Ph основания. Расчет pH растворов сильных и слабых основании и кислот. План проведения занятия

Задачи к разделу Ионное произведение воды:

Задача 1. Что называется ионным произведением воды? Чему оно равно? Дайте вывод выражения ионного произведения воды. Как влияет температура на ионное произведение воды?

Решение.

Вода является слабым электролитом, ее молекулы в незначительной степени распадаются на ионы:

H 2 O ↔ H + + OH —

Константа равновесия реакции диссоциации воды имеет следующий вид:

K = ·/

при 22° K = 1,8 × 10 -16 .

Пренебрегая концентрацией диссоциированных молекул воды и принимая массу 1 л воды за 1000 г получаем:

1000/18 = 55,56 г

K = ·/55,56 = 1,8 × 10 -16

· = 1,8 × 10 -16 · 55,56 = 1·10 -14

Определяет кислотность раствора, – определяет щелочность раствора.

В чистой воде = = 1 × 10 -7 .

Произведение и называется

K Н 2 О = · = 1·10 -14

Ионное произведение воды увеличивается с ростом температуры, так как при этом диссоциация воды также увеличивается.

Кислотность раствора обычно выражают через :

Lg = pOH

pH < 7 в кислой среде

pH > 7 в щелочной среде

pH = 7 в нейтральной среде.

Кислотность среды можно определить с помощью .

Задача 2. Сколько граммов гидроксида натрия находится в состоянии полной диссоциации в 100 мл раствора, рН которого равен 13?

Решение .

pH = -lg

10 -13 М

Решение.

Для определения pH раствора необходимо перевести в :

Предположим, что плотность раствора равна 1, тогда V(раствора) = 1000 мл, m(раствора) = 1000 г.

Найдем сколько грамм гидроксида аммония содержится в 1000 г. раствора:

В 100 г раствора содержится 2 г NH 4 OH

В 1000 г — х г NH 4 OH

M (NH 4 OH) = 14+1·4+16+1 = 35 г/моль

1 моль раствора содержит 35 г NH 4 OH

у моль — 20 г NH 4 OH

Для слабых оснований , которым является NH 4 OH, справедливо соотношение

= K Н 2 О /(К д. осн · С осн) 1/2

По справочным данным, находим К д (NH 4 OH) = 1,77·10 -5 , тогда

10 -14 /(1,77·10 -5 ·0,57) 1/2 = 3,12·10 -12

pH = -lg = — lg 3,12·10 -12 = 11,5

Решение.

pH = -lg

10 — pH

10 -12,5 = 3,16·10 -13 М

pOH = 14 –12,5 = 1,5

pOH = -lg

10 — pOH

10 -1,5 = 3,16·10 -2 М

Задача 5. Найдите водородный показатель концентрированного раствора сильного электролита – 0,205 М HCl .

Решение. При значительной концентрации сильного электролита, его активная концентрация отличается от истинной. Следует ввести поправку на активность электролита. Определим ионную силу раствора:

I = 1/2ΣC i z i 2 , где

C i и z i – соответственно концентрации и заряды отдельных ионов

I = ½(0,205·1 2 + 0,205·1 2) = 0,205

f H + = 0,83, тогда

a H + = · f H + = 0,205·0,83 = 0,17

pH = -lg[a H+ ] = -lg 0,17 = 0,77

Категории ,

ИПВ это величина, постоянная при данной температуре для воды и любых водных растворов, равная произведению концентрации ионов водорода и гидроксид-ионов.

K(H2O) = *

K(H2O) = 1* (t = 25C)

Водородный показатель (pH) – это количественная характеристика кислотности среды, равная отрицательному десятичному логарифму концентрации свободных ионов водорода в растворе.

Гидроксильный показатель (pOH) – это величина, равная отрицательному десятичному логарифму концентрации свободных гидроксид-ионов в растворе

Нейтральная

Щелочная

Расчет pH растворов сильных и слабых основании и кислот.

Слабая кислота: pH=1/2pKk-1/2lgCk где pK= -lgK – называется показатель константы диссоциации слабой кислоты или основания.

Слабое основание: pH=14-1/2pKо+1/2lgCо

Сильная кислота: pH= -lg(zCk) где z – число ионов водорода.

Сильное основание: pH=14+lg(zCo) где z – число ионов гидрооксидов.

Расчет pH буферных систем. Основные уравнения. Уравнение Гендерсона-Гассельбаха.

Буферными называют растворы или системы, pH которых не изм-ся от добавления к ним небольших кол-в сильной кислоты или щелочи, а также при разведении. Простейший буферный раствор-это смесь слабой кислоты и соли, имеющий с этой кислотой общий анион. Например смесь CH 3 COOH-уксусной кислоты и ацетата натрия CH 3 COONa.

Классификация: по составу различают

1)кислотные – состоят из слабой кислоты и её соли. Например: оксигемоглабин, фосфатный бикорбанат.

