Основные формулы нахождения расстояний с помощью проекции вектора на ось. Проекция силы на ось. Проекция векторной суммы сил на ось Определить проекцию на ось

Векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.

Проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.

На левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси X. Пользуясь определением, найдём проекцию перемещения на ось X:

sx = s · cos(α) = 50 км · cos( 150°) = –43 км

Поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси Y острый угол 60°. Пользуясь определением, найдём проекцию перемещения на ось Y:

sy = s · cos(β) = 50 км · cos( 60°) = +25 км

Как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.

На правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси X. Найдём проекции:

υx = υ · cos(α) = 5 м/c · cos( 30°) = +4,3 м/с
υy = υ · cos(β) = 5 м/с · cos( 120°) = –2,5 м/c

Гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. Обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.

Проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). Действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.

Проекция вектора, сонаправленного с осью, положительна и равна его модулю, например, sx = +s (см. левый чертёж). Действительно, для вектора, сонаправленного с осью, угол между ним и осью равен нулю, и его косинус «+1», то есть проекция равна длине вектора: sx = x – xo = +s .

Проекция вектора, противонаправленного оси, отрицательна и равна его модулю, взятому со знаком «минус», например, sy = –s (см. правый чертёж). Действительно, для вектора, противонаправленного оси, угол между ним и осью равен 180°, и его косинус «–1», то есть проекция равна длине вектора, взятой с отрицательным знаком: sy = y – yo = –s .

На правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. Предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.

Определение 1. На плоскости параллельной проекцией точки А на ось l называется точка - точка пересечения оси l с прямой, проведенной через точку А параллельно вектору, задающему направление проектирования.

Определение 2. Параллельной проекцией вектора на ось l (на вектор) называется координата вектора, относительно базиса оси l, где точки и - параллельные проекции соответственно точек А и В на ось l (рис. 1).

Согласно определению имеем

Определение 3. если и базис оси l декартов, то есть, то проекция вектора на ось l называется ортогональной (рис. 2).

В пространстве определение 2 проекции вектора на ось остается в силе, только направление проектирования задается двумя неколлинеарными векторами (рис. 3).

Из определения проекции вектора на ось вытекает, что каждая координата вектора есть проекция этого вектора на ось, определяемую соответствующим базисным вектором. При этом направление проектирования задается двумя другими базисными векторами, если проектирование ведется (рассматривается) в пространстве, или другим базисным вектором, если проектирование рассматривается на плоскости (рис. 4).

Теорема 1. Ортогональная проекция вектора на ось l равна произведению модуля вектора на косинус угла между положительным направлением оси l и, т. е.


С другой стороны

Из находим

Подставив АС в равенство (2), получим

Так как числа x и одного знака в обоих рассматриваемых случаях ((рис. 5, а) ; (рис. 5, б) , то из равенства (4) следует

Замечание. В дальнейшем мы будем рассматривать только ортогональную проекцию вектора на ось и поэтому слово «орт» (ортогональная) в обозначении будем опускать.

Приведем ряд формул, которые используются в дальнейшем при решении задач.

а)Проекция вектора на ось.

Если, то ортогональная проекция на вектор согласно формуле (5) имеет вид

в) Расстояние от точки до плоскости.

Пусть б - данная плоскость с нормальным вектором, M - данная точка,

d - расстояние от точки М до плоскости б (рис. 6).

Если N- произвольная точка плоскости б, а и - проекции точек Mи Nна ось, то

  • г) Расстояние между скрещивающимися прямыми.

Пусть а и b- данные скрещивающиеся прямые, - перпендикулярный им вектор, А и В - произвольные точки прямых а и b соответственно (рис. 7), и - проекции точек Aи Bна, тогда

д) Расстояние от точки до прямой.

Пусть l - данная прямая с направляющим вектором, M - данная точка,

N - ее проекция на прямую l , тогда - искомое расстояние (рис. 8).

Если А - произвольная точка прямой l , то в прямоугольном треугольнике MNAгипотенуза MAи катет могут быть найдены. Значит,


е) Угол между прямой и плоскостью.

Пусть - направляющий вектор данной прямой l , - нормальный вектор данной плоскости б, - проекция прямой l на плоскость б (рис. 9).

Как известно, угол ц между прямой l и ее проекцией на плоскость б называется углом между прямой и плоскостью. Имеем

Приведем примеры решения метрических задач векторно-координатным методом.


В этой статье мы разберемся с проекцией вектора на ось и научимся находить числовую проекцию вектора. Сначала дадим определение проекции вектора на ось, введем обозначения, а также приведем графическую иллюстрацию. После этого озвучим определение числовой проекции вектора на ось, рассмотрим способы ее нахождения и покажем решения нескольких примеров, в которых требуется найти числовую проекцию вектора на ось.

Навигация по странице.

Проекция вектора на ось – определение, обозначение, иллюстрации, пример.

