Методика проведения пусконаладочных работ по вентиляции. Зачем нужны и как выполняются пусконаладочные работы систем вентиляции. Как узнать цену и получить коммерческое предложение

Пусконаладка - является одним из важным этапом, ведь от пуско-наладки зависит эффективная работа систем вентиляции и кондиционирования воздуха.

Для чего нужна пусконаладка (наладка на проектные расходы воздуха и комплексное опробование) инженерных систем:

  • Для установления соответствия систем их проектным расходам;
  • После окончания пуско-наладочных работ и оформления технических паспортов наладки систем на проектные расходы, а так же актов о выполнении комплексного опробования система вентиляции считается принятой в эксплуатацию;
  • на каждую вентиляционную установку.

Как происходит пуско-наладка систем вентиляции:

Проведению пусконаладочных работ должен предшествовать комплекс работ:

  • Следует закончить общестроительные и отделочные работы по вентиляционным камерам и шахтам, а также закончить монтаж и индивидуальные испытания средств обеспечения (электроснабжения, теплохолодоснабжения и др.). При отсутствии электроснабжения вентиляционных установок и кондиционирования воздуха по постоянной схеме подключение электроэнергии по временной схеме и проверку исправности пусковых устройств осуществляет генеральный подрядчик;
  • провести индивидуальные испытания смонтированного оборудования;
  • проверить соответствие фактического исполнения систем вентиляции и кондиционирования воздуха проекту (рабочему проекту);
  • проверить на герметичность участки воздуховода, скрываемые строительными конструкциями, методом аэродинамических испытаний по ГОСТ 12.3.018-79, по результатам проверки на герметичность составить акт освидетельствования скрытых работ по форме обязательного приложения 6 СНиП 3.01.01-85;
  • испытать (обкатать) на холостом ходу вентиляционное оборудование, имеющее привод, клапаны и заслонки, с соблюдением требований, предусмотренных техническими условиями заводов-изготовителей.

По результатам испытаний вентиляционного оборудования составляется акт индивидуальных испытаний.
На все выявленные при проверке отступления от проекта, не согласованные с проектной организацией, а так же дефекты монтажа составляются ведомости дефектов, передаваемые заказчику. Дефекты должны быть устранены к началу пусковых испытаний.
Выполнение пуско-наладочных работ по системам вентиляции до устранения недостатков, выявленных при их индивидуальных испытаниях, не допускается .

Регулировка (наладка) систем вентиляции и кондиционирования:

  • проверить соответствие проектным данным фактической производительности вентиляторов;
  • проверить соответствие проекту объёмов воздуха, проходящего через воздухораздающие, воздухоприемные устройства;
  • выявить неплотности в воздуховодах и других элементах установок;
  • проверить равномерность прогрева (охлаждения) теплообменных аппаратов и проверку отсутствия выноса влаги через каплеуловители;
  • проверить действия вытяжных устройств естественной вентиляции.

Если проверкой установлено, что производительность вентилятора, объем воздуха, проходящего через воздухораздаточные и воздухоприемные устройства, а так же местные отсосы, не соответствует проектным значениям, то вентиляционные установки следует отрегулировать.
Если после регулировки фактические расходы воздуха вентиляционной установки не соответствуют проектным, то причинами могут быть ошибки, допущенные при проектировании или монтаже, а так же дефекты вентиляционного оборудования. Выявив причины несоответствия фактических расходов проектным, разрабатывают необходимые рекомендации для их ликвидации и передаются заказчику для согласования с проектной организацией.
На каждую систему вентиляции и кондиционирования воздуха в двух экземплярах по форме.

Комплексное опробование систем вентиляции и кондиционирования:

При комплексном опробовании систем вентиляции и кондиционирования воздуха в состав пусконаладочных работ входят:
  • опробование одновременно работающих систем;
  • проверка работоспособности систем вентиляции, кондиционирования воздуха и теплохолодоснабжения при проектных режимах работы с определением соответствия фактических параметров проектным;
  • выявление причин, по которым не обеспечиваются проектные режимы работы систем, и принятие мер по их устранению;
  • опробование устройств защиты, блокировки, сигнализации и управления оборудования;
  • замеры уровней звукового давления в расчетных точках.

Комплексное опробование систем осуществляется по программе и графику, разработанным заказчиком или по его поручению наладочной организацией и согласованным с генеральным подрядчиком и монтажной организацией.

Риторика:

Иногда возникает такая ситуация:

Проектировщики - подобрали оборудование верно, рассчитали все параметры, подобрали требуемые диаметры воздуховодов, просчитали все шумовые характеристики, вообщем выполнили работу на твердую пятерку, так что заказчик доволен.

Монтажники - выполнили все работы согласно техническому требованию проекта.

Но в итоге получается: сильный гул в воздуховодах, вентиляционные установки шумят, что рядом нельзя находится, в одном помещении - кратность воздухообмена слишком высока, в другом наоборот слишком мала, а в третьем вообще находиться невозможно!

И тут начинается самое интересное: заказчик начинает "наезжать" на монтажников - что мол, они не верно выполнили работу, разворовали все деньги и поставил не качественное оборудование! Но после долгих проверок и обсуждений, заказчик понимает что все воздуховоды проложены так как нужно по проекту и всё оборудование соответствует заявленному в техническом задании.

Что же делать заказчику?

Он начинает наезжать на проектировщиков, но и они тут ни причём. На самом деле бывают "неудачные" проектировщики, но как правило при расчетах проектировщики пользуются правилом: "Лучше пусть будет больше - чем не будет хватать!" Поэтому проектировщики всегда закладывают в проект большую мощность установок, увеличивают воздухообмен чем реально требуется, но и в таком методе на самом деле есть минусы. И самый основной - очень сложно сбалансировать систему вентиляции.

Заказчик как правило забывает про ещё один не мало важный момент:

А вот третий этап во всей этой истории - это пусконаладка , этап на котором нужно провести кропотливую работу нашим специалистам. Просто многие заказчики не желают дополнительно тратиться на пуско-наладку, думая что после установки оборудования - всё и так будет работать, но они ошибаются, и из-за этого потом сами и страдают, говоря всем что ему попалась "неродивая фирма" у которой руки из одного места растут.