2) основные состоят из слабого основания и ее соли. Например амиачные: амфотерные, амфолитные -состоят из веществ, которые проявляют свойства как кислот, так и основании (белковый буфер). Для буферной системы состящей из HAn моль/л слабой кислоты и KtAn моль/л ее соли, концентрация ионов водорода H + =K Han =, -называют уравнением Гендерсона-Гассельбаха,отсюда H + =K HAn = где K Han - константа эл.диссоциации слабой кислоты. Логарифмируя обе части и меняя знаки на обратные, приходим к уравнению для расчета pH рассматриваемого буферного раствора pH=p KHAn - lg, где p KHAn - десятичный логарифм константы эл.диссоциации слабой кислоты. Способность буферного раствора сохранять pH по мере прибавления сильной кислоты или щелочи приблизительно на постоянном уровне далеко не беспредельна и ограничена величиной называемой буферной емкости В. За единицу буферной емкости обычно принимают емкость такого буферного раствора, для изменения pH которого на единицу требуется введение сильной кислоты или щелочи в количестве 1 моль эквивалента на 1л раствора. Буферная емкость В может быть рассчитана по формуле В=. Общая буферная емкость артериальной крови достигает 25.3 ммоль/л, у венозной крови она несколько ниже и обычно не повышает 24.3 ммоль/л.

Механизм буферного действия на примере хлоридноамиачного раствора.

При добавлении сильной кислоты (HCl)

    Сильная кислота(HCl) взаимодействует со слабым основанием (NH4OH)

    Происходит реакция нейтрализации, и кислота заменяется эквивалентным количеством соли.

    Концентрация свободных гидроксид – ионов восполняется за счет потенциальной основности гидроксида аммония, а потому pH раствора практически не изменяется.

NH4OH+HCl=NH4Cl+H2O

NH4OH+H+Cl=NH4+Cl+H2O

При добавлении сильного основания(NaOH)

    Щелочь (NaOH) взаимодействует с солью (NH4Cl)

    Образуется слабое основание (NH4OH), и pH раствора не изменяется.

NH4Cl+NaOH=NH4OH+NaCl

Водородный показатель , pH (лат. p ondus Hydrogenii — «вес водорода», произносится «пэ аш» ) — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X , а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH .

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора , pOH , которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 - 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1 .

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 10 14 , то ясно, что при такой температуре pH + pOH = 14 .

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7 , pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH −); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH -метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1-2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор , который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH -метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH ), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН , что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный метод кислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. pH :

0,001 моль/Л HCl при 20 °C имеет pH=3 , при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73 , при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H +) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH -метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Вещество

Электролит в свинцовых аккумуляторах

Желудочный сок

Лимонный сок (5% р-р лимонной кислоты)

Пищевой уксус

Кока-кола

Яблочный сок

Кожа здорового человека

Кислотный дождь

Питьевая вода

Чистая вода при 25 °C

Морская вода

Мыло (жировое) для рук

Нашатырный спирт

Отбеливатель (хлорная известь)

Концентрированные растворы щелочей

Парень не хочет работать полный день, у него все время отговорки, мол опять мне станет плохо и все такое. Учится на очке в магистратуре, раз в неделю бывает на парах, с преподавателями договорился. Я устроиться официально не могу, чтобы учебу не пропускать (у нас баллы за посещение)..плюс это теперь не считается уважительной причиной, бесплатной заочки по специальности нет. Сейчас нет денег, я его прошу, оставаться на работе, чтобы хоть что-то заработать. Меня в ту фирму, где он работает не берут пока что. В ответ он мне 25-1000 отговорок, то вуз, то работа, то вдруг мне плохо станет как зимой, когда пластом лежал с давлением. У мамы своей все время денег просит на свои поездки, а с моих трясет на кварплату. Мои родители пока не могут давать денег, т.к. до этого сестрам на соревнования нужны были деньги и у мамы с сестрой проблемы с сердцем нужно лечение и лекарства, брат не разговаривает мама ему на уколы и лекарства отдала около 8тыс (уколы +витамины). Мне кажется,что ему плевать на моих родителей. Да и вообще его мама якобы «договорилась» с моей мамой о том,что будут давать 3 тыс/мес, но мама сказала по-возможности. Папа до этого давал спокойно, пока не начались проблемы. И его мама повзонила с наездом на мою маму мол деньги не даете, мы «типо» договаривались, потом стала говорить мол готовьте 10к(откуда такая сумма я хз). В моей семье работает только папа, мама трудоустроена в ленте, но на работу не зовут. В городе магазин не выполняет половину плана по продажам в городе. В его семье работают в черную, что его мама, что отчим. Мои родители в белую. В его семье 4 человека считая его, в моей 6 вместе со мной.. Сегодня спросила про подработку, но там 600р в день работать с 9-20:00..Хз когда позвонят. Папа на вахте, собрать документы для социальной стипендии тоже не можем..

Просмотр

Знакомства, Любовь, Отношения Я понимаю там молодой Джонни Депп (ну или кто там вам нравится больше всех), красивый, галантный, с бархатным баритоном. Мужчина в постель к которому женщины сами мечтают попасть. Тогда понимаю уверенность в себе. И то такой мужчина не предложит прямо ничего, он разожжет страсть и все само произойдет плавно и естественно. А сколько случаев, когда сидит Васек какой-нибудь и спрашивает: ну что поехали ко мне?))) Он считает себя неотразимым таким? Что любая женщина его видя в первый раз, уже мечтает о продолжении банкета?

Чистая вода является очень слабым электролитом. Процесс диссоциации воды может быть выражен уравнением: HOH ⇆ H + + OH – . Вследствие диссоциации воды в любом водном растворе содержатся и ионы H + , и ионы OH – . Концентрации этих ионов можно рассчитать с помощью уравнения ионного произведения воды

C(H +)×C(OH –) = K w ,

где K w – константа ионного произведения воды ; при 25°C K w = 10 –14 .

