Быстродействующая защита обеспечивающая автоматическое отключение электроустановки. Защитное отключение. Устройство защитного отключения. Для чего используют защитное отключение

Защитное отключение

Зануление

Зануление - преднамеренное электрическое соединœение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник - проводник, соединяющий зануляемые части с нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление применяется в сетях напряжением до 1000 В с заземленной нейтралью. В случае пробоя фазы на металлический корпус электрооборудования возникает однофазное короткое замыкание, что приводит к быстрому срабатыванию защиты и тем самым автоматическому отключению поврежденной установки от питающей сети. Такой защитой являются: плавкие предохранители или максимальные автоматы, установленные для защиты от токов коротких замыканий; автоматы с комбинированными расцепителями.

При замыкании фазы на зануленный корпус электроустановка автоматически отключается, в случае если ток однофазного короткого замыкания I З удовлетворяет условию I З >= к ∙I Н, где I Н - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А; к - коэффициент кратности тока.

Для автоматов к = 1,25 - 1,4. Для предохранителœей к = 3.

Проводимость нулевого защитного проводника должна быть не менее 50 % проводимости фазного провода.

Расчет зануления на безопасность прикосновения к корпусу при замыкании фазы на землю или корпус сводится к расчету заземления нейтральной точки трансформатора и повторных заземлителœей нулевого защитного проводника. Согласно ПУЭ сопротивление заземления нейтрали должно быть не более 8 Ом при 220/127 В; 4 ОМ при 380/220 В; 2 Ом при 660/380 В.

Защитное отключение - это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется тогда, когда трудно выполнить заземление или зануление, а также в дополнение к нему в некоторых случаях.

Учитывая зависимость оттого, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Принцип действия УЗО как защитного выключателя, реагирующего на ток утечки.

Рис. 14. Схема электроустановки с УЗО

Устройства, реагирующие на напряжение нулевой последовательности, применяются в трехпроводных сетях напряжением до 1000 В с изолированной нейтралью и малой протяженностью. Устройства защитного отключения, реагирующие на ток замыкания, применяются для установок, корпуса которых изолированы от земли (ручной электроинструмент, передвижные установки и т.д.).

Устройство, реагирующее на ток нулевой последовательности, применяется в сетях с заземленной и изолированной нейтралью.

Защитное отключение - понятие и виды. Классификация и особенности категории "Защитное отключение" 2017, 2018.

  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    Защитное отключение - быстродействующая защита, обеспечиваю­щая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть при: замыкании фалы на корпус электрооборудования: снижении сопротивле­ния... .


  • - Защитное отключение

    Защитное отключение – это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное... .


  • - Защитное отключение

    Защитное заземление Под защитным заземлением понимается преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Заземление частей электроустановки и корпусов... .


  • - Защитное отключение

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть: - при замыкании фазы на корпус электрооборудования; - при снижении... .


  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    РАЗДЕЛ 6.12 Защитное отключение (ЗО) – система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижение сопротивления изоляции, неисправности заземления) ЗО применяются... .


  • - Защитное отключение

    Защитное отключение - система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Схема защитного отключения приведена на рис. 2.13.3. Эта схема осуществляет защиту от глухих замыканий на... [читать подробнее] .


  • - Защитное отключение: назначение, область применения, сущность защиты, требования.

    Защитное отключение представляет собой быстро­действующую защиту, обеспечивающую автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Такая опасность может воз­никнуть при нарушении изоляции токоведущих частей и пробое на... .


  • Защитное автоматическое отключение питания от сети (далее – питания) осуществляется посредством автоматического размыкания цепи одного или нескольких фазных проводников (и, если необходимо, то и нулевого рабочего проводника), выполняемого в целях защиты от поражения электрическим током. Этот способ защиты реализуется, например, в рассмотренной системе защитного заземления, а также в системе зануления и в устройствах защитного отключения. Характеристики защитных аппаратов автоматического отключения и параметры проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом, указанное в ПУЭ, в соответствии с номинальным напряжением питающей сети. Защитно-коммутационные аппараты могут реагировать на токи короткого замыкания (например, в системе зануления) или на дифференциальный ток (устройства защитного отключения). В электроустановках, где применено автоматическое отключение питания, выполняют уравнивание потенциалов в целях снижения напряжения прикосновения в период времени от момента возникновения аварийной ситуации до момента отключения питания.

    Зануление применяется в электроустановках напряжением до 1 кВ и представляет собой преднамеренное соединение открытых проводящих частей электроустановок (в том числе их корпусов) с глухозаземленной нейтралью генератора или трансформатора.

    Это соединение выполняют посредством нулевого защитного проводника (РЕ-проводника). Согласно указаниям главы 1.7. ПУЭ, такую систему обозначают TN (Т – «terra» (англ.) – нейтраль источника глухо заземлена, N – «neutral» – открытые проводящие части присоединены к этой нейтрали). Нулевой РЕ-проводник («protection earth») следует отличать от нулевого рабочего проводника (N), который тоже присоединен к глухозаземленной нейтрали источника, но предназначен для питания однофазных электроприемников. Проводники РЕ и N могут быть разделены на всем своем протяжении, образуя совместно с фазными пятипроводную систему, обозначаемую TN-S (S – «separated» – «разделенный»). Если же они совмещены в одном PEN-проводнике на всем протяжении, то это – четырехпроводная система TN-C (C – «combination» – «совмещенный»). Применяется также промежуточная система TN-C-S, в которой, начиная от источника питания, прокладывается PEN-проводник, а затем он разделяется на отдельные N и РЕ-проводники в зоне размещения электроприемников, предназначенных для подключения к системе TN-S. С позиций безопасности система TN-S предпочтительнее системы TN-C, поскольку в нормальном режиме рабочий ток не протекает по РЕ-проводнику. Поэтому потенциалы зануленных открытых проводящих частей электроустановок практически одинаковы и равны потенциалу земли. Система TN-S, впервые предложенная с 70-х годах XX века, начиная с 1995 года широко внедряется в отечественной промышленности и в быту, однако область применения системы TN-C (используемой с 1910 года) все еще превалирует.



