочные

простое вещество в любом агрегатном состоянии состоит из отдельных

очень прочных молекул N

N и отличается высокой инертностью;

по электроотрицательности N уступает только F и О;

азот проявляет все возможные степени окисления: -3, –2, -1, 0, +1, +2, +3, +4, +5.

Большое число степеней окисления и многообразие соединений делает

химию азота весьма сложной. Сложность усугубляется также характерными для многих окислительно-восстановительных реакций кинетическими затруд-

нениями, обусловленными очень прочными кратными связями между атомами

N и атомами N и О. Поэтому электродные потенциалы мало помогают в опре-

делении продуктов ОВР.

Наиболее устойчивым соединением N является простое вещество.

В водных растворах, особенно кислых, очень устойчив ион NH4 + .

Азот является составной частью воздуха, из которого N 2 и получают.

Основное количество N2 используется для синтеза аммиака, из которого затем получают другие соединения азота.Среди соединений азота самое широкое практическое применение находят аммиак, азотная кислота и их соли .

Исполнитель:

Мероприятие №

Ежегодное мировое производство NH3 составляет ~ 97 млн. т/год, азотной ки-

слоты – 27 млн. т/год. Химия этих важнейших соединений N будет рассмот-

рена в первую очередь, после обсуждения свойств простого вещества.

Простое вещество

Молекула N2 – самая прочная из всех двухатомных молекул простых веществ.Три общие электронные пары в молекуле N N располагаются на свя-

зывающих орбиталях, на разрыхляющих орбиталях электронов нет, – это при-

водит к очень высокой энергии химической связи – 944 кДж/моль (для срав-

нения, энергия связи в молекуле О2 равна – 495 кДж/моль).Прочная связь обусловливает высокую инертность молекулярного азота . С химической инертностью азота связано название этого элемента. По-гречески «азот» озна-

чает "безжизненный".

При обычных условиях N2 – это бесцветный газ без запаха и вкуса.

Температуры кипения и плавления N2 близки: –196О С, и –210О С.

Азот получают фракционной перегонкой воздуха, – для этого воздух

при низких температурах сжижают, а затем начинают повышать температуру.

Из компонентов воздуха азот имеет самую низкую температуру кипения и

образует самую легкокипящую фракцию. При фракционной перегонке одно-

временно получают кислород и инертные газы.

Основное количество N2 идет на производство аммиака, кроме того,

азот применяют для создания инертной атмосферы, в том числе при производ-

стве некоторых металлов; жидкий азот используют также в качестве охлаж-

дающего агента в лаборатории и в промышленности.

При комнатной температуре азот медленно реагирует только с Li с обра-

зованием Li3 N. При горении на воздухе магния, вместе с оксидом MgO образу-

ется и Mg3 N2 .

Нитриды. Бинарные соединения азота с элементами, менее элек-

троотрицательными, чем N, называют нитридами.

Исполнитель:

Мероприятие №

Ионные нитриды содержат анион N3– . Ионные нитриды образуют Li,

металлы II и IБ-группы ; в водных растворах они подвергаются необратимо-

му гидролизу.

Mg3 N2 + 6H2 O = 2NH3 + 3 Mg(OH)2

С металлами р-блока и некоторыми легкими неметаллами азот об-

разует ковалентные нитриды, например, AlN, BN.

Большинство d-металлов образуют с азотом при высоких температурах нестехиометрические продукты внедрения, в которых атомы N занимают пус-

тоты в кристаллических решетках металлов. Поэтому такие нитриды по внеш-

нему виду, по электро- и теплопроводности напоминают металлы, но отлича-

ются от них высокой химической инертностью, твердостью и тугоплавкостью.

Например, нестехиометрические нитриды Ta и Ti плавятся при температурах выше 3200о С.

Азот непосредственно не реагирует с галогенами, а с кислородом взаимодействует только в экстремальных условиях (при электрическом

разряде).

Наиболее важной в практическом отношении является реакция азота с H2 , в результате которой получается аммиак.