Растворы, в которых концентрации ионов H + и OH – одинаковы, называются нейтральными растворами. В нейтральном растворе C(H +) = C(OH –) = 10 –7 моль/л.

В кислом растворе C(H +) > C(OH –) и, как следует из уравнения ионного произведения воды, C(H +) > 10 –7 моль/л, а C(OH –) < 10 –7 моль/л.

В щелочном растворе C(OH –) > C(H +); при этом в C(OH –) > 10 –7 моль/л, а C(H +) < 10 –7 моль/л.

pH – величина, с помощью которой характеризуют кислотность или щёлочность водных растворов; эта величина называется водородным показателем и рассчитывается по формуле:

pH = –lg C(H +)

В кислом растворе pH<7; в нейтральном растворе pH=7; в щелочном растворе pH>7.

По аналогии с понятием «водородный показатель» (pH) вводится понятие «гидроксильный» показатель (pOH):

pOH = –lg C(OH –)

Водородный и гидроксильный показатели связаны соотношением

Гидроксильный показатель используется для расчёта pH в щелочных растворах.

Серная кислота – сильный электролит, диссоциирующий в разбавленных растворах необратимо и полностью по схеме: H 2 SO 4 ® 2 H + + SO 4 2– . Из уравнения процесса диссоциации видно, что C(H +) = 2·C(H 2 SO 4) = 2 × 0,005 моль/л = 0,01 моль/л.

pH = –lg C(H +) = –lg 0,01 = 2.



Гидроксид натрия – сильный электролит, диссоциирующий необратимо и полностью по схеме: NaOH ® Na + +OH – . Из уравнения процесса диссоциации видно, что C(OH –) = C(NaOH) = 0,1 моль/л.

pOH = –lg C(H +) = –lg 0,1 = 1; pH = 14 – pOH = 14 – 1 = 13.

Диссоциация слабого электролита – это равновесный процесс. Константа равновесия, записанная для процесса диссоциации слабого электролита, называется константой диссоциации . Например, для процесса диссоциации уксусной кислоты

CH 3 COOH ⇆ CH 3 COO – + H + .

Каждая стадия диссоциации многоосновной кислоты характеризуется своей константой диссоциации. Константа диссоциации – справочная величина ; см. .

Расчёт концентраций ионов (и pH) в растворах слабых электролитов сводится к решению задачи на химическое равновесие для того случая, когда известна константа равновесия и необходимо найти равновесные концентрации веществ, участвующих в реакции (см. пример 6.2 – задача 2 типа).

В 0,35% растворе NH 4 OH молярная концентрация гидроксида аммония равна 0,1 моль/л (пример перевода процентной концентрации в молярную – см. пример 5.1). Эту величину часто обозначают C 0 . C 0 – это общая концентрация электролита в растворе (концентрация электролита до диссоциации).

NH 4 OH принято считать слабым электролитом, обратимо диссоциирующим в водном растворе: NH 4 OH ⇆ NH 4 + + OH – (см. также примечание 2 на стр. 5). Константа диссоциации К = 1,8·10 –5 (справочная величина). Поскольку слабый электролит диссоциирует неполностью, сделаем предположение, что продиссоциировало x моль/л NH 4 OH, тогда равновесная концентрация ионов аммония и гидроксид-ионов также будут равняться x моль/л: C(NH 4 +) = C(OH -) = x моль/л. Равновесная концентрация непродиссоциировавшего NH 4 OH равна: С(NH 4 OH) = (C 0 –x) = (0,1–x) моль/л.

Подставляем выраженные через x равновесные концентрации всех частиц в уравнение константы диссоциации:

.

Очень слабые электролиты диссоциируют незначительно (x ® 0) и иксом в знаменателе как слагаемым можно пренебречь:

.

Обычно в задачах общей химии иксом в знаменателе пренебрегают в том случае, если (в этом случае х – концентрация продиссоциировавшего электролита – в 10 и менее раз отличается от C 0 – общей концентрации электролита в растворе).


С(OH –) = x = 1,34∙10 -3 моль/л; pOH = –lg C(OH –) = –lg 1,34∙10 –3 = 2,87.

pH = 14 – pOH = 14 – 2,87 = 11,13.

Степень диссоциации электролита можно рассчитать как отношение концентрации продиссоциировавшего электролита (x) к общей концентрации электролита (C 0):

(1,34%).

Сначала следует перевести процентную концентрацию в молярную (см. пример 5.1). В данном случае C 0 (H 3 PO 4) = 3,6 моль/л.

Расчёт концентрации ионов водорода в растворах многоосновных слабых кислот, проводится только по первой стадии диссоциации. Строго говоря, общая концентрация ионов водорода в растворе слабой многоосновной кислоты равна сумме концентраций ионов H + , образовавшихся на каждой стадии диссоциации. Например, для фосфорной кислоты C(H +) общая = C(H +) по 1 стадии + C(H +) по 2 стадии + C(H +) по 3 стадии. Однако, диссоциация слабых электролитов протекает преимущественно по первой стадии, а по второй и последующим стадиям – в незначительной степени, поэтому

C(H +) по 2 стадии ≈ 0, C(H +) по 3 стадии ≈ 0 и C(H +) общая ≈ C(H +) по 1 стадии.