При реализации многих проектов осуществляется капитальное строительство или реконструкция зданий и сооружений с установкой нового оборудования или проведения специализированных процессов. К таким работам можно отнести установку систем пожаротушения, электроснабжения, кондиционирования, вентиляции, пожарной сигнализации. Все они требуют проведения пусконаладочных работ, для этого в последнее время все чаще составляется программа ПНР.

Что такое ПНР и зачем они проводятся

Согласно СНиП пусконаладочные работы – это комплекс мероприятий, которые выполняются во время подготовки осуществления комплексного опробования и индивидуальных испытаний установленного оборудования. Сюда входит проверка, испытания и настройка оборудования для достижения параметров, предусмотренных проектом.

Выполнение всех этих манипуляций обычно проводится на договорных основах специализированными организациями, имеющими необходимые допуски и штат квалифицированных специалистов. Необходимые условия для их деятельности на площадке (производственная санитария, безопасность труда) организовываются заказчиком, он же и оплачивает ПНР за счет общей сметы на ввод объекта в эксплуатацию. Все операции должны проводиться инструктированным и аттестованным для каждого конкретного случая персоналом пуско-наладочной организации под наблюдение ответственного представителя со стороны заказчика.

Выделяются два главных этапа в пуско-наладочной деятельности:

  • Индивидуальные испытания – это действия, которые призваны обеспечить выполнение требований, которые предусмотрены техническими условиями, стандартами и рабочей документацией, для испытания агрегатов, машин и механизмов. Цель индивидуальных испытаний – подготовка к комплексному опробованию в присутствии рабочей комиссии.
  • Комплексные испытания представляют собой действия, проводящиеся после приемки механизмов рабочей комиссией, и непосредственно само комплексное опробование. При этом проводится проверка взаимосвязанной совместной работы всего установленного оборудования на холостом ходу, затем под нагрузкой, после чего производится выход на технологический режим, предусмотренный проектом.

Хотя это и не прописано законодательно, в последние годы все чаще заказчик требует, чтобы для проведения испытательных работ составлялась программа ПНР. Это дает уверенность в том, что ни один нюанс не будет упущен, и работа всех систем будет соответствовать утвержденным нормам и проектной документации.

Как составляется и что включает в себя программа ПНР

Программа проведения пусконаладочных работ представляет собой документ, в котором четко расписан весь перечень действий, который будет производиться ответственной организацией. В сети можно увидеть дискуссии по поводу того, стоит ли включать в Программу методику проведения пуско-наладки или же она должна оформляться как отдельный документ. Четких требований относительно этого нет, поэтому здесь все зависит от договоренностей сторон. Образец для каждой конкретной ситуации можно легко найти в интернете.

Программа составляется и утверждается представителем пусконаладочной компании и согласовывается заказчиком, в шапке документа ставятся подписи и печати сторон. Далее идут такие разделы (как пример, возьмем подготовку системы отопления гостиницы):

  • проверку правильности монтажа, готовности и исправности оборудования в визуальном режиме (регулирующих устройств, запорной арматуры, заполнение системы водой), по итогам составляется дефектная ведомость;
  • наладочные испытания в эксплуатационных условиях, балансовые опыты (установка оптимальных режимов, опробование управления арматурой в ручном и автоматическом режиме, проверка настроек автоматики, выявление недостатков и отработка предложений по их устранению), результат – акт индивидуальных испытаний;
  • комплексное опробование (72 часа непрерывной работы – для всего основного оборудования, 24 часа – для тепловых сетей), его началом считается время запуска всех систем на максимальную нагрузку.

Некоторые компании оформляют все мероприятия, связанные непосредственно с подготовкой и тестированием устройств, в отдельный документ – Методику ПНР, идущую как дополнение к Программе. В Программу же они включают более общие вещи организационного характера. То есть, происходит фактическое разделение всего комплекса работ на организационно-юридическую и техническую составляющие. Однако нередко Методика является неотъемлемой частью основного тела утвержденной Программы.

Составной частью Программы могут являться такие дополнительные документы:

  • паспорта систем вентиляции, отопления и горячего водоснабжения, а также отдельных узлов их присоединения;
  • порядок подготовки и последующего проведения ПНР с перечнем всех операций, временем их начала и окончания;
  • перечень стационарных и переносных средств измерения (манометры, термометры и т.д.);
  • список регулирующей и запорной арматуры, оборудования (насосы, клапаны, теплообменники, фильтры);
  • список контрольных точек и протокола измерений по каждой из них;
  • перечень параметров, которые требуют уточнения и корректировки (влажность и температура воздуха, давление в трубах, расходы теплоносителя);
  • методика замеров тепловых потерь конструкциями здания (составляется специальный акт и выдается справка).

После окончания всех пуско-наладочных работ, комплексного опробования и режимных испытаний составляется акт ПНР с соответствующими приложениями (перечнем механизмов и оборудования, на которых была проведена наладка и испытания).

Технический отчет привлеченная специализированная организация выдает, как правило, в течение одного месяца.

Пусконаладочные работы систем вентиляции и кондиционирования воздуха это ряд технических мероприятий, направленных на приведение текущих расходов воздуха вентиляционной системы в соответствие со значениями предусмотренными проектной документацией. Пусконаладка является ключевым этапом, от которого зависит эффективная работа систем вентиляции и кондиционирования воздуха и гарантирующая их бесперебойную работу. Цель пусконаладочных работ - приведение режима работы вентиляционных устройств и систем в соответствии требованиям проекта и нормативно-технической документации.

Порядок и методика проведения работ:

Проверка соответствия параметров установленного оборудования и элементов вентиляционных устройств, принятым в проекте, а также соответствия качества их изготовления и монтажа требованиям ТУ,СНиП и СП;

Проверка соответствия проектным данным объемов воздуха, проходящего через воздухораспределительные устройства общеобменных установок вентиляции и кондиционирования воздуха;

Проверка соответствия паспортным данным вентиляционного оборудования по производительности и напору;

Проверка равномерности прогрева калориферов. (При отсутствии теплоносителя в теплый период года проверка равномерности прогрева калориферов не производится).