Начнем с общих сведений.

Под осью понимается прямая, для которой указано направление. Таким образом, проекция вектора на ось и проекция вектора на направленную прямую – это одно и то же.

Проекцию вектора на ось можно рассматривать в двух смыслах: геометрическом и алгебраическом. В геометрическом смысле проекция вектора на ось есть вектор, а в алгебраическом – число. Часто это разграничение явно не указывается, а понимается из контекста. Мы же не станем игнорировать это разграничение: будем использовать термин «», когда речь идет о проекции вектора в геометрическом смысле, и термин «», когда речь идет о проекции вектора в алгебраическом смысле (числовой проекции вектора на ось посвящен следующий пункт этой статьи).

Теперь переходим к определению проекции вектора на ось. Для этого не помешает повторить .

Пусть на плоскости или в трехмерном пространстве нам задана ось L и ненулевой вектор . Обозначим проекции точек А и В на прямую L соответственно как А 1 и В 1 и построим вектор . Забегая вперед скажем, что вектор - это проекция вектора на ось L .

Определение.

Проекция вектора на ось – это вектор, началом и концом которого являются соответственно проекции начала и конца заданного вектора.

Проекцию вектора на ось L обозначают как .

Чтобы построить проекцию вектора на ось L , нужно из точек А и В опустить перпендикуляры на направленную прямую L – основания этих перпендикуляров дадут начало и конец искомой проекции .

Приведем пример проекции вектора на ось.

Пусть на плоскости введена прямоугольная система координат Oxy и задана некоторая точка . Изобразим радиус-вектор точки М 1 и построим его проекции на координатные оси Ox и Oy . Очевидно, ими являются векторы с координатами и соответственно.

Часто можно слышать о проекции одного вектора на другой ненулевой вектор или о проекции вектора на направление вектора . В этом случае подразумевается проекция вектора на некоторую ось, направление которой совпадает с направлением вектора (вообще существует бесконечно много осей, направления которых совпадают с направлением вектора ). Проекция вектора на прямую, направление которой определяет вектор , обозначается как .

Отметим, что если угол между векторами и острый, то векторы и сонаправлены. Если угол между векторами и тупой, то векторы и противоположно направлены. Если же вектор нулевой или перпендикулярен вектору , то проекция вектора на прямую, направление которой задает вектор , есть нулевой вектор.

Числовая проекция вектора на ось – определение, обозначение, примеры нахождения.

Числовой характеристикой проекции вектора на ось является числовая проекция этого вектора на данную ось.

Определение.

Числовая проекция вектора на ось – это число, которое равно произведению длины данного вектора на косинус угла между этим вектором и вектором, определяющим направление оси.

Числовую проекцию вектора на ось L обозначают как (без стрелочки сверху), а числовую проекцию вектора на ось, определяемую вектором , - как .

В этих обозначениях определение числовой проекции вектора на прямую, направленную как вектор , примет вид , где - длина вектора , - угол между векторами и .

Итак, мы имеем первую формулу для вычисления числовой проекции вектора : . Эта формула применяется, когда известны длина вектора и угол между векторами и . Несомненно, эту формулу можно применять и тогда, когда известны координаты векторов и относительно заданной прямоугольной системы координат, однако в этом случае удобнее использовать другую формулу, которую мы получим ниже.

Пример.

Вычислите числовую проекцию вектора на прямую, направленную как вектор , если длина вектора равна 8 , а угол между векторами и равен .

Решение.

Из условия задачи имеем . Осталось лишь применить формулу, позволяющую определить требуемую числовую проекцию вектора:

Ответ:

Нам известно, что , где – скалярное произведение векторов и . Тогда формула , позволяющая найти числовую проекцию вектора на прямую, направленную как вектор , примет вид . То есть, мы можем сформулировать еще одно определение числовой проекции вектора на ось, которое эквивалентно определению, данному в начале этого пункта.

Определение.

Числовая проекция вектора на ось , направление которой совпадает с направлением вектора , - это отношение скалярного произведения векторов и к длине вектора .

Полученную формулу вида удобно применять для нахождения числовой проекции вектора на прямую, направление которой совпадает с направлением вектора , когда известны координаты векторов и . Покажем это при решении примеров.

Пример.

Известно, что вектор задает направление оси L . Найдите числовую проекцию вектора на ось L .

Решение.

Формула в координатной форме имеет вид , где и . Используем ее для нахождения требуемой числовой проекции вектора на ось L :

Ответ:

Пример.

Относительно прямоугольной системы координат Oxyz в трехмерном пространстве заданы два вектора и . Найдите числовую проекцию вектора на ось L , направление которой совпадает с направлением вектора .

Решение.

По координатам векторов и можно вычислить скалярное произведение этих векторов: . Длина вектора по его координатам вычисляется по следующей формуле . Тогда формула для определения числовой проекции вектора на ось L в координатах имеет вид .