    Монтаж и эксплуатация трехфазных сетей невозможны без четкой (на дистанции) идентификации фазных и нулевых проводников. Это возможно с помощью цветовой маркировки. Шины фазы A (на схемах обозначается L1), B (L2), и C (L2) окрашиваются соответственно в желтый, зеленый и красный цвета. Обозначения A, B, C – прямая последовательность букв латинского алфавита; прямая последовательность букв русского алфавита, соответственно – Ж, З, К (буква И пропущена). Рабочий нулевой проводник (N) окрашивается в голубой цвет, защитный (PE) – в желто-зеленый цвет (поскольку проводник обозначается двумя буквами, то и цвета два). Совмещенный PEN-проводник окрашивается в голубой цвет с нанесенными через одинаковые промежутки поперечными (наклонными) чередующимися полосами желтого и зеленого цветов. Если используется сеть постоянного тока, то шина «+» окрашивается в красный цвет, «–» – в синий , нулевой (нейтральный) проводник – в голубой . В электроустановках ближайшая к человеку шина (например, при открытии дверцы силовой сборки или при подъеме на опору ВЛ) всегда должна быть шина PE. Далее следует шина N, а далее – фазные, причем непосредственно после шины N следует шина фазы C (красный цвет – цвет опасности), затем – B и, наконец, самой удаленной шиной является шина фазы A. В сетях постоянного тока ближайшей к человеку шиной должна быть нейтральная, далее следует шина «+» (красный цвет), а далее – шина «–».



    Ознакомившись с цветовой маркировкой проводников, рассмотрим принцип действия зануления в трехфазной сети на примере системы TN-C (рисунок 5.26).

    Рисунок 5.26 – Схема защитного зануления (система TN-C)

    Зануление превращает пробой фазы на корпус в короткое замыкание (КЗ) между фазными и нулевым защитным проводниками и способствует протеканию тока I к (рисунок 5.26) большой величины. Эта величина тока обеспечивает срабатывание аппарата защиты (A3), автоматически отключающего поврежденную установку от сети. Такой защитой могут быть плавкие предохранители или автоматические выключатели. Ток короткого замыкания должен быть такой величины, чтобы вызвать перегорание плавкой вставки предохранителя или срабатывание автоматического выключателя за время, не превышающее допустимое.

    Согласно ПУЭ наибольшее допустимое время защитного автоматического отключения в системе TN равно 0,8; 0,4; 0,2 и 0,1 с в зависимости от номинального фазного напряжения сети: 127, 220, 380 и более 380 В, соответственно. Регламентированы также наименьшие площади поперечного сечения нулевых защитных проводников. Если защитные проводники изготовлены из того же материала, что и фазные проводники, то их наименьшее сечение зависит от сечения фазных проводников следующим образом:

    Если сечение фазных проводников меньше или равно 16 мм 2 , то наименьшее сечение защитных проводников равно сечению фазных;

    Если сечение фазных проводников больше 16 мм 2 , но меньше 35 мм 2 , то сечение защитных проводников должно быть не менее 16 мм 2 ;

    Если сечение фазных проводников более 35 мм 2 , то сечение защитных проводников равно половине сечения фазных при условии соблюдения времени срабатывания защиты (0,4 с при фазном напряжении 220 В).

    Сечения нулевых защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

    Нулевой защитный проводник не должен содержать предохранителей и других разъединяющих устройств. Допустимо применение выключателей, которые отключают одновременно нулевой и фазные провода.

    Ток однофазного короткого замыкания I к протекает по петле «фаза–нуль» (рисунок 5.26). Она состоит из фазного проводника (участка от силового трансформатора до поврежденного участка), металлического корпуса электроустановки, соединенного с проводником PEN, самого проводника PEN (участка от корпуса электроустановки до нулевой точки силового трансформатора), а также фазной обмотки силового трансформатора (в данном случае – обмотки фазы А). Если сопротивление петли «фаза–нуль» будет большим, время срабатывания защиты превысит наибольшее допустимое время защитного автоматического отключения. Поэтому сопротивление данной петли измеряют не реже одного раза в три года с помощью приборов М417, ЭСО202 и подобных им. При недопустимой величине сопротивления проводят ревизию соединений металлических корпусов электроустановок с нулевым проводником (проверяют затяжку болтовых и целостность сварных контактных соединений, удаляют окалину, зачищают контакты от ржавчины). После ревизии проверяют переходное сопротивление контактов – оно должно быть не более 0,05 Ом.

    Нулевой защитный проводник соединен с землей посредством заземления нейтрали и повторных заземлителей, сопротивление растеканию тока которых обозначено соответственно r 0 и r п (рисунок 5.26). Повторное заземление выполняют на концах воздушных линий (или ответвлений от них длиной более 200 м), а также на трехфазных (однофазных) вводах в здания, где имеются электроустановки, подлежащие занулению. Сопротивление заземления нейтрали, общее сопротивление повторных заземлителей и каждого из них в отдельности не должны превышать установленных наименьших значений, например, в сети 380/220 В соответственно 4, 10 и 30 Ом (таблица 5.8). Зануленные части электроустановок оказываются заземленными через нулевой защитный проводник. Поэтому в аварийный период (до автоматического отключения поврежденной установки от сети) проявляется защитное действие этого заземления, т. е. снижается напряжение зануленных частей относительно земли. Причем это особенно существенно в случае обрыва PEN-проводника и замыканий фазы на корпус за местом обрыва. Кроме того, за счет заземления нейтрали источника, даже при отсутствии повторного заземления, значительно снижается потенциал на корпусах электрооборудования с поврежденной изоляцией. На воздушных линиях повторное заземление нулевого провода используется также в целях молниезащиты. В качестве нулевых защитных проводников можно использовать стальные полосы, металлические оплетки кабелей, металлоконструкции зданий, подкрановые пути и др.