* Выявленные при проверке отступления от проекта, не согласованные с проектной организацией, а также дефекты изготовления и монтажа элементов вентиляционных устройств должны быть устранены до начала инструментальных замеров характеристик этих элементов.

Проведение испытаний и по их результатам намечают мероприятия по обеспечению работы систем в проектном режиме. Рекомендации (чертежи и пояснительная записка) направляются генеральному подрядчику для выполнения намеченных мероприятий.

Если установленное оборудование соответствует паспортным данным, то в процессе наладки следует отрегулировать вентиляционную установку на расчетную производительность по воздуху и напору, а также отрегулировать сеть воздуховодов и воздухораспределительные устройства, максимальную производительность по расходу теплоносителя калориферов первого и второго подогревов и зональных подогревателей; требуемую по проекту производительность воздухоохладителя или оросительной камеры; характеристики регулирующих устройств по воздуху, воде и пару производительность источника холода.

По результатам пусковых испытаний и наладки на каждую установку составляют акт и паспорт. Акты испытаний и паспорта вентиляционных устройств являются приложениями к актам сдачи систем вентиляции в эксплуатацию.

С более подробной информацией можно ознакомиться в разделе «Программа производства пусконаладочных работ».

Если у Вас возникла потребность в проведении пусконаладочных работ, обращайтесь в нашу компанию. Вы будете приятно удивлены высоким уровнем организации работ и квалификации сотрудников нашего департамента.

Добрый день, наша проектная организация выполнила проектирование ПНР пусконаладку системы вентиляции ОВ в НИИ.

С отчётом можно ознакомиться под катом..

ОТЧЁТ О ПУСКОНАЛАДКЕ СИСТЕМЫ ВЕНТИЛЯЦИИ

1. Общие сведения

В настоящем техническом отчете содержатся результаты испытаний и наладки систем автоматики вентиляционных установок П1-В1, П2-В2, П3-В3, П4-В9, В4, В5,В6,В7,РВ1, смонтированных в корпусе №5

Работы проводились по программе, приведенной в настоящем отчете. В процессе выполнения работ были проанализированы объекты автоматизации, проектная документация, проведены проверки качества монтажных работ и технического состояния оборудования автоматики, разработан пакет прикладных программ для микропроцессорного контроллера, выполнены настройки контуров регулирования.

На основе полученных результатов сформулированы выводы и выработаны рекомендации по эксплуатации оборудования.


2. Программа проведения работ

1. Анализ проектно-технической документации, требований предприятий-изготовителей оборудования системы автоматики.

2. Ознакомление с особенностями работы оборудования (условиями пуска и останова, поведением оборудования при переменных режимах, действием защит, основными возмущениями, влияющими на работу оборудования).

3. Разработка методики расчета показателей качества работы контуров регулирования.

4. Разработка алгоритмов управления технологическим оборудованием вентсистем.

5. Разработка пакета прикладных программ.

6. Проверка правильности монтажа оборудования автоматики и его соответствие проекту, выявление недоделок и дефектов монтажа.

7. Проверка технического состояния оборудования автоматики.

8. Проведение автономных испытаний оборудования автоматики.

9. Тестирование, отладка и корректировка прикладных программ по результатам автономной наладки систем.

10. Комплексное опробование работы вентиляционных установок, согласование входных и выходных параметров и характеристик.

11. Анализ результатов испытаний и выработка рекомендаций по эксплуатации оборудования.

12. Оформление технического отчета.


3. ХАРАКТЕРИСТИКА ОБЪЕКТОВ АВТОМАТИЗАЦИИ

Объектом автоматизации является технологическое оборудование вентиляционных установок П1-В1, П2-В2, П3-В3, П4-В8, В4, В5, В6, В7, РВ1.

Вентиляционные установки П1-В1, П2-В2 предназначены для поддержания в производственных помещениях воздушной среды со следующими параметрами:

· температура ……………………………. +21±2° С;

· относительная влажность ……………. 50%±10%;;

· класс чистоты ….……………….……….Р8.

В помещениях чистота воздуха не нормируется.

Вентиляционные установки П1-В1, П2-В2 выполнены по схеме с частичным резервированием установкой П2-В2 установки П1-В1 при ее остановке или выходе из строя.

Установка П1-В1 выполнена по прямоточной схеме. В состав установки входят:

· приемный воздушный клапан;

· секция фильтров;

· секция первого подогрева;

· камера орошения;

· секция охлаждения;

· секция второго подогрева;

· воздушный клапан приточного воздуха;

· выбросной воздушный клапан.

Установка П2-В2 выполнена по прямоточной схеме. В состав установки входят:

· приемный воздушный клапан;

· секция фильтров;

· секция первого подогрева;

· камера орошения;

· секция охлаждения;

· секция второго подогрева;

· секция приточного вентилятора;

· секция фильтров приточного воздуха;

· резервирующий воздушный клапан;

· секция вытяжного вентилятора;

· выбросной воздушный клапан.

Теплоснабжение воздухонагревателей вентиляционных установок П1-В1, П2-В2 предусмотрено от действующего теплового пункта, теплоноситель для системы вентиляции – теплофикационная вода с параметрами 130/70°С в зимний (отопительный) период. В летний период контур первого подогрева не используется. Для теплоснабжения воздухонагревателя второго подогрева в летний период используется горячая вода с параметрами 90/70°С (источник тепла – электронагреватель).

Узлы регулирования воздухонагревателей первого и второго подогрева выполнены со смесительными насосами. Для изменения расхода теплоносителя через воздухонагреватель первого подогрева предусмотрен двухходовой регулирующий клапан. Для изменения расхода теплоносителя через воздухонагреватель второго подогрева предусмотрен трехходовой регулирующий клапан.