N 2 + 3H 2  2NH 3 ; H0 = –92 кДж/моль.

Экзотермичность этой реакции указывает на то, что суммарная прочность связей в молекулах аммиака выше, чем в исходных молекулах. Повышение температуры в соответствии с принципом Ле-Шателье, приводит к смещению равновесия в сторону эндотермической реакции, т.е. в направлении разложения аммиака. Однако при нормальных условиях реакция идет чрезвычайно медлен-

но, слишком велика энергия активации, необходимая для ослабления прочных связей в молекулах азота и водорода. Процесс поэтому процесс приходится вести при температуре около 5000 С. Для смещения равновесия при высокой температуре вправо повышают давление до 300 – 500 атм., при этом равнове-

Исполнитель:

Мероприятие №

сие смещается в направлении реакции, идущей с уменьшением числа молекул газа, т.е. в направление образования аммиака. Повышения скорости достигают за счет применения катализаторов. Эффективен плавленый катализатор на ос-

нове Fe3 O4 с добавками Al2 O3 и SiO2 и катализатор на основе металлического

Fe. Синтез аммиака из азота и водорода является важнейшей реакцией про-

мышленной химии азота.

Соединения азота

Аммиак и соли аммония

Азот в аммиаке и солях аммония находится в минимальной степени окисления (–3). Степень окисления (–3) достаточно устойчива у азота.

Аммиак при обычных условиях – бесцветный газ с характер-

ным резким запахом , знакомым по запаху «нашатырного спирта» (10% рас-

твора аммиака в воде). Этот газ легче воздуха, поэтому его можно собирать в перевернутые вверх дном сосуды. Аммиак легко переходит в жидкость. Для этого его достаточно при обычном давлении охладить до –33,5о С. Того же эф-

фекта можно достигнуть при комнатной температуре, но повышая давление до

7 – 8 атм. При повышенном давлении жидкий аммиак хранят в стальных балло-

нах. Испаряясь, жидкий аммиак вызывает охлаждение в окружающей среде. На этом основано его применение в холодильной технике. Легкая сжижаемость аммиака обусловлена водородными связями между его молекулами. Прочность водородных связей между молекулами аммиака обусловлена очень высокой электроотрицательностью азота.

Жидкий аммиак бесцветен, подвергается автопротолизу:

2NH3  NH4 + + NH2 –

Константа этого равновесия равна 2 . 10– 23 (при –50о С). Жидкий аммиак

является хорошим ионизирующим растворителем. Соли аммония и слабые

кислоты, например, H2 S, растворенные в жидком аммиаке, становятся сильны-

ми кислотами.

Исполнитель:

Мероприятие №

Аммиак хорошо растворим в воде . Высокую растворимость аммиака в воде (до 700 объемов NH3 в одном объеме воды) также объясняют образовани-

ем водородных связей, но уже с молекулами воды. Концентрированный рас-

твор содержит 25 массовых % аммиака и имеет плотность 0,91 г/см3 . Молярная концентрация NH3 в концентрированных водных растворах достигает ~13

Молекула NH3 имеет пирамидальное строение, которое объясняют sp3 -

гибридизацией валентных атомных орбиталей азота. Одна из вершин тетраэд-

ра занята неподеленной парой электронов. Связь N –– H довольно прочная,

энергия связи составляет 389 кДж/моль, длина связи – 0,1 нм, угол между свя-

зями –108,3о . При присоединении катиона H+ за счет неподеленной электрон-

ной пары N, образуется тетраэдрический очень устойчивый ион аммония

NH4 + .

Наличие неподеленной электронной пары у N в молекуле NH3 , обу-

славливает многие характерные для аммиака свойства.

Молекула NH3 является хорошим донором электронной пары(ДЭП),

т.е. основанием по Льюису, и очень хорошим акцептором протонов A(Н+ ),

т.е. основанием по Бренстеду:

NH3 + H+  NH4 + . NH3 акцептирует протон, подобно ионам ОН– : OH– + H+  H2 O

Акцепторные свойства NH3 слабее, чем у аниона OH– . Константа протолиза для NH3 равна 1,8. 109 , а для иона OH– – 1014 .