    В тех случаях, когда электробезопасность не может быть обеспечена в системе TN с помощью защитного зануления, в сети до 1 кВ с глухозаземленной нейтралью допускается заземление открытых проводящих частей при помощи заземлителя, электрически независимого от глухозаземленной нейтрали источника (система ТТ). При этом для защиты при косвенном прикосновении предусматривается автоматическое отключение питания с обязательным применением УЗО и соблюдением условия:

    где I з – ток срабатывания защитного устройства; R з – суммарное сопротивление заземлителя и заземляющего проводника наиболее удаленного от УЗО электроприемника. Кроме того, выполняется система уравнивания потенциалов.

    Защитное отключение – это система быстродействующей защиты, автоматически (за 0,2 с и менее) отключающая электроустановку при возникновении в ней опасности поражения человека электрическим током. Защитное отключение применяется в тех случаях, когда невозможно или трудно осуществить защитное заземление или зануление, либо когда высока вероятность прикосновения людей к неизолированным токоведущим частям электроустановок. Поэтому защитное отключение целесообразно применять для обеспечения защиты при использовании ручного электроинструмента, передвижных электроустановок, а также в быту.

    При замыкании фазы на корпус, при снижении сопротивления изоляции фаз относительно земли ниже определенного предела, при прикосновении человека к токоведущей части, находящейся под напряжением, происходит изменение электрических параметров сети, которое может служить импульсом для срабатывания устройства защитного отключения (УЗО), основными частями которого являются прибор защитного отключения и автоматический выключатель.

    Прибор защитного отключения реагирует на изменение параметров электрической сети и подает сигнал на срабатывание автоматического выключателя, который отключает защищаемую электроустановку от сети.

    Устройства защитного отключения предназначены не только для защиты человека от поражения электрическим током при прикосновении к открытой проводке или к электрооборудованию, оказавшемуся под напряжением, но и для предотвращения возгорания, возникающего вследствие длительного протекания токов утечки и развивающихся из них токов короткого замыкания.

    Таким образом, основное назначение У3О: защита от токов утечки; защита от токов повреждения на землю; защита от возгорания.

    В зависимости от входного сигнала известны УЗО, реагирующие на напряжение корпуса относительно земли, на ток замыкания на землю, на напряжение нулевой последовательности, на дифференциальный ток, на оперативный ток и т.п.

    Устройство защитного отключения, реагирующее на напряжение корпуса относительно земли (рисунок 5.27), устраняет опасность поражения током при возникновении на заземленном или зануленном корпусе повышенного напряжения, например, в случае повреждения изоляции.

    Рисунок 5.27 – Принципиальная схема УЗО, реагирующего на напряжение корпуса относительно земли

    Принцип действия – быстрое отключение от сети установки, если напряжение на корпусе относительно земли окажется выше заданного значения, при котором прикосновение к корпусу становится опасным. Такое УЗО реагирует не только на полный пробой изоляции, но и на частичное уменьшение ее сопротивления.

    Устройство защитного отключения, работающее на постоянном оперативном токе, предназначено для непрерывного автоматического контроля изоляции фаз относительно земли, а также для защиты человека, прикоснувшегося к токоведущим проводам (рисунок 5.28). В этих устройствах активное сопротивление изоляции трехфазных проводов r относительно земли оценивается получаемым от постороннего источника оперативным током I оп, проходящим через эти сопротивления. При снижении r ниже установленного предела в результате повреждения изоляции и замыкания провода на землю через малое сопротивление r зм или прикосновения человека к фазному проводу возрастает ток I оп, вызывающий отключение защищаемой сети от источника питания.

    Устройство защитного отключения, реагирующее на дифференциальный ток, обеспечивает защиту в случае прикосновения человека к заземленному или зануленному корпусу электроустановки при замыкании на него фазы, а также при контакте человека с токоведущей частью, находящейся под напряжением. УЗО этого типа нашли широкое применение в агропромышленном комплексе и в быту.

    Рисунок 5.28 – Принципиальная схема УЗО, работающего на постоянном оперативном токе (исходное состояние)

    Принципиальная схема такого устройства защитного отключения приведена на рисунке 5.29. Датчиком служит трансформатор тока (ТТ) (рисунок 5.30).

    Рисунок 5.29 – Принципиальная схема УЗО, реагирующего на дифференциальный ток (исходное состояние)

    Рисунок 5.30 – Кольцеобразный магнитопровод с вторичной обмоткой трансформатора

    Если токи в фазных проводах I 1 , I 2 , I 3 равны и сдвинуты по фазе на 120° относительно друг друга, то создаваемый ими суммарный магнитный поток в магнитопроводе ТТ равен нулю. Когда возникает асимметрия проводимостей фаз относительно земли, например, в результате замыкания фазы на землю или прикосновения человека к фазе в зоне защиты, то равенство токов в фазах нарушается. Появляется дифференциальный ток, равный векторной сумме этих токов, который в соответствии с коэффициентом трансформации передается во вторичную обмотку трансформатора на вход обмотки реле тока (РТ). Если этот ток достигнет (или превысит) значения тока срабатывания реле, то его нормально замкнутые контакты разомкнутся, отсоединив электроприемник от питающей сети. Реле отключится, даже если оператор удерживает рукоятку управления во взведенном положении. При необходимости усиления сигнала с ТТ между ним и реле РТ помещают усилитель тока (на рисунке 5.29 не показан).