Холодоснабжение охладителей вентустановок П1-В1, П2-В2 предусмотрено от холодильной машины. В качестве холодоносителя используется 40% раствор этиленгликоля с параметрами 7/12°С. Для изменения расхода холодоносителя через воздухоохладители предусмотрены трехходовые регулирующие клапаны.

Установка П3-В3 выполнена по прямоточной схеме. В состав установки входят:

· приемный воздушный клапан;

· секция фильтров;

· секция приточного вентилятора;

· секция вытяжного вентилятора;

· выбросной воздушный клапан.

Установка П4-В8 выполнена по прямоточной схеме. В состав установки входят:

· приемный воздушный клапан;

· секция фильтров;

· секция приточного вентилятора;

· секция вытяжного вентилятора;

Теплоснабжение воздухонагревателей вентиляционных установок П3-В3, П4-В8 предусмотрено от действующего теплового пункта, теплоноситель для системы вентиляции – теплофикационная вода с параметрами 130/70°С в зимний (отопительный) период. В летний период контур подогрева не используется.

Узлы регулирования воздухонагревателей выполнены со смесительными насосами. Для изменения расхода теплоносителя через воздухонагреватель предусмотрен двухходовой регулирующий клапан.

Установки В4, В5, В6, В7 выполнены по прямоточной схеме. В состав установок входят:

· секция вытяжного вентилятора;

· выбросной воздушный клапан.

Установка РВ1 выполнена по рециркуляционной схеме. В состав установки входят:

· приемный воздушный клапан;

· секция приточного вентилятора;

· рециркуляционный воздушный клапан.

4. Характеристика систем автоматики

Для решения задач автоматизации установок П1-В1, П2-В2, П3-В3, П4-В8, В5, В6, В7, РВ1 использован комплекс технических средств производства ф.Honeywell на базе модулей преобразования входов/выходов серии Excel 5000 и микропроцессорного контроллера серии Excel WEB . Контроллер данной серии является свободно программируемым, обеспечен аппаратными и программными средствами для диспетчеризации.

Для организации обмена информацией между контроллером вентустановок П1-В1, П2-В2,П3-В3, П4-В9 и диспетчерского компьютера предусмотрена локальная сеть Ethernet с протоколом обмена BACNET .

Для организации обмена модулей преобразования входов/выходов и контроллера предусмотрена локальная сеть LON .

Для управления вентиляционной установкой предусмотрен ручной и автоматический режим.

Ручной режим используется для опробования оборудования в период проведения наладочных работ.

Управление в автоматическом режиме осуществляется по командам контроллера.

Управление технологическим оборудованием вентиляционных установок П1-В1, П2-В2 , П3-В3, П4-В8 осуществляется со шкафа управления ШАУ-П.

Для решения задач автоматизации использован комплекс технических средств Honeywell , в состав которого входят:

· микропроцессорный контроллер Excel WEB С1000;

· модули преобразования аналоговых выходов XFL 822A ;

· модули преобразования аналоговых входов XFL 821A ;

· модули преобразования дискретных выходов XFL 824A ;

· модули преобразования дискретных входов XFL 823A ;

вентиляционная установка П1-В1:

Воздуха после калорифера первого подогрева LF 20 (ТЕ П1.1);

Воздуха после контура охлаждения Т7411А1019 (ТЕ П1.4);

Обратной воды после калорифера первого подогрева VF 20A (ТЕ П1.2);

Обратной воды после калорифера второго подогрева VF 20A (ТЕ П1.3);

Приточного воздуха H 7015В1020 (MRE /ТЕ П1);

Вытяжного воздуха H 7015В1020 (MRE /ТЕ В1);

· датчики скорости потока:

Приточного воздуха IVL 10 (S Е П1);

Контуров подогрева ML 7420A 6009(Y П1.2), M 7410E 2026 (Y П1.3);

Контура охлаждения ML 7420A 6009 (Y П1.4) ;

· термостат защиты калорифера контура первого подогрева от замораживания Т6950А1026 (TS П1);

· датчики-реле перепада давления на фильтре DPS 200 (PDS П1.1, PDS П1.2);

· датчик-реле перепада давления на приточном вентиляторе DPS 400(PDS П1.3);

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В1);

· двухпозиционные приводы воздушных клапанов S 20230-2POS -SW 2 (Y П1.1), S 10230-2POS (Y В1);

· привод воздушного клапана с управляющим сигналом 0..10 В N 10010 (Y П1.5);

· Преобразователь частоты для изменения частоты вращения двигателя приточного вентилятора HVAC 07C 2/NXLOPTC 4 (ПЧ-П1);

вентиляционная установка П2 -В2 :

· датчики температуры на основе термосопротивлений:

Наружного воздуха АF 20 (ТЕ НВ);

Воздуха после калорифера первого подогрева LF 20 (ТЕ П2.1);

Воздуха после контура охлаждения Т7411А1019 (ТЕ П2.4);

Обратной воды после калорифера первого подогрева VF 20A (ТЕ П2.2);

Обратной воды после калорифера второго подогрева VF 20A (ТЕ П2.3);

· датчики температуры и влажности канальные:

Приточного воздуха H 7015В1020 (MRE /ТЕ П2);

Вытяжного воздуха H 7015В1020 (MRE /ТЕ В2);

· датчики скорости потока:

Приточного воздуха IVL 10 (S Е П2);

· приводы регулирующих клапанов с управляющим сигналом 0..10 В:

Контуров подогрева ML 7420A 6009(Y П2.2, Y П2.3);

Контура охлаждения ML 7420A 6009 (Y П2 .4) ;

· термостат защиты калорифера контура первого подогрева от замораживания Т6950А1026 (TS П2);

· датчики-реле перепада давления на фильтре DPS 200 (PDS П2.1, PDS П2.2);

· датчик-реле перепада давления на приточном вентиляторе DPS 400(PDS П2.3);

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В2);

· двухпозиционные приводы воздушных клапанов S 20230-2POS -SW 2 (Y П2.1), S 10230-2POS (Y В2);

· привод воздушного клапана с управляющим сигналом 0..10 В N 10010 (Y П2.6);