Применим ее:

Ответ:

Теперь давайте получим связь между числовой проекцией вектора на ось L , направление которой определяет вектор , и длиной проекции вектора на ось L . Для этого изобразим ось L , отложим векторы и из точки, лежащей на L , опустим перпендикуляр из конца вектора на прямую L и построим проекцию вектора на ось L . В зависимости от меры угла между векторами и возможны следующие пять вариантов:

В первом случае очевидно, что , следовательно, , тогда .

Во втором случае в отмеченном прямоугольном треугольнике из определения косинуса угла имеем , следовательно, .

В третьем случае очевидно, что , а , следовательно, и .

В четвертом случае из определения косинуса угла следует, что , откуда .

В последнем случае , следовательно, , тогда
.

Следующее определение числовой проекции вектора на ось объединяет в себе полученные результаты.

Определение.

Числовая проекция вектора на ось L , направленную как вектор , это

Пример.

Длина проекции вектора на ось L , направление которой задает вектор , равна . Чему равна числовая проекция вектора на ось L , если угол между векторами и равен радиан.

Проекцией вектора на ось называется вектор, который получается в результате перемножения скалярной проекции вектора на эту ось и единичного вектора этой оси. Например, если а x – скалярная проекция вектора а на ось X, то а x ·i - его векторная проекция на эту ось.

Обозначим векторную проекцию также, как и сам вектор, но с индексом той оси на которую вектор проектируется. Так, векторную проекцию вектора а на ось Х обозначим а x (жирная буква, обозначающая вектор и нижний индекс названия оси) или (нежирная буква, обозначающая вектор, но со стрелкой наверху (!) и нижний индекс названия оси).

Скалярной проекцией вектора на ось называется число , абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Обычно вместо выражения скалярная проекция говорят просто – проекция . Проекция обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектора, то его проекция обозначается а x . При проектировании этого же вектора на другую ось, если ось Y , его проекция будет обозначаться а y .

Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть
а x = х к − x н.
Проекция вектора на ось - это число. Причем, проекция может быть положительной, если величина х к больше величины х н,

отрицательной, если величина х к меньше величины х н

и равной нулю, если х к равно х н.

Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью.

Из рисунка видно, что а x = а Cos α

то есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора . Если угол острый, то
Cos α > 0 и а x > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна.

Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус – функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против.

Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.



где - координаты вектора.


Скалярное произведение векторов

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ [- в конечномерном векторном пространстве определяется как сумма произведений одинаковых компонент перемножаемых векторов .

Напр., С. п. в. a = (a 1 , ..., a n ) и b = (b 1 , ..., b n ):

(a , b ) = a 1 b 1 + a 2 b 2 + ... + a n b n

Вначале вспомним, что такое координатная ось , проекция точки на ось и координаты точки на оси .

Координатная ось - это прямая, которой придается какое-то направление. Можете считать, что это вектор с бесконечно большим модулем.

Координатная ось обозначается какой-либо буквой: X , Y , Z , s , t … Обычно на оси выбирается (произвольно) точка, которая называется началом отсчета и, как правило, обозначается буквой О. От этой точки отсчитываются расстояния до других интересующих нас точек.

Проекция точки на ось - это основание перпендикуляра, опущенного из этой точки на данную ось (рис. 8). То есть, проекцией точки на ось является точка.

Координата точки на ось - это число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между началом оси и проекцией точки на эту ось. Это число берется со знаком плюс, если проекция точки располагается в направлении оси от ее начала и со знаком минус, если в противоположном направлении.

Скалярная проекция вектора на ось - это число , абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Важно! Обычно вместо выражения скалярная проекция вектора на ось говорят просто - проекция вектора на ось , то есть слово скалярная опускают. Проекция вектора обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектор а, то его проекция обозначается а x . При проектировании этого же вектора на другую ось, скажем, ось Y , его проекция будет обозначаться а y (рис. 9).

Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть

а x = х к − x н.

Надо помнить: скалярная проекция вектора на ось (или, просто, проекция вектора на ось) - это число (не вектор)! Причем, проекция может быть положительной, если величина х к больше величины х н, отрицательной, если величина х к меньше величины х н и равной нулю, если х к равно х н (рис. 10).

Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью.

Из рисунка 11 видно, что а x = а Cos α

То есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора . Если угол острый, то Cos α > 0 и а x > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна.

Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус - функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против.

При решении задач часто будут использоваться следующие свойства проекций: если

а = b + c +…+ d , то а x = b x + c x +…+ d x (аналогично на другие оси),

a = mb , то а x = mb x (аналогично на другие оси).

Формула а x = а Cos α будет очень часто встречаться при решении задач, поэтому ее обязательно надо знать. Правило определения проекции надо знать наизусть!

Запомните!

Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

Еще раз - НАИЗУСТЬ!