Пусть фосфорной кислоты продиссоциировало по первой стадии x моль/л, тогда из уравнения диссоциации H 3 PO 4 ⇆ H + + H 2 PO 4 – следует, что равновесные концентрации ионов H + и H 2 PO 4 – также будут равны x моль/л, а равновесная концентрация непродиссоциировавшей H 3 PO 4 будет равна (3,6–x) моль/л. Подставляем выраженные через x концентрации ионов H + и H 2 PO 4 – и молекул H 3 PO 4 в выражение константы диссоциации по первой стадии (K 1 = 7,5·10 –3 – справочная величина):

K 1 /C 0 = 7,5·10 –3 / 3,6 = 2,1·10 –3 < 10 –2 ; следовательно, иксом как слагаемым в знаменателе можно пренебречь (см. также пример 7.3) и упростить полученное выражение.

;

моль/л;

С(H +) = x = 0,217 моль/л; pH = –lg C(H +) = –lg 0,217 = 0,66.

(3,44%)

Задание №8

Рассчитайте а) pH растворов сильных кислот и оснований; б) раствора слабого электролита и степень диссоциации электролита в этом растворе (таблица 8). Плотность растворов принять равной 1 г/мл.


Таблица 8 – Условия задания №8

№ вари- анта а б № вари- анта а б
0,01М H 2 SO 4 ; 1% NaOH 0,35% NH 4 OH
0,01МCa(OH) 2 ; 2%HNO 3 1% CH 3 COOH 0,04М H 2 SO 4 ; 4% NaOH 1% NH 4 OH
0,5М HClO 4 ; 1% Ba(OH) 2 0,98% H 3 PO 4 0,7М HClO 4 ; 4%Ba(OH) 2 3% H 3 PO 4
0,02M LiOH; 0,3% HNO 3 0,34% H 2 S 0,06M LiOH; 0,1% HNO 3 1,36% H 2 S
0,1М HMnO 4 ; 0,1% KOH 0,031% H 2 CO 3 0,2М HMnO 4 ; 0,2%KOH 0,124%H 2 CO 3
0,4М HCl; 0,08%Ca(OH) 2 0,47% HNO 2 0,8МHCl; 0,03%Ca(OH) 2 1,4% HNO 2
0,05M NaOH; 0,81% HBr 0,4% H 2 SO 3 0,07M NaOH; 3,24% HBr 1,23% H 2 SO 3
0,02M Ba(OH) 2 ; 0,13%HI 0,2% HF 0,05M Ba(OH) 2 ; 2,5% HI 2% HF
0,02М H 2 SO 4 ; 2% NaOH 0,7% NH 4 OH 0,06МH 2 SO 4 ; 0,8%NaOH 5%CH 3 COOH
0,7М HClO 4 ; 2%Ba(OH) 2 1,96% H 3 PO 4 0,08М H 2 SO 4 ; 3% NaOH 4% H 3 PO 4
0,04MLiOH; 0,63%HNO 3 0,68% H 2 S 0,008M HI; 1,7%Ba(OH) 2 3,4% H 2 S
0,3МHMnO 4 ; 0,56%KOH 0,062% H 2 CO 3 0,08M LiOH; 1,3% HNO 3 0,2% H 2 CO 3
0,6М HCl; 0,05%Ca(OH) 2 0,94% HNO 2 0,01M HMnO 4 ; 1% KOH 2,35% HNO 2
0,03M NaOH; 1,62% HBr 0,82% H 2 SO 3 0,9МHCl; 0,01%Ca(OH) 2 2% H 2 SO 3
0,03M Ba(OH) 2 ; 1,26%HI 0,5% HF 0,09M NaOH; 6,5% HBr 5% HF
0,03М H 2 SO 4 ; 0,4%NaOH 3% CH 3 COOH 0,1M Ba(OH) 2 ; 6,4% HI 6%CH 3 COOH
0,002M HI; 3% Ba(OH) 2 1% HF 0,04МH 2 SO 4 ; 1,6%NaOH 3,5% NH 4 OH
0,005МHBr; 0,24% LiOH 1,64% H 2 SO 3 0,001М HI; 0,4%Ba(OH) 2 5% H 3 PO 4

Пример 7.5 Смешали 200 мл 0,2М раствора H 2 SO 4 и 300 мл 0,1М раствора NaOH. Рассчитайте pH образовавшегося раствора и концентрации ионов Na + и SO 4 2– в этом растворе.

Приведём уравнение реакции H 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2 H 2 O к сокращённому ионно-молекулярному виду: H + + OH - → H 2 O

Из ионно-молекулярного уравнения реакции следует, что в реакцию вступают только ионы H + и OH – и образуют молекулу воды. Ионы Na + и SO 4 2– в реакции не участвуют, поэтому их количество после реакции такое же как и до реакции.

Расчёт количеств веществ до реакции:

n(H 2 SO 4) = 0,2 моль/л × 0,1 л = 0,02 моль = n(SO 4 2-);

n(H +) = 2 × n(H 2 SO 4) = 2 × 0,02 моль = 0,04 моль;

n(NaOH) = 0,1 моль/л · 0,3 л = 0,03 моль = n(Na +) = n(OH –).

Ионы OH – – в недостатке; они прореагируют полностью. Вместе с ними прореагирует столько же (т.е. 0,03 моль) ионов H + .

Расчёт количеств ионов после реакции:

n(H +) = n(H +) до реакции – n(H +) прореагировавших = 0,04 моль – 0,03 моль = 0,01 моль;

n(Na +) = 0,03 моль; n(SO 4 2–) = 0,02 моль.