· Преобразователь частоты для изменения частоты вращения двигателя приточного вентилятора HVAC 16C 2/NXLOPTC 4 (ПЧ-П2);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка П3 -В3 :

· датчики температуры на основе термосопротивлений:

Приточного воздуха LF 20 (ТЕ П3.1);

Обратной воды после калорифера подогрева VF 20A (ТЕ П3.2);

· термостат защиты калорифера контура подогрева от замораживания Т6950А1026 (TS П3);

· датчик-реле перепада давления на фильтре DPS 200 (PDS П3.1);

· датчик-реле перепада давления на приточном вентиляторе DPS 400(PDS П3.2);

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В3);

· двухпозиционные приводы воздушных клапанов S 20230-2POS -SW 2 (Y П3.1), S 10230-2POS (Y В3);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка П4-В8:

· датчики температуры на основе термосопротивлений:

Приточного воздуха LF 20 (ТЕ П4.1);

Обратной воды после калорифера подогрева VF 20A (ТЕ П4.2);

· термостат защиты калорифера контура подогрева от замораживания Т6950А1026 (TS П4);

· датчик-реле перепада давления на фильтре DPS 200 (PDS П4.1);

· датчик-реле перепада давления на приточном вентиляторе DPS 400(PDS П4.2);

· двухпозиционный привод воздушного клапана S 20230-2POS -SW 2 (Y П4.1),

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка В4:

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В4);

· двухпозиционный привод воздушного клапана S 10230-2POS (Y В4);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка В5:

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка В6:

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В5);

· двухпозиционный привод воздушного клапана S 10230-2POS (Y В5);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка В7:

· датчик-реле перепада давления на вытяжном вентиляторе DPS 400(PDS В5);

· двухпозиционный привод воздушного клапана S 10230-2POS (Y В5);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка В8:

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

вентиляционная установка РВ1:

· датчики температуры на основе термосопротивлений:

Приточного воздуха LF 20 (ТЕ РВ1);

· привод воздушных клапанов с управляющим сигналом 0..10 В S 20010-SW 2 (Y РВ1.1) и N 20010 (Y РВ1.2);

· элементы коммутирующего оборудования шкафа управления (ключи управления, контакты реле и дополнительные контакты магнитных пускателей).

Основные характеристики оборудования, подвергавшегося испытаниям, приведены в таблицах 4.1 и 4.2.

Таблица 4.1 - Основные характеристики датчиков

Измеряемый параметр

Тип датчика

Тип чувствительного элемента

Диапазон рабочих значений

Температура наружного воздуха

AF 20

термистор NTC, сопротивление, 20кОм при 25ºС

2 0..+3 0 ºС

Температура воздуха после контура первого подогрева установок П1-В1,П2-В2, температура приточного

воздуха установок П3-В3,П4-В8, РВ1

LF 20

Температура воздуха после контура охлаждения установок П1-В1,П2-В2

Pt 1000, сопротивление, 1000 Ом при 0ºС

4 0..+8 0 ºС

Продолжение таблицы 4.1

Температура теплоносителя после воздухонагревателя первого и второго подогрева установок П1-В1,П2-В2, после воздухонагревателей установок П3-В3, П4-В8

VF 20А

термистор NTC , сопротивление, 20кОм при 25ºС

Температура и относительная влажность приточного и вытяжного воздуха установок П1-В1, П2-В2

H 7015В1020

термистор NTC , сопротивление, 20кОм при 25ºС;

ЧЭ емкостного типа 0..10 В

5..95% Rh

Температура воздуха после воздухонагревателя первого подогрева П1-В1,П2-В2, температура после воздухонагревателя установок П3-В3,П4-В8

Капилляр

Перепад давления на фильтре

DPS 200

Силиконовая мембрана

Перепад давления на фильтре

DPS 400

Силиконовая мембрана

Таблица 4.2 - Основные характеристики приводов

Управляемое оборудование

Тип привода

Управ-ляющий сигнал

Наличие возврат-ной пружины

Время полного хода открытие/ закрытие, с

Рабочий ход

Вращающий момент, Нм

Воздушные клапаны

S20010

N10010

N 20010

0 ..10В

Регулирующие клапаны на теплоносителе и холодоноси-теле

ML 7420А6009

ML 7410E2026

Технические описания на установленное оборудование автоматики приведены в приложении к отчету.

5.Результаты анализа проектной документации и проверки качества монтажных работ

Проект автоматизации систем вентиляции (раздел марки АОВ) и монтаж систем автоматики выполнен

Проведенный анализ проектной документации показал, что рабочие чертежи выполнены в соответствии с требованиями действующих нормативных документов и технической документацией предприятий-изготовителей оборудования.

Выполненная проверка соответствия монтажа оборудования автоматики проекту и требованиям предприятий-изготовителей не выявила существенных недоделок и дефектов.


6. ПОКАЗАТЕЛИ Качества РАБОТЫ КОНТУРА РЕГУЛИРОВАНИЯ И методика их расчета

6.1. Математическая модель контура регулирования

Для расчета показателей работы контуров регулирования была принята математическая модель контура регулирования в форме замкнутой системы автоматического регулирования (САР) с регулированием по принципу Ползунова-Уатта. Структурная схема САР приведена на рис.6.1, где приняты следующие обозначения:

Δу - регулируемый параметр;

yзад - заданное значение регулируемого параметра (уставка);

u - управляющее воздействие;

g - возмущающее воздействие;

КР - коэффициент усиления;

Ти - постоянная интегрирования;

Тд - постоянная дифференцирования.

Выбор вида закона управления сделан на основе проведенного анализа характеристик объекта автоматизации (п.3), конструктивных особенностей датчиков и исполнительных механизмов (п.4), а также опыта наладки регуляторов аналогичных систем.

В качестве закона регулирования был выбран:

· изодромный закон (ПИ-регулирование), при этом положено Тд=0;

Изодромный закон использовался для следующих контуров регулирования:

температуры воздуха за воздухоохладителями;

температуры приточного воздуха;

температуры обратного теплоносителя после воздухонагревателя первого подогрева;

влажности при работе систем в режиме «ЗИМА/ЛЕТО».