    Этот тип устройства защитного отключения может применяться как в сети с изолированной, так и в сети с заземленной нейтралью. Однако данное отключающее устройство наиболее эффективно в сети с заземленной нейтралью, в которой ТТ может надеваться также на проводник, заземляющий нейтральную точку силового трансформатора, в результате чего будет защищена вся питающаяся от него сеть.

    При защите однофазного электроприемника сквозь кольцеобразный магнитопровод пропускают фазный и нулевой рабочий проводники, с помощью которых он присоединяется к питающей сети. В нормальном режиме работы токи в этих проводниках равны и противоположно направлены, поэтому их суммарный магнитный поток в магнитопроводе равен нулю. В случае появления утечки на землю равенство токов нарушается и появляется дифференциальный ток. Последующая работа УЗО до отключения электроприемника от сети аналогична описанному выше устройству применительно к трехфазным объектам защиты.

    Устройства защитного отключения могут служить дополнительной защитой к заземлению и занулению, а также самостоятельной защитой (взамен их) и не зависят от сопротивления заземления и сопротивления нулевого проводника при занулении. Недостатком УЗО этого типа является нечувствительность к симметричному снижению сопротивления изоляции фаз в защищаемом электрооборудовании, что возникает весьма редко.

    Известна следующая классификация устройств защитного отключения, срабатывающих от дифференциального тока: АС – реагирующие на переменный синусоидальный ток; А – реагирующие на переменный, а также пульсирующий постоянный ток; В – реагирующие на переменный, постоянный и выпрямленный токи; S – селективные (с выдержкой времени отключения); О – то же, что и типа S, но с меньшей выдержкой времени отключения.

    Наличие УЗО типа А и В вызвано тем, что дифференциальные токи утечки могут становиться пульсирующими или принимать вид сглаженного постоянного тока в связи с применением электронных устройств, например, выпрямителей или частотных преобразователей. Устройства защитного отключения типа S и G предназначены для обеспечения селективности отключения объектов защиты. Так, при многоступенчатой схеме защиты УЗО, расположенное ближе к источнику питания, должно иметь время срабатывания не менее чем в три раза больше, чем время срабатывания УЗО, размещенного ближе к потребителю.

    Устройства защитного отключения выпускаются с номинальными отключающими токами утечки 10, 30, 100, 300, 500, 1000 мА. Причем УЗО с уставками 100 мА и более применяются обычно для обеспечения селективности защиты, а с уставкой 300 мА также для защиты от возникновения пожара при замыкании на землю.

    Устройства защитного отключения бывают электромеханическими и электронными. Первые не зависят от напряжения питания, так как энергии входного сигнала (дифференциального тока) достаточно для их работы. Вторые зависят, так как питаются от контролируемой сети или от внешнего источника (маломощный сигнал от дифференциального трансформатора поступает на электронный усилитель, который подает на механизм расцепителя главных контактов УЗО мощный импульс – десятки и даже сотни ватт, достаточный для срабатывания простого расцепителя). С этой точки зрения электронные УЗО менее надежны, нежели электромеханические. Кроме того, при обрыве нулевого провода до места установки электронного УЗО оно, не имея питания, не сработает, и фазный провод в защищаемом объекте будет представлять опасность поражения током. Для устранения этого недостатка электронные УЗО оснащают электромагнитным реле, работающим в режиме удержания, которое защищает отключаемый объект при исчезновении питания аппарата защиты. Ряд отечественных предприятий выпускают электронные устройства защитного отключения, в то время как в Германии, Франции, Австрии и некоторых других европейских странах допускается применять только УЗО, не зависящие от напряжения питания. Электромеханические УЗО производят ведущие западные фирмы – Siemens, ABB, GF POWER, Legrand, Merlin Gerin и др. Известны отечественные электромеханические аппараты – АСТРО-УЗО, ДЭК, ИЭК.

    Известны также комбинированные УЗО, оснащенные дополнительно встроенной защитой от токов коротких замыканий и перегрузок – так называемые дифференциальные автоматические выключатели.

    При выборе УЗО необходимо руководствоваться условием, что суммарный ток утечки стационарных и переносных электроприемников не должен превышать 1/3 номинального тока отключения УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на каждый ампер тока нагрузки, а ток утечки сети – из расчета 10 мкА на 1 м длины фазного проводника. Исходя из последнего условия, в старых домах и производственных корпусах с изношенной проводкой устанавливают УЗО с номинальным током отключения 30, а не 10 мА. В новых домах, во вновь сооруженных производственных помещениях, а также в сантехнических помещениях с высокой влажностью для защиты человека и животных от поражения током применяют УЗО с номинальным током отключения 10 мА (ток утечки сети не будет вызывать ложных срабатываний).

    Устройство защитного отключения подключается последовательно с автоматическим выключателем, при этом номинальный ток выключателя рекомендуется выбирать на ступень ниже номинального тока УЗО. При подключении рекомендуется применять специальные кабельные наконечники для предотвращения перегрева в месте контакта.

    Для нормального функционирования УЗО необходимо ежемесячно проверять его работоспособность путем нажатия на кнопку «Тест». Отключение УЗО свидетельствует о том, что устройство исправно. В животноводческих комплексах и производственных помещениях проверка работоспособности осуществляется не реже одного раза в квартал.

    УЗО не применяется, если защищаемая сеть питает автоматические системы пожаротушения, вентиляции, аварийного освещения, а также потребителей первой группы надежности электроснабжения .

    Электроприемники первой группы (категории) – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. Данные электроприемники обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания (вторым может быть местная дизель-электростанция), а перерыв в электроснабжении может быть допущен только на время автоматического восстановления питания. В агропромышленном производстве электроприемниками первой категории являются птицеводческие фабрики.