Реакции с кислотами – это наиболее характерные для NH3 реакции.

Способность аммиака к образованию донорно-акцепторных связей на-

столько велика, что он может отрывать ионы водорода от такого прочного со-

единения, как вода.

NH3 + H–– OH  NH4 + ), и количество продуктов NH4 + и OH– мало по сравнению с равновесной концентрацией аммиака. Водные растворы аммиака ведут себя подобно слабым основаниям. По устоявшейся традиции аммиак часто обозна-

чают формулой NH4 OH и называют гидроксидом аммония, однако молекул

NH4 OH в растворе нет. Щелочную реакцию водного раствора NH3 часто опи-

сывают не приведенным выше равновесием, а как диссоциацию молекул

NH4 OH:

NH4 OH NH4 + + OH–

Константа этого равновесия равна 1,8 . 10–5 . В одном литре одномолярно-

го раствора аммиака концентрация ионов NH4 + и OH– составляет 3,9. 10–3

моль/л, рН = 11,6.

Равновесие между аммиаком и OH– способны сильно сместить вправо катионы некоторых металлов, образующие с ионами OH– нерастворимые гидроксиды.

FeCl3 + 3NH3 + 3Н–ОН  Fe(OH)3  + 3NH4 Cl.

Аммиак можно использовать для получения нерастворимых оснований .

При действии кислот на водные растворы аммиака образуются соли аммония.

NH3 + HCl = NH4 Cl

Почти все соли аммония бесцветны и растворимы в воде.

Равновесие NH3 + H+  NH4 + сильно смещено вправо (К = 1,8. 109 ),

это означает, что, NH3 является сильным акцептором протонов, а катион NH 4 +

является слабым донором H + , т.е. кислотой по Бренстеду. При добавлении щелочи к солям аммония образуется аммиак, который легко определить по за-

NH4 Cl + NaOH = NH3 + H2 O + NaCl.

Этой реакцией обычно пользуются для обнаружения ионов аммония в растворе.

Исполнитель:

Мероприятие №

Подобные реакции можно использовать для лабораторного получения

NH3 .

Хлорид аммония (его называют «нашатырь») при высоких температурах реагирует с оксидами на поверхности металлов, как кислота, обнажая чистый металл. На этом же основано использование твердой соли NH4 Cl при пайке металлов. «Кислотный» H+ из иона NH4 + способен окислять очень активные металлы, например, Mg.

Mg + 2NH4 Cl = H2 + MgCl2 + 2NH3

Характерным свойством солей аммония является их термическая неус-

тойчивость. При нагревании они довольно легко разлагаются. Продукты раз-

ложения определяются свойствами кислотного аниона. Если анион проявляет окислительные свойства, то происходит окисление NH4 + и восстановление аниона-окислителя.

NH4 NO2 = N2 + 2H2 O

NH4 NO3 = N2 О + 2H2 O или 2NH4 NO3 = N2 + O2 + 4H2 O

(NH4 )2 Cr2 O7 = N2 + Cr2 O3 + 4H2 O

Из солей летучих кислот выделяется аммиак и кислота (или ее ангид-

рид), а в случае нелетучих кислот (например, Н3 РО4 ) – только NH3 . NH4 HCO3 = NH3 + H2 O + CO2

Гидрокарбонат аммония NH4 HCO3 применяют в хлебопекарной про-

мышленности, образующиеся газы придают тесту необходимую пористость.

Соли аммония используют в производстве взрывчатых веществ и в

качестве азотных удобрений . Аммонал, применяемый в практике взрывных работ, представляет собой смесь соли NH4 NO3 (72%), порошка Al (25%) и уг-

ля (3%). Эта смесь взрывается только после детонации.

Второй тип реакций, в которых NH3 проявляет свойства донора элек-

тронной пары – это образование амминных комплексов. Аммиак в роли лиганда присоединяется к катионам многих d-элементов , образуя химиче-

Исполнитель:

Мероприятие №