Т.к. смешиваются разбавленные растворы, то

V общ. » Vраствора H 2 SO 4 + V раствора NaOH » 200 мл + 300 мл = 500 мл = 0,5 л.

C(Na +) = n(Na +) / V общ. = 0,03 моль: 0,5 л = 0,06 моль/л;

C(SO 4 2-) = n(SO 4 2-) / V общ. = 0,02 моль: 0,5 л = 0,04 моль/л;

C(H +) = n(H +) / V общ. = 0,01 моль: 0,5 л = 0,02 моль/л;

pH = –lg C(H +) = –lg 2·10 –2 = 1,699.

Задание №9

Рассчитайте pH и молярные концентрации катионов металла и анионов кис­лотного остатка в растворе, образовавшемся в результате смешивания раствора сильной кислоты с раствором щёлочи (таблица 9).

Таблица 9 – Условия задания №9

№ вари- анта № вари- анта Объёмы и состав растворов кислоты и щёлочи
300 мл 0,1М NaOH и 200 мл 0,2М H 2 SO 4
2 л 0,05М Ca(OH) 2 и 300 мл 0,2М HNO 3 0,5 л 0,1М KOH и 200 мл 0,25М H 2 SO 4
700 мл 0,1М KOH и 300 мл 0,1М H 2 SO 4 1 л 0,05М Ba(OH) 2 и 200 мл 0,8М HCl
80 мл 0,15М KOH и 20 мл 0,2М H 2 SO 4 400мл 0,05М NaOH и 600мл 0,02М H 2 SO 4
100 мл 0,1М Ba(OH) 2 и 20 мл 0,5М HCl 250 мл 0,4М KOH и 250 мл 0,1М H 2 SO 4
700мл 0,05М NaOH и 300мл 0,1М H 2 SO 4 200мл 0,05М Ca(OH) 2 и 200мл 0,04М HCl
50 мл 0,2М Ba(OH) 2 и 150 мл 0,1М HCl 150мл 0,08М NaOH и 350мл 0,02М H 2 SO 4
900мл 0,01М KOH и 100мл 0,05М H 2 SO 4 600мл 0,01М Ca(OH) 2 и 150мл 0,12М HCl
250 мл 0,1М NaOH и 150 мл 0,1М H 2 SO 4 100 мл 0,2М Ba(OH) 2 и 50 мл 1М HCl
1 л 0,05М Ca(OH) 2 и 500 мл 0,1М HNO 3 100 мл 0,5М NaOH и 100 мл 0,4М H 2 SO 4
100 мл 1М NaOH и 1900 мл 0,1М H 2 SO 4 25 мл 0,1М KOH и 75 мл 0,01М H 2 SO 4
300 мл 0,1М Ba(OH) 2 и 200 мл 0,2М HCl 100мл 0,02М Ba(OH) 2 и 150мл 0,04 М HI
200 мл 0,05М KOH и 50 мл 0,2М H 2 SO 4 1 л 0,01М Ca(OH) 2 и 500 мл 0,05М HNO 3
500мл 0,05М Ba(OH) 2 и 500мл 0,15М HI 250мл 0,04М Ba(OH) 2 и 500мл 0,1М HCl
1 л 0,1М KOH и 2 л 0,05М H 2 SO 4 500 мл 1М NaOH и 1500 мл 0,1М H 2 SO 4
250мл 0,4М Ba(OH) 2 и 250мл 0,4М HNO 3 200 мл 0,1М Ba(OH) 2 и 300 мл 0,2М HCl
80 мл 0,05М KOH и 20 мл 0,2М H 2 SO 4 50 мл 0,2М KOH и 200 мл 0,05М H 2 SO 4
300 мл 0,25М Ba(OH) 2 и 200 мл 0,3М HCl 1 л 0,03М Ca(OH) 2 и 500 мл 0,1М HNO 3

ГИДРОЛИЗ СОЛЕЙ

При растворении в воде любой соли происходит диссоциация этой соли на катионы и анионы. Если соль образована катионом сильного основания и анионом слабой кислоты (например, нитрит калия KNO 2), то нитрит-ионы будут связываться с ионами H + , отщепляя их от молекул воды, в результате чего образуется слабая азотистая кислота. В результате этого взаимодействия в растворе установится равновесие:

NO 2 – + HOH ⇆ HNO 2 + OH –

KNO 2 + HOH ⇆ HNO 2 + KOH.

Таким образом, в растворе соли, гидролизующейся по аниону, появляется избыток ионов OH – (реакция среды – щелочная; pH > 7).


Если соль образована катионом слабого основания и анионом сильной кислоты (например, хлорид аммония NH 4 Cl), то катионы NH 4 + слабого основания будут отщеплять ионы OH – от молекул воды и образовывать слабодиссоциирующий электролит – гидроксид аммония 1 .

NH 4 + + HOH ⇆ NH 4 OH + H + .

NH 4 Cl + HOH ⇆ NH 4 OH + HCl.

В растворе соли гидролизующейся по катиону появляется избыток ионов H + (реакция среды – кислая pH < 7).

При гидролизе соли, образованной катионом слабого основания и анионом слабой кислоты (например, фторид аммония NH 4 F) катионы слабого основания NH 4 + связываются с ионами OH – , отщепляя их от молекул воды, а анионы слабой кислоты F – связываются с ионами H + , в результате чего образуется слабое основание NH 4 OH и слабая кислота HF: 2

NH 4 + + F – + HOH ⇆ NH 4 OH + HF

NH 4 F + HOH ⇆ NH 4 OH + HF.

Реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из образующихся в результате гидролиза малодиссоциирующих электролитов является более сильным (это можно выяснить, сравнив константы диссоциации). В случае гидролиза NH 4 F среда будет кислой (pH<7), поскольку HF – более сильный электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 < K H F = 6,6·10 –4 .

Таким образом, гидролизу (т.е. разложению водой) подвергаются соли, образованные:

– катионом сильного основания и анионом слабой кислоты (KNO 2 , Na 2 CO 3 , K 3 PO 4);

– катионом слабого основания и анионом сильной кислоты (NH 4 NO 3 , AlCl 3 , ZnSO 4);

– катионом слабого основания и анионом слабой кислоты (Mg(CH 3 COO) 2 , NH 4 F).

C молекулами воды взаимодействуют катионы слабых оснований или (и) анионы слабых кислот ; соли образованные катионами сильных оснований и анионами сильных кислот гидролизу не подвергаются.

Гидролиз солей, образованных многозарядными катионами и анионами, протекает ступенчато; ниже на конкретных примерах показана последовательность рассуждений, которой рекомендуется придерживаться при составлении уравнений гидролиза таких солей.


Примечания

1. Как уже отмечалось ранее (см. примечание 2 на стр. 5) существует альтернативная точка зрения, согласно которой гидроксид аммония является сильным основанием. Кислая реакция среды в растворах солей аммония, образованных сильными кислотами, например, NH 4 Cl, NH 4 NO 3 , (NH 4) 2 SO 4 , объясняется при таком подходе обратимо протекающим процессом диссоциации иона аммония NH 4 + ⇄ NH 3 + H + или, более точно NH 4 + + H 2 O ⇄ NH 3 + H 3 O + .

2. Если гидроксид аммония считать сильным основанием, то в растворах солей аммония, образованных слабыми кислотами, например, NH 4 F следует рассматривать равновесие NH 4 + + F – ⇆ NH 3 + HF, в котором происходит конкуренция за ион H + между молекулами аммиака и анионами слабой кислоты.


Пример 8.1 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза карбоната натрия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Na 2 CO 3 ® 2Na + + CO 3 2–

2. Соль образована катионами (Na +) сильного основания NaOH и анионом (CO 3 2–) слабой кислоты H 2 CO 3 . Следовательно, соль гидролизуется по аниону:

CO 3 2– + HOH ⇆ … .

Гидролиз в большинстве случаев протекает обратимо (знак ⇄); на 1 ион, участвующий в процессе гидролиза, записывается 1 молекула HOH .

3. Отрицательно заряженные карбонат ионы CO 3 2– связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH, и образуют гидрокарбонат ионы HCO 3 – ; раствор обогащается ионами OH – (щелочная среда; pH>7):

CO 3 2– + HOH ⇆ HCO 3 – + OH – .

Это ионно-молекулярное уравнение первой стадии гидролиза Na 2 CO 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, соединив все имеющиеся в уравнении CO 3 2– + HOH ⇆ HCO 3 – + OH – анионы (CO 3 2– , HCO 3 – и OH –) с катионами Na + , образовав соли Na 2 CO 3 , NaHCO 3 и основание NaOH:

Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH.

5. В результате гидролиза по первой стадии образовались гидрокарбонат ионы, которые участвуют во второй стадии гидролиза:

HCO 3 – + HOH ⇆ H 2 CO 3 + OH –

(отрицательно заряженные гидрокарбонат ионы HCO 3 – связываются с положительно заряженными ионами H + , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении HCO 3 – + HOH ⇆ H 2 CO 3 + OH – анионы (HCO 3 – и OH –) с катионами Na + , образовав соль NaHCO 3 и основание NaOH:

NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH

CO 3 2– + HOH ⇆ HCO 3 – + OH – Na 2 CO 3 + HOH ⇆ NaHCO 3 + NaOH

HCO 3 – + HOH ⇆ H 2 CO 3 + OH – NaHCO 3 + HOH ⇆ H 2 CO 3 + NaOH.

Пример 8.2 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза сульфата алюминия. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: Al 2 (SO 4) 3 ® 2Al 3+ + 3SO 4 2–

2. Соль образована катионами (Al 3+) слабого основания Al(OH) 3 и анионами (SO 4 2–) сильной кислоты H 2 SO 4 . Следовательно, соль гидролизуется по катиону; на 1 ион Al 3+ записывается 1 молекула HOH: Al 3+ + HOH ⇆ … .

3. Положительно заряженные ионы Al 3+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, и образуют ионы гидроксоалюминия AlOH 2+ ; раствор обогащается ионами H + (кислая среда; pH<7):

Al 3+ + HOH ⇆ AlOH 2+ + H + .

Это ионно-молекулярное уравнение первой стадии гидролиза Al 2 (SO 4) 3 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении Al 3+ + HOH ⇆ AlOH 2+ + H + катионы (Al 3+ , AlOH 2+ и H +) с анионами SO 4 2– , образовав соли Al 2 (SO 4) 3 , AlOHSO 4 и кислоту H 2 SO 4:

Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4 .

5. В результате гидролиза по первой стадии образовались катионы гидроксо­алюминия AlOH 2+ , которые участвуют во второй стадии гидролиза:

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H +

(положительно заряженные ионы AlOH 2+ связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав все имеющиеся в уравнении AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + катионы (AlOH 2+ , Al(OH) 2 + , и H +) с анионами SO 4 2– , образовав соли AlOHSO 4 , (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4 .