    УЗО допускается применять для защиты электроприемников второй и третьей категорий надежности электроснабжения. Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники второй категории обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания. При нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады. В сельскохозяйственном производстве электроприемниками второй категории являются животноводческие комплексы и теплицы.

    Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта, не превышают 1 суток. Питание электроприемники получают от единственного источника. Все жилые дома, гаражи, ремонтные мастерские и т.д. относятся к электроприемникам третьей категории надежности электроснабжения.

    При выборе дифференциальных автоматических выключателей (автоматов) необходимо помнить, что их основными назначениями являются: защита от токов перегрузки; защита от токов короткого замыкания; защита от токов утечки; защита от перенапряжения; защита от возгорания.

    Дифференциальные автоматические выключатели могут применяться в широком диапазоне температур окружающего воздуха, позволяют подсоединять как медные, так и алюминиевые проводники, не требуют обслуживания при эксплуатации. Дифференциальные выключатели соответствуют современным требованиям пожарной безопасности, их корпусные детали выполнены из материалов, выдерживающих испытание на огнестойкость при температуре до 960 °С. Дифференциальные автоматы выпускаются в двух и четырехполюсном исполнении. Монтаж устройства производится на 35 мм DIN-рейку.

    Так же, как и у УЗО, работоспособность проверяется нажатием кнопки «Тест» – при ее нажатии устройство мгновенно отключается. Чтобы включить после этой проверки устройство, необходимо нажать кнопку «Возврат» и взвести рукоятку выключателя.

    Защитным отключением называется устройство, быстро (не более 0,2 с) автоматически отключающее участок электрической сети при возникновении в нем опасности поражения человека током.

    Такая опасность может возникнуть, в частности, при замыкании фазы на корпус электрооборудования; при снижении сопротивления изоляции фаз относительно земли ниже определенного предела; при появлении в сети более высокого напряжения; при прикосновении человека к токоведущей части, находящейся под напряжением. В этих случаях в сети происходит изменение некоторых электрических параметров; например, могут измениться напряжение корпуса относительно земли, ток замыкания на землю, напряжение фаз относительно земли, напряжение нулевой последовательности и др. Любой из этих параметров, а точнее говоря — изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, т. е. автоматическое отключение опасного участка сети.

    Основными частями устройства защитного отключения являются прибор защитного отключения и автоматический выключатель.

    Прибор защитного отключения — совокупность отдельных элементов, которые реагируют на изменение какого-либо параметра электрической сети и дают сигнал на отключение автоматического выключателя. Этими элементами являются: датчик — устройство, воспринимающее изменение параметра и преобразующее его в соответствующий сигнал. Как правило, датчиками служат реле соответствующих типов; усилитель, предназначенный для усиления сигнала датчика, если он оказывается недостаточно мощным; цепи контроля, служащие для периодической проверки исправности схемы защитно-отключающего устройства; вспомогательные элементы — сигнальные лампы, измерительные приборы (например, омметр), характеризующие состояние электроустановки и т. п.

    Автоматический выключатель — устройство, служащее для включения и отключения цепей, находящихся под нагрузкой, и при коротких замыканиях. Он должен отключать цепь автоматически при поступлении сигнала от прибора защитного отключения.

    Типы устройств. Каждое защитно-отключающее устройство в зависимости от параметра, на который оно реагирует, может быть отнесено к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др. Ниже в качестве примера рассмотрено два типа таких устройств.

    Защити отключающие устройства, реагирующие на напряжение корпуса относительно земли, имеют назначение устранить опасность поражения током при возникновении на заземленном или запуленном корпусе повышенного напряжения. Эти устройства являются дополнительной мерой защиты к заземлению или занулению.

    Принцип действия — быстрое отключение от сети установки, если напряжение ее корпуса относительно земли окажется выше некоторого предельно допустимого значения Uк.доп, вследствие чего прикосновение к корпусу становится опасным.

    Принципиальная схема такого устройства приведена на рис. 76. Здесь в качестве датчика служит реле максимального напряжения, включенное между защищаемым корпусом и вспомогательным заземлителем RB непосредственно или через трансформатор напряжения. Электроды вспомогательного заземлителя размещаются в зоне нулевого потенциала, т. е. не ближе 15—20 м от заземлителя корпуса R3 или заземлителей нулевого провода.

    При пробое фазы на заземленный или зануленный корпус вначале проявится защитное свойство заземления (или зануления), благодаря которому напряжение корпуса будет ограничено некоторым пределом UK. Затем, если UK окажется выше заранее установленного предельно допустимого напряжения Uк.доп, срабатывает защитно-отключающее устройство, т. е. реле максимального напряжения, замкнув контакты, подаст питание на отключающую катушку и вызовет тем самым отключение установки от сети.

    Рис. 76. Принципиальная схема защитно-отключающего устройства, реагирующего на напряжение корпуса относительно земли:
    1 — корпус; 2 — автоматический выключатель; НО — катушка отключающая; H — реле напряжения максимальное; R3 — сопротивление защитного заземления; RB — сопротивление вспомогательного заземления

    Применение этого типа защитно-отключающих устройств ограничивается установками с индивидуальными заземлениями.

    Защитно-отключающие устройства, реагирующие на оперативный постоянный ток, предназначены для непрерывного автоматического контроля изоляции сети, а также для защиты человека, прикоснувшегося к токоведущей части, от поражения током.

    В этих устройствах сопротивление изоляции проводов относительно земли оценивается величиной постоянного тока, проходящего через эти сопротивления и получаемого от постороннего источника.

    При снижении сопротивления изоляции проводов ниже некоторого заранее установленного предела в результате повреждения или прикосновения человека к проводу постоянный ток возрастет и вызовет отключение соответствующего участка.