6.2. Показатели качества работы контура регулирования и

переходного процесса. Оценка работы контура регулирования проводилась на основе анализа характеристик переходного процесса. Переходные процессы в системах вентиляции и кондиционирования, оснащенных системами автоматического регулирования, характеризуют следующие показатели (см. рис.6.2):

1) статическая ошибка регулирования определяется как максимальное отклонение значения регулируемого параметра от его заданного значения после окончания переходного процесса;

2) динамическая ошибка определяется как максимальное отклонение регулируемого параметра от заданного значения, наблюдаемое при переходном процессе. При апериодических процессах регулирования имеет место только один максимум и одно значение динамической ошибки . При колебательных переходных процессах наблюдаются несколько максимумов и, следовательно, значений динамической ошибки: (см. рис. 6.2);

3) степень затухания переходного процесса y определяется по формуле: (2)

где - значения динамической ошибки;

4) величина перерегулирования j определяется отношением двух соседних максимумов (3)

5) длительность переходного процесса ;

6) число максимумов за время регулирования.

6.3. Эталонные возмущающие воздействия

Под возмущениями понимаются факторы, вызывающие отклонение регулируемого параметра от его заданного значения и нарушающие равновесие в САР.

Для проверки качества работы контура регулирования вводились эталонные возмущения следующих видов.

Возмущение вида 1.

Для формирования возмущения изменялось положение штока регулирующего клапана. Эпюра возмущения показана на рис. 6.3.

1) отключить привод регулирующего клапана (на время формирования возмущения);

2) сформировать возмущение, переместив вручную привод клапана в сторону "больше" ("меньше") на 10-15% значения хода штока, ориентируясь на шкалу указателя;

3) включить привод, определить значение отклонения регулируемого параметра и проанализировать переходный процесс. Если полученное отклонение регулируемого параметра соизмеримо с амплитудой его пульсации и переходный процесс просматривается плохо, увеличить возмущение в 1,2..2 раза;

4) отключить привод, сформировать скорректированное возмущение, вновь включить привод. Если во время переходного процесса регулируемый параметр изменяется в допустимых пределах и это изменение четко просматривается, можно считать, что эталонное возмущение подобрано.

Возмущение вида 2.

Для нанесения возмущения использовалось изменение задания. Эпюра возмущения показана на рисунке 6.4.

Подбор параметров эталонного возмущения следует производить в следующем порядке:

1) скачкообразно изменить задание на 10..15% от величины диапазона регулирования;

2) определить значение отклонения регулируемого параметра и проанализировать переходный процесс. Если максимальное отклонение значения регулируемой величины мало и переходный процесс виден нечетко из-за пульсаций или малого изменения регулируемой величины, увеличить возмущающее воздействие в 2..3 раза с учетом того, чтобы регулируемый параметр во время переходного процесса не достигал предельно допустимого значения для данной системы;

3) Повторить опыт, формируя скорректированное внешнее возмущение. Если переходный процесс выражен четко и характеризуется достаточным изменением регулируемой величины, данное возмущение может быть принято за эталонное для данного контура регулирования.

6.4. Методика испытаний контуров регулирования

6.4.1. Порядок проверки качества работы контура регулирования

Качество работы контура регулирования оценивается по соответствию зарегистрированных переходных процессов (при формировании внешних и внутренних возмущений) установленным требованиям.

Проверку качества работы контура регулирования и корректировку его параметров следует производить в следующем порядке:

1) установить расчетные значения параметров:

· задание регулируемой величины;

· параметры ПИД-регулятора;

2) включить вентустановку и проконтролировать работу системы автоматики;

3) подготовить средства измерений к регистрации параметров;

4) после выхода вентустановки на установившийся режим приступить к испытаниям, внося возмущения, предусмотренные программой испытаний.

6.4.2. Испытания контура регулирования при нанесении возмущения вида 1

Для испытания контура регулирования при возмущении вида 1 необходимо:

· нанести эталонное возмущение.

3) Обработать полученные графики переходного процесса и определить показатели работы контура регулирования согласно п.6.2.

4) Соблюдать при оптимальной настройке контура регулирования следующие параметры переходного процесса при внутренних и внешних возмущениях:

максимальное отклонение значения регулируемой величины не должно выходить за допустимые пределы;

степень затухания y должна быть находиться в пределах 0,85..0,9;

переходный процесс не должен быть затянут по времени.

5) При корректировке настройки контура регулирования руководствоваться следующим:

· если во время опыта степень затухания процесса меньше 0,85, а переходный процесс носит ярко выраженный колебательный характер, следует уменьшить коэффициент усиления Кр, либо увеличить интегральную составляющую Ти;

· если переходный процесс имеет вид апериодического переходного процесса и затянут по времени, следует увеличить коэффициент усиления Кр, либо уменьшить интегральную составляющую Ти;

· изменение значений Кр, Ти производить раздельно;

· корректировку производить при подаче внутренних эталонных возмущений в сторону "больше" и "меньше" попеременно.

6) Испытания проводить до получения удовлетворительного переходного процесса.

7) Зафиксировать:

· значение нагрузки, при которой испытывался контур регулирования;

· положение задатчика;

· значение эталонного возмущения;

· параметры удовлетворительного переходного процесса.

6.4.3. Испытания контура регулирования при нанесении возмущения вида 2

Для испытания контура регулирования при возмущении вида 2 необходимо:

1) Подобрать значение эталонного внутреннего возмущения согласно п.6.3.

2) Нанести эталонное возмущение в следующем порядке:

· начать запись значений параметров (регулирующего воздействия и регулируемой величины);

· зафиксировать значение регулируемого параметра за 1..3 мин до нанесения возмущения и записывать эти значения до окончания переходного процесса через каждые 10..30 с. Эти интервалы подбираются в зависимости от длительности переходного процесса;

· нанести эталонное возмущение "больше".