7. В результате второй стадии гидролиза образовались катионы дигидроксоалюминия Al(OH) 2 + , которые участвуют в третьей стадии гидролиза:

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H +

(положительно заряженные ионы Al(OH) 2 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + катионы (Al(OH) 2 + и H +) с анионами SO 4 2– , образовав соль (Al(OH) 2) 2 SO 4 и кислоту H 2 SO 4:

(Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4

В результате этих рассуждений получаем следующие уравнения гидролиза:

Al 3+ + HOH ⇆ AlOH 2+ + H + Al 2 (SO 4) 3 + 2HOH ⇆ 2AlOHSO 4 + H 2 SO 4

AlOH 2+ + HOH ⇆ Al(OH) 2 + + H + 2AlOHSO 4 + 2HOH ⇆ (Al(OH) 2) 2 SO 4 + H 2 SO 4

Al(OH) 2 + + HOH ⇆ Al(OH) 3 + H + (Al(OH) 2) 2 SO 4 + 2HOH ⇆ 2Al(OH) 3 + H 2 SO 4 .

Пример 8.3 Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза ортофосфата аммония. Укажите pH раствора (pH>7, pH<7 или pH=7).

1. Уравнение диссоциации соли: (NH 4) 3 PO 4 ® 3NH 4 + + PO 4 3–

2. Соль образована катионами (NH 4 +) слабого основания NH 4 OH и анионами

(PO 4 3–) слабой кислоты H 3 PO 4 . Следовательно, соль гидролизуется и по катиону, и по аниону : NH 4 + + PO 4 3– +HOH ⇆ … ; (на одну пару ионов NH 4 + и PO 4 3– в данном случае записывается 1 молекула HOH ). Положительно заряженные ионы NH 4 + связываются с отрицательно заряженными ионами OH – , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH, а отрицательно заряженные ионы PO 4 3– связываются с ионами H + , образуя гидрофосфат ионы HPO 4 2– :

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– .

Это ионно-молекулярное уравнение первой стадии гидролиза (NH 4) 3 PO 4 .

4. Уравнение первой стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2– анионы (PO 4 3– , HPO 4 2–) с катионами NH 4 + , образовав соли (NH 4) 3 PO 4 , (NH 4) 2 HPO 4:

(NH 4) 3 PO 4 +HOH ⇆ NH 4 OH + (NH 4) 2 HPO 4 .

5. В результате гидролиза по первой стадии образовались гидрофосфат анионы HPO 4 2– , которые вместе с катионами NH 4 + участвуют во второй стадии гидролиза:

NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 –

(ионы NH 4 + связываются с ионами OH – , ионы HPO 4 2– – с ионами H + , отщепляя их от молекул HOH, образуя слабое основание NH 4 OH и дигидрофосфат ионы H 2 PO 4 –).

6. Уравнение второй стадии гидролиза в молекулярном виде, можно получить, связав имеющиеся в уравнении NH 4 + + HPO 4 2– + HOH ⇆ NH 4 OH + H 2 PO 4 – анионы (HPO 4 2– и H 2 PO 4 –) с катионами NH 4 + , образовав соли (NH 4) 2 HPO 4 и NH 4 H 2 PO 4:

(NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH + NH 4 H 2 PO 4 .

7. В результате второй стадии гидролиза образовались дигидрофосфат анионы H 2 PO 4 – , которые вместе с катионами NH 4 + участвуют в третьей стадии гидролиза:

NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4

(ионы NH 4 + связываются с ионами OH – , ионы H 2 PO 4 – – с ионами H + , отщепляя их от молекул HOH и образуют слабые электролиты NH 4 OH и H 3 PO 4).

8. Уравнение третьей стадии гидролиза в молекулярном виде, можно получить, связав присутствующие в уравнении NH 4 + + H 2 PO 4 – + HOH ⇆ NH 4 OH + H 3 PO 4 анионы H 2 PO 4 – и катионами NH 4 + и образовав соль NH 4 H 2 PO 4:

NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH + H 3 PO 4 .

В результате этих рассуждений получаем следующие уравнения гидролиза:

NH 4 + +PO 4 3– +HOH ⇆ NH 4 OH+HPO 4 2– (NH 4) 3 PO 4 +HOH ⇆ NH 4 OH+(NH 4) 2 HPO 4

NH 4 + +HPO 4 2– +HOH ⇆ NH 4 OH+H 2 PO 4 – (NH 4) 2 HPO 4 +HOH ⇆ NH 4 OH+NH 4 H 2 PO 4

NH 4 + +H 2 PO 4 – +HOH ⇆ NH 4 OH+H 3 PO 4 NH 4 H 2 PO 4 +HOH ⇆ NH 4 OH+H 3 PO 4 .

Процесс гидролиза протекает преимущественно по первой стадии, поэтому реакция среды в растворе соли, гидролизующейся и по катиону, и по аниону определяется тем, какой из малодиссоциирующих электролитов, образующихся на первой стадии гидролиза, является более сильным. В рассматриваемом случае

NH 4 + + PO 4 3– + HOH ⇆ NH 4 OH + HPO 4 2–

реакция среды будет щелочной (pH>7), поскольку ион HPO 4 2– – более слабый электролит, чем NH 4 OH: KNH 4 OH = 1,8·10 –5 > KHPO 4 2– = K III H 3 PO 4 = 1,3×10 –12 (диссоциация иона HPO 4 2– – это диссоциация H 3 PO 4 по третьей стадии, поэтому KHPO 4 2– = K III H 3 PO 4).