    Принципиальная схема этого устройства показана на рис. 77. Датчиком служит реле тока Т с малым током срабатывания (несколько миллиампер). Трехфазный дроссель — трансформатор ДТ предназначен для получения нулевой точки сети. Однофазный дроссель Д ограничивает утечку переменного тока в землю, которому он оказывает большое индуктивное сопротивление.


    Рис. 77. Принципиальная схема защитно-отключающего устройства, реагирующего на оперативный постоянный ток: *
    1 — автоматический выключатель;
    2 — источник постоянного тока; КО — катушка отключения выключателя; ДТ — дроссель трехфазный; Д — дроссель однофазный; Т — реле тока; R1, R2, R3 — сопротивления изоляции фаз относительно земли; Ram - сопротивление замыкания фазы на землю

    Постоянный ток Iр, получаемый от постороннего источника, протекает по замкнутой цепи: источник — земля — сопротивление изоляции всех проводов относительно земли — провода — трехфазный дроссель ДТ — однофазный дроссель Д — обмотка реле тока Т — источник тока.

    Величина этого тока (А) зависит от напряжения источника постоянного тока Uист и общего сопротивления цепи:

    где Rд — суммарное сопротивление реле и дросселей, Ом;

    Ra — суммарное сопротивление изоляции проводов R1, R2, R3 и замыкания фазы на землю R3M.

    При нормальном режиме работы сети сопротивление Rd велико, и поэтому ток Iр незначителен. В случае же снижения сопротивления изоляции одной (или двух, трех фаз) в результате замыкания фазы на землю или на корпус, либо в результате прикосновения к фазе человека сопротивление Rэ уменьшится, а ток Iр возрастет и, если он превысит ток срабатывания реле, произойдет отключение сети от источника питания.

    Область применения этих устройств — сети небольшой протяженности напряжением до 1000 В с изолированной нейтралью.

    Защитное отключение предназначено для быстрого и автоматического отключения поврежденной электрической установки в случаях замыкания фазы на корпус, снижения сопротивления изоляции проводников или при замыкании человека на токопроводящие элементы.

    Область применения устройства защитного отключения (УЗО) практически не ограничена: они могут применятся в сетях любого напряжения и с любым режимом нейтрали. Наибольшее распространение УЗО получили в сетях напряжением до 1000 В на установках с высокой степенью опасности, где применение защитного заземления или зануления затруднено по техническим или другим причинам, например, на испытательных или лабораторных стендах.

    К преимуществам УЗО относятся: простота схемы, высокая надежность, высокое быстродействие (время срабатывания t = 0,02¸0,05 с), высокая чувствительность и селективность.

    По принципу действия УЗО различаются следующим образом:

    Прямого действия:

    1. УЗО, реагирующее на напряжение корпуса U к;

    2. УЗО, реагирующее на ток корпуса I к.

    Непрямого действия:

    3. УЗО, реагирующее на несимметрию фазных напряжений – напряжение нулевой последовательности U о;

    4. УЗО, реагирующее на несимметрию фазных токов – тока нулевой последовательности I о;

    5. УЗО, реагирующее на оперативный ток I оп.

    Рассмотрим перечисленные типы устройств защитного отключения.

    1. УЗО, реагирующее на напряжение корпуса.

    Работа схемы УЗО, представленной на рис. 7.29, осуществляется следующим образом.

    Запуск в работу ЭУ производится нажатием на кнопку «ПУСК» с нормально открытыми контактами. При этом отключающая катушка ОК, получив питание от фазных проводников 2 и 3 , сжимая пружину Р и втягивая шток, замыкает все четыре контакта магнитного пускателя МП. Кнопка «ПУСК» отпускается, а дальнейшее питание ОК при работающей ЭУ осуществляется по линии самоподпитки ЛС через контакт МК. При замыкании фазного проводника, например проводника 2 , на корпус ЭУ через реле напряжения РН, установленное на линии дополнительного заземления (r g ), потечет ток. При этом нормально закрытые контакты реле напряжения РН разомкнутся, катушки ОК обесточатся и при помощи механической пружины Р произойдет размыкание контактов магнитного пускателя МП и отключение поврежденной установки от сети. Устраняется опасность поражения обслуживающего персонала электротоком. Для проверки работоспособности схемы УЗО производится операция самоконтроля на холостом ходу работы электроустановки. При нажатии кнопки КС, соединенной с фазным проводником 1 и линией защитного заземления через сопротивление R с , корпус ЭУ окажется под напряжением. При исправном состоянии и отсутствии дефектов в схеме УЗО произойдет отключение всей установки, как описано выше. При помощи линии самоподпитки ЛС с дополнительным механическим контактом МК схема УЗО, представленная на рис. 7.29, позволяет осуществлять нулевую защиту – защиту от самозапуска электроустановки


    при внезапном исчезновении и внезапной подаче напряжения.

    Рис. 7.28. Принципиальная схема устройства защитного отключения,
    реагирующего на потенциал корпуса:

    МП - магнитный пускатель; ОК - отключающая катушка с пружиной Р; РН - реле напряжения с нормально закрытыми контактами РН; r 3 - сопротивление основного защитного заземления; r g - сопротивление дополнительного заземления; ЛС - линия самоподпитки; МК - дополнительный механический контакт; П - кнопка «ПУСК»; С - кнопка «СТОП»; КС - кнопка «САМОКОНТРОЛЬ»; R c - сопротивление самоконтроля; a 1 , a 2 - коэффициенты прикосновения основного и дополнительного заземлений

    Выбор напряжения срабатывания УЗО, реагирующего на напряжение корпуса, производится по формуле:

    (7.25)

    где U пр доп – допустимое напряжение прикосновения, принимаемое равным 36 В при продолжительности воздействия тока на человека 3¸10 с. (табл. 7.2); R p , X L – активное и индуктивное сопротивления РН; a 1 , a 2 – коэффициенты прикосновения соответствующих заземлителей; r g – сопротивление дополнительного заземления.