6.4.4. Испытания контура регулирования при аварийном понижении температуры воздуха за воздухонагревателем

Работа термостата защиты от замораживания характеризуется следующими параметрами:

· температурой срабатывания ;

· величиной минимальной температуры обратного теплоносителя при срабатывании термостата ;

·длительностью понижения температуры обратного теплоносителя ниже заданного минимального значения .

Проверку качества работы термостата и контура регулирования, а также корректировку настройки ПИД-регулятора следует производить в следующем порядке:

1) установить в расчетное положение органы настройки: настроечный элемент (задатчик) термостата;

2) включить в работу вентустановку;

3) проконтролировать выход на режим поддержания заданного значения температуры приточного воздуха;

4) установить измерительный щуп за воздухонагревателем;

5) включить систему автоматического управления;

6) записать параметры системы до нанесения возмущения;

7) внести возмущение в систему, для чего постепенно прикрывая вентиль на подающем трубопроводе, добиться снижения температуры за воздухонагревателем до срабатывания термостата;

8) восстановить нормальное теплоснабжение воздухонагревателя, для чего полностью открыть вентиль на подающем трубопроводе;

9) обработать результаты испытаний;

10) при корректировке настройки контура регулирования следует руководствоваться рекомендациями п.6.4.2;

11) испытания проводить до получения удовлетворительного переходного процесса.


7. РЕЗУЛЬТАТЫ ПРОВЕРКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБОРУДОВАНИЯ АВТОМАТИКИ

Проверка технического состояния оборудования автоматики проводилась с использованием средств измерений согласно перечню Приложения 1. Результаты проверки приведены в Приложении 10.

Проверка датчиков температуры.

Проверка датчиков температуры проводилась путем измерения сопротивления чувствительного элемента NTC 20, Pt 1000 и сравнения измеренного значения с табличным (см. Приложение 10, Таблица 1) при зафиксированной температуре на момент проведения измерений.

Установленные датчики температуры признаны исправными, точность показаний находилась в пределах допустимой погрешности.

Проверка приводов регулирующих клапанов на тепло- и холодоносителе.

Проверка приводов регулирующих клапанов контуров подогрева и охлаждения проводилась путем сравнения уставки, задаваемой с терминала оператора на открытие/закрытие регулирующего клапана, с фактическим положением указателя привода клапана после отработки команды (см. Приложение 10, Таблица 2).

Приводы регулирующих клапанов исправны и отрабатывают задаваемые команды.

Проверка датчиков-реле перепада давления на фильтрах и вентиляторах.

Для проверки создавалось давление на напорной стороне датчика и разряжение на всасывающей стороне. Контроль работоспособности датчика осуществлялся по включению светового индикатора щита автоматики и изменению состояния дискретного входа контроллера (см. Приложение 10, Таблица 3).

Датчики-реле перепада давления исправны.

Проверка термостатов защиты от замораживания воздухонагревателей.

Проверка термостатов осуществлялась путем охлаждения чувствительного элемента до механического замыкания перекидного контакта термостата. Контроль работоспособности осуществлялся по включению светового индикатора щита автоматики и изменению состояния дискретного входа контроллера (см. Приложение 10, Таблица 4).

Термостаты исправны и обеспечивают защиту воздухонагревателей от замораживания.

Проверка приводов воздушных клапанов.

Проверка приводов воздушных клапанов контуров проводилась путем сравнения уставки, задаваемой с терминала оператора на открытие/закрытие регулирующего клапана, с фактическим положением указателя привода клапана после отработки команды (см. Приложение 10, Таблица 5).

Все приводы исправны. При останове вентиляторов приводы закрываются.

Проверка работоспособности ключей управления, контактов реле и магнитных пускателей.

Работоспособность ключей управления, контактов реле и магнитных пускателей проверялись путем механического замыкания контактов соответствующих ключей, реле и магнитных пускателей. Контроль работоспособности осуществлялся по изменению состояния дискретного входа контроллера (см. Приложение 10, Таблица 6).


8. Разработка прикладного программного обеспечения

Прикладные программы были разработаны с помощью специализированного пакета программного обеспечения CARE XL Web версии 8.02.

Программы были разработаны в соответствии с алгоритмами, описанными в приложениях 6, 7, 8. Алгоритмы соответствуют схемным решениям разделов АОВ и реализуют следующие основные функции систем автоматики:

для вентиляционных установок П1-В1, П2-В2:

· поддержание температуры приточного воздуха, подаваемого в обслуживаемые помещения путем управления приводами регулирующих клапанов контура охлаждения (в режиме летней эксплуатации), контуров подогрева (в режиме зимней эксплуатации);

· поддержание влажности приточного воздуха путем управления оборудованием камеры орошения и приводом регулирующего клапана контура второго подогрева;

· постоянную работу циркуляционных насосов в период зимней эксплуатации и запрет их запуска в период летней эксплуатации;

· контроль работы технологического оборудования приточных установок;

· выдача световых сигналов на лицевую панель щита автоматики о рабочих и аварийных режимах работы оборудования приточных установок;

Алгоритм программ управления установками П1-В1 и П2-В2 приведены в Приложении 6.

для вентиляционных установок П3-В3, П4-В8:

· поддержание температуры приточного воздуха (в период зимней эксплуатации), подаваемого в обслуживаемые помещения путем управления приводом регулирующего клапана контура подогрева;

· подача наружного воздуха в обслуживаемые помещения (в период летней эксплуатации);

· отключение приточной установки по сигналу «Пожар»;

· поддержание температуры обратного сетевого теплоносителя согласно графику в режиме «стоянки» (в период зимней эксплуатации);

· постоянную работу циркуляционного насоса в период зимней эксплуатации и запрет его запуска в период летней эксплуатации;

· управление приточным, вытяжным вентиляторами;

· защиту приточного, вытяжного вентиляторов и циркуляционного насоса от выхода из строя в нештатных и аварийных ситуациях;

· защиту калорифера приточной установки от замораживания;

· контроль работы технологического оборудования приточной установки;

· выдача световых сигналов на лицевую панель щита автоматики о рабочих и аварийных режимах работы оборудования приточной установки;

· вывод/ввод значений параметров и команд управления на/с АРМ диспетчера.