Задание №10

Запишите в молекулярном и ионно-молекулярном виде уравнения реакций гидролиза солей (таблица 10). Укажите pH раствора (pH>7, pH<7 или pH=7).

Таблица 10 – Условия задания №10

№ варианта Список солей № варианта Список солей
а) Na 2 CO 3 , б) Al 2 (SO 4) 3 , в) (NH 4) 3 PO 4 а) Al(NO 3) 3 , б) Na 2 SeO 3 , в) (NH 4) 2 Te
а) Na 3 PO 4 , б) CuCl 2 , в) Al(CH 3 COO) 3 а) MgSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 CO 3
а) ZnSO 4 , б) K 2 CO 3 , в) (NH 4) 2 S а) CrCl 3 , б) Na 2 SiO 3 , в) Ni(CH 3 COO) 2
а) Cr(NO 3) 3 , б) Na 2 S, в) (NH 4) 2 Se а) Fe 2 (SO 4) 3 , б) K 2 S, в) (NH 4) 2 SO 3

Продолжение таблицы 10

№ варианта Список солей № варианта Список солей
а) Fe(NO 3) 3 , б) Na 2 SO 3 , в) Mg(NO 2) 2
а) K 2 CO 3 , б) Cr 2 (SO 4) 3 , в) Be(NO 2) 2 а) MgSO 4 , б) K 3 PO 4 , в) Cr(CH 3 COO) 3
а) K 3 PO 4 , б) MgCl 2 , в) Fe(CH 3 COO) 3 а) CrCl 3 , б) Na 2 SO 3 , в) Fe(CH 3 COO) 3
а) ZnCl 2 , б) K 2 SiO 3 , в) Cr(CH 3 COO) 3 а) Fe 2 (SO 4) 3 , б) K 2 S, в) Mg(CH 3 COO) 2
а) AlCl 3 , б) Na 2 Se, в) Mg(CH 3 COO) 2 а) Fe(NO 3) 3 , б) Na 2 SiO 3 , (NH 4) 2 CO 3
а) FeCl 3 , б) K 2 SO 3 , в) Zn(NO 2) 2 а) K 2 CO 3 , б) Al(NO 3) 3 , в) Ni(NO 2) 2
а) CuSO 4 , б) Na 3 AsO 4 , в) (NH 4) 2 SeO 3 а) K 3 PO 4 , б) Mg(NO 3) 2 , в) (NH 4) 2 SeO 3
а) BeSO 4 , б) K 3 PO 4 , в) Ni(NO 2) 2 а) ZnCl 2 , Na 3 PO 4 , в) Ni(CH 3 COO) 2
а) Bi(NO 3) 3 , б) K 2 CO 3 в) (NH 4) 2 S а) AlCl 3 , б) K 2 CO 3 , в) (NH 4) 2 SO 3
а) Na 2 CO 3 , б) AlCl 3 , в) (NH 4) 3 PO 4 а) FeCl 3 , б) Na 2 S, в) (NH 4) 2 Te
а) K 3 PO 4 , б) MgCl 2 , в) Al(CH 3 COO) 3 а) CuSO 4 , б) Na 3 PO 4 , в) (NH 4) 2 Se
а) ZnSO 4 , б) Na 3 AsO 4 , в) Mg(NO 2) 2 а) BeSO 4 , б) б) Na 2 SeO 3 , в) (NH 4) 3 PO 4
а) Cr(NO 3) 3 , б) K 2 SO 3 , в) (NH 4) 2 SO 3 a) BiCl 3 , б) K 2 SO 3 , в) Al(CH 3 COO) 3
а) Al(NO 3) 3 , б) Na 2 Se, в) (NH 4) 2 CO 3 a) Fe(NO 3) 2 , б) Na 3 AsO 4 , в) (NH 4) 2 S

Список литературы

1. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. – М. : Химия, 1989. – 448 с.

2. Рабинович, В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин – Л. : Химия, 1991. – 432 с.

3. Глинка, Н.Л. Общая химия / Н.Л. Глинка; под ред. В.А. Рабиновича. – 26-е изд. – Л.: Химия, 1987. – 704 с.

4. Глинка, Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича и Х.М. Рубиной – 22-е изд. – Л.: Химия, 1984. – 264 с.

5. Общая и неорганическая химия: конспект лекций для студентов технологических специальностей: в 2 ч. / Могилёвский государственный университет продовольствия; авт.-сост. В.А. Огородников. – Могилёв, 2002. – Ч. 1: Общие вопросы химии. – 96 с.


Учебное издание

ОБЩАЯ ХИМИЯ

Методические указания и контрольные задания

для студентов технологических специальностей заочной формы обучения

Составитель: Огородников Валерий Анатольевич

Редактор Т.Л Матеуш

Технический редактор А.А. Щербакова

Подписано в печать. Формат 60´84 1/16

Печать офсетная. Гарнитура Таймс. Печать трафаретная

Усл. печ. л.. Уч. изд. л. 3.

Тираж экз. Заказ.

Отпечатано на ризографе редакционно-издательского отдела

учреждения образования

«Могилёвский государственный университет продовольствия»