    Расчет по формуле (7.25) сводится к определению величины r g при этом напряжение срабатывания схемы УЗО должно быть меньше напряжения прикосновения, т.е. U ср < U пр.

    2. УЗО, реагирующее на ток корпуса.

    Принцип действия схемы устройства защитного отключения, реагирующего на ток корпуса, аналогичен действию схемы УЗО, срабатывающей по напряжению корпуса, описанному выше. Данная схема не требует установки дополнительного заземления. Вместо реле напряжения РН устанавливается реле тока РТ на линии основного защитного заземления. Другие устройства и элементы схемы остаются без изменения, как на рис. 7.20. Выбор тока срабатывания I ср УЗО, реагирующего на ток корпуса ЭУ, производится по формуле:

    I ср = (7.26)

    где Z рт – полное сопротивление реле тока, r 3 – сопротивление защитного заземления; U – допустимое напряжение прикосновения (7.25).

    3. УЗО, реагирующее на несимметрию фазных напряжений.

    Рис. 7.30. Принципиальная схема устройства защитного отключения,
    реагирующего на несимметрию фазных напряжений:

    а - фильтр нулевой последовательности с общей точкой 1 ; РН - реле напряжения;
    Z 1 , Z 2 , Z 3 - полные сопротивления фазных проводников 1, 2 и 3; r зм1 , r зм2 - сопротивления
    замыкания фазных проводников 1 и 2 на землю; U о =φ 1 - φ 2  – напряжение нулевой последовательности (φ 1 - потенциал в точке 1 , φ 2 - потенциал в точке 2 )

    Датчиком в данной схеме УЗО служит фильтр нулевой последовательности, состоящий из конденсаторов, соединенных в звезду.

    Рассмотрим действие схемы УЗО, представленной на рис. 7.30.

    Если сопротивления фазных проводников относительно земли будут равны между собой, т.е. Z 1 = Z 2 = Z 3 = Z , то напряжение нулевой последовательности равно нулю, U о = φ 1 - φ 2  = 0. При этом данная схема УЗО не действует.

    Если произойдет симметричное уменьшение сопротивлений фазных проводников на величину n > 1, т.е. , то напряжение U о также будет равно нулю и УЗО не сработает.

    Если произойдет несимметричное ухудшение изоляции фазных проводников Z 1 ¹ Z 2 ¹ Z 3 , то в этом случае напряжение нулевой последовательности превысит напряжение срабатывания схемы и устройство защитного отключения отключит сеть, U о > U ср.

    Если произойдет замыкание на землю одного фазного проводника, то при малом значении сопротивления замыкание r зм1 напряжение нулевой последовательности будет близким к фазному напряжению, U ф > U ср, что приведет к срабатыванию защитного отключения.

    Если произойдет замыкание на землю двух проводников одновременно, то при малых значениях r зм1 и r зм2 напряжение нулевой последовательности будет близким к величине , что также приведет к отключению сети. Таким образом, к преимуществам схемы УЗО, реагирующей на напряжение U о, относятся:

    Надежность срабатывания схемы при несимметричном ухудшении изоляции фазных проводников;

    Надежность срабатывания при одно- или двухфазном замыкании проводников на землю.

    Недостатками данной схемы УЗО является абсолютная нечувствительность при симметричном ухудшении сопротивления изоляции фазных проводников и отсутствие самоконтроля в схеме, что снижает безопасность обслуживания электрических систем и установок.

    4. УЗО, реагирующее на несимметрию фазных токов

    а ) б )

    Рис. 7.31. Принципиальная схема устройства защитного отключения,
    реагирующего на несимметрию фазных токов:

    а - схема трансформатора тока нулевой последовательности ТТНП; б - I 1 , I 2 , I 3 - токи фазных проводников 1 , 2 , 3 ; РТ - реле тока; ОК - отключающая катушка; 4 - магнитопровод ТТНП;
    5 - вторичная обмотка ТТНП


    Датчиком в схеме УЗО этого типа служит трансформатор тока нулевой последовательности ТТНП, схематично представленный на рис. 7.31, б . Вторичная обмотка ТТНП дает сигнал на реле тока РТ и при токе нулевой последовательности I 0 , равном или большем тока установки, произойдет отключение электроустановки.

    Рассмотрим действие УЗО, представленной на рис. 7.31.

    При равенстве сопротивлений изоляции фазных проводников Z 1 = Z 2 = Z 3 = Z и симметричной нагрузки на фазах I 1 = I 2 = I 3 = I ток нулевой последовательности I 0 будет равен нулю, а следовательно, магнитный поток в магнитопроводе 4 (рис. 7.31, а ) и ЭДС во вторичной обмотке 5 ТТНП будут также равны нулю. Схема защиты не действует.

    При симметричном ухудшении изоляции фазных проводников и симметричном изменении фазных токов данная схема УЗО также не реагирует, так как ток I 0 = 0 и во вторичной обмотке ЭДС отсутствует.

    При несимметричном ухудшении изоляции фазных проводников или при их замыкании на землю или на корпус ЭУ возникнет ток нулевой последовательности I 0 > 0 и во вторичной обмотке ТТНП образуется ток, равный или больший тока срабатывания. В результате поврежденный участок или установка отключится от сети, что является основным преимуществом данной схемы УЗО. К недостаткам схемы относятся сложность конструкции, нечувствительность к симметричному ухудшению изоляции и отсутствие самоконтроля в схеме.

    5. УЗО, реагирующее на оперативный ток.


    Датчиком в этой схеме УЗО служит реле тока с малым токам срабатывания (несколько миллиампер).