Алгоритм программ управления установками П3-В3 и П4-В8 приведены в Приложении 7.

для вентиляционных установок В4,В5,В6,В7:

· вытяжка воздуха из обслуживаемых помещений;

· отключение установок по сигналу «Пожар»;

· управление вытяжным вентилятором;

· защиту вытяжного вентилятора от выхода из строя в нештатных и аварийных ситуациях;

· вывод/ввод значений параметров и команд управления на/с АРМ диспетчера.

Алгоритм программ управления установками В4, В5, В6, В7 приведены в Приложении 8.

для вентиляционной установки РВ1:

· поддержание температуры приточного воздуха, подаваемого в компрессорную станцию, путем управления приводами рециркуляционного и приемного воздушных клапанов;

· отключение установки по сигналу «Пожар»;

· управление приточным вентилятором;

· защиту приточного вентилятора от выхода из строя в нештатных и аварийных ситуациях;

· контроль работы технологического оборудования установки;

· выдача световых сигналов на лицевую панель щита автоматики о рабочих и аварийных режимах работы оборудования установки;

· вывод/ввод значений параметров и команд управления на/с АРМ диспетчера.

Алгоритм программы управления установкой РВ1 приведен в Приложении 8.

Текст программ управления установками приведены в Приложении 9.

9. Проведение ИСПЫТАНИЙ И наладочных работ

После проведения проверок качества монтажа, технического состояния оборудования автоматики и устранения выявленных недостатков была произведена загрузка разработанных программ в оперативно-запоминающие устройства (ОЗУ) и их запись в энергонезависимую память контроллера. Предварительная проверка правильности работы программ была проведена с помощью встроенного отладчика XwOnline .

Проверка правильности работы для контроллера Excel WEB проводилась с использованием портативного компьютера и браузера Internet Explorer .

Испытания систем автоматики проводились в последовательности, определяемой программами испытаний, которые приведены в Приложениях 2, 3.

Перед проведением испытаний было проведено предварительное опробование систем с доведением их до работоспособного состояния. Перед началом каждого цикла испытаний системы приводились в устойчивое состояние. Цикл испытаний считался законченным после завершения переходного процесса, т.е. до восстановления устойчивого состояния системы. Испытания прекращались, если измеряемые параметры достигали значений, выходящих за пределы, установленные программой испытаний.

В процессе проведения испытаний было обеспечено выполнение следующих условий:

· оборудование находится в режиме, на который рассчитывалась испытываемая система;

· испытываемая система находится в работе и поддерживает заданное значение регулируемой величины;

· регулируемый диапазон достаточен для устранения вводимых во время испытаний возмущений;

· при работе нескольких контуров регулирования, связанных между собой технологическим процессом (контуры регулирования первого и второго подогревов, влажности, воздухоохладителя), в первую очередь налаживались и испытывались те контуры, которые устраняют возмущения, возникающие вследствие работы других контуров;

· включены устройства технологической защиты, предупреждающие возникновение аварии в случае неправильной работы испытываемого контура регулирования.

При наладке контуров регулирования определялись следующие показатели качества:

· динамическая ошибка ;

· степень затухания переходного процесса y

· величина перерегулирования j ;

· длительность переходного процесса Тпп;

· число максимумов динамической ошибки за время регулирования .

Результаты расчетов показателей приведены в п.10.


10. Результаты испытаний и наладочных работ

В процессе пусконаладочных работ были проведены следующие работы:

· опробование отдельных элементов и агрегатов;

· срабатывание устройств технологических защит;

· включение систем в работу и их выход на номинальный режим;

· наладка контуров регулирования на поддержание заданного значения регулируемого параметра;

· проверка правильности реакции контуров регулирования на вносимые возмущения;

· корректировка параметров контуров регулирования.

Опробование элементов и агрегатов показало, что все они находятся в работоспособном состоянии.

В процессе испытаний было проверена реакция системы автоматики на срабатывание следующих устройств технологической защиты:

· капиллярных термостатов защиты от замораживания;

· программных термостатов защиты от замораживания на основе датчика температуры обратного теплоносителя;

· схем контроля срабатывания магнитных пускателей;

· датчиков обрыва ремней вентиляторов;

· тепловых реле автоматов защиты электродвигателей;

· схем отключения вентиляторов по сигналу «ПОЖАР» от АПС здания.

Проверки устройств технологических защит проводились в следующей последовательности.

Проверка срабатывания капиллярных термостатов защиты от замораживания проводилась по методике, описанной в п.6.4.4. Уставка термостата выставлялась по его шкале на 5ºС. Заданное минимальное значение обратного теплоносителя принималось равным 12 ºС (для установок П1-В1, П3-В3, П4-В8) и 18 ºС (для установки П2-В2). Результаты проверок при нахождении систем в рабочем и стояночном режимах приведены в табл.10.1.

При повторных испытаниях систем было определено значение уставки, при которых параметр = 0. Оно составило 10.5 ºС(для установок П1-В1, П3-В3, П4-В8) и 16.5 ºС(для установки П2-В2).

Таблица 10.1 - Результаты проверок систем автоматики при срабатывании

капиллярных термостатов защиты от замораживания

Вентсистема

Проверка срабатывания программных термостатов защиты от замораживания на основе датчика температуры обратного теплоносителя проводилась по методике, описанной в п.6.4.4. Уставка регулятора программного термостата 52Px _RWFrzPidSet выставлялась 12ºС(для установок П1-В1, П3-В3, П4-В8, x =1,3,4) и 18 ºС(для установки П2-В2, x =2). Величина 52Px _RWFrzStatSet принималась равной 10,5ºС (для установок П1-В1, П3-В3, П4-В8) и 16.5 ºС(для установки П2-В2). Результаты проверок при нахождении систем в рабочем и стояночном режимах приведены в табл.10.2.

Таблица 10.2 - Результаты проверок систем автоматики при срабатывании