    Рис. 7.32. Принципиальная схема устройства защитного отключения,
    реагирующего на оперативный ток:

    D 1 ,D 2 ,D 3 - трехфазный дроссель с общей точкой 1 ; D р - однофазный дроссель; I оп - оперативный ток от постороннего источника; РТ - реле тока; Z 1 , Z 2 , Z 3 - полные сопротивления фазных проводников 1 , 2 и 3 ; r зм - сопротивление замыкания фазного проводника;
    - путь оперативного тока

    В схему защиты подается постоянный оперативный ток I оп от постороннего источника, который проходит по замкнутой цепи: источник – земля – сопротивление изоляции проводников Z 1 , Z 2 и Z 3 – сами проводники – трехфазный и однофазный дроссели – обмотка реле тока РТ.

    При нормальном режиме работы сопротивления изоляции проводников высокие, и поэтому оперативный ток незначителен и меньше тока срабатывания, I оп < I ср.

    В случае любого снижения сопротивления (симметричного или несимметричного) изоляции фазных проводников или в результате прикосновения человека к ним полное сопротивление цепи Z уменьшится, а оперативный ток I оп возрастет и, если он превысит ток срабатывания I ср, произойдет отключение сети от источника питания.

    Достоинством УЗО, реагирующего на оперативный ток, являются обеспечение высокой степени безопасности для людей на всех режимах работы сети благодаря ограничению тока и возможности самоконтроля исправности схемы.

    Недостатком этих устройств является сложность конструкции, поскольку требуется источник постоянного тока.

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

    Такая опасность может возникнуть при замыкании фазы на корпус, снижении сопротивления изоляции ниже определенного предела и в случае прикосновения человека непосредственно к токоведущим частям, находящимся под напряжением.

    Основными элементами устройств защитного отключения (УЗО) является прибор защитного отключения исполнительный орган - автоматический отключатель.

    Прибор защитного отключения (ПЗО) - это совокупность отдельных элементов, которые воспринимают входную величину, реагируют на ее изменения и дают сигнал на отключение выключателю. Этими элементами являются:

    1 - датчик – устройство, воспринимающее изменение параметра и преобразующее его в соответствующий сигнал;

    2 - усилитель (в случае слабого сигнала);

    3 - цепи контроля – для проверки исправности схемы;

    4 - вспомогательные элементы (сигнальные лампы и измерительные приборы).

    Автоматический выключатель – служит для включения и выключения цепей, находящихся под нагрузкой. Он должен отключать цепь при поступления сигнала от прибора защитного отключения.

    Основные требования к устройству защитного отключения (УЗО):

    1 - высокая чувствительность;

    2 - малое время отключения (0,05-0,2с)

    3 - селективность действия, т.е. при наличии опасности;

    4 - иметь самоконтроль исправность;

    5 - достаточная надежность

    Область применения - практически не ограничена. Наибольшее распространение УЗО получили в сетях напряжением до 1000В.

    Различают типы УЗО, которые реагируют на:

    1 - потенциал корпуса;

    2 - ток замыкания на землю;

    5 - ток нулевой последовательности;

    6 - оперативный ток.

    Есть устройства комбинированные, которые реагируют не на одну, а на несколько входных величин.

    Рассмотрим схему УЗО, реагирующее на потенциал корпуса относительно земли (рисунок).

    Электроустановка питается от 3-х фазной, 3-х проводной сети с изолированной нейтралью.

    1 – контакты магнитного пускания;

    2 – кнопка «пуск»;

    3 – кнопка «стоп»;

    4 – нормально замкнутые контакты (НЗК) реле напряжения 6;

    5 – катушка магнитного пускателя(U раб = U л);

    6 – реле напряжения;

    7 – кнопка проверки работоспособности схемы;

    8 – плавкие предохранители;

    9 – электроустановка;

    10 – защитное заземление;

    11 вспомогательное заземление;

    Рисунок 12.7. Схема защитного отключения, реагирующая на потенциал корпуса относительно земли



    Рассмотрим 3 режима работы:

    1. Нормальный режим работы.

    При нажатии на кнопку «пуск» (2) на катушку пускателя (5) подается линейное напряжение через замкнутые контакты кнопки «стоп» (3), и нормально замкнутые контакты (4), реле напряжения (6). При протекании тока через катушку пускателя(5), в ней возникает магнитное поле, которое притягивает сердечник, на котором расположены контакты (1). Они замыкаются и на электроустановку (9) подается напряжение, а дополнительный контакт блокирует кнопку «пуск» (2) и ее можно отпустить. При нажатии на кнопку «стоп» (3) разрывается цепь питания катушки пускателя (5), магнитное поле исчезает и сердечник, на котором расположены контакты (1) под действием собственного веса (или пружины) возвращается в исходное положение. Происходит отключение электроустановки от сети.

    2. Аварийный режим работы (замыкание фазы на корпус и обрыв цепи защитного заземления)

    При включенной установке и наличии аварийного режима на корпусе установки(9)возникает напряжение относительно вспомогательного заземления (11) которое подается на реле напряжения (6) через замкнутые контакты кнопки (7). При достижении напряжения на корпусе установки (9) равного напряжению «уставки» реле напряжения (6) , оно срабатывает и размыкает свои нормально замкнутые контакты (4). Напряжение «уставки» реле напряжения (6) выбирается из условий безопасности. Электроустановка отключается от сети. При повторном включении электроустановки – цикл повторится.

    3. Проверка работоспособности схемы.

    При включенной электроустановке, находящейся в нормальном режиме при нажатии на кнопку (7) (размыкаются нормально замкнутые контакты, соединяющие заземленный корпус электроустановки (9) и реле напряжение (6) и на реле напряжения (6) подается фазное напряжение). Должно произойти отключение электроустановки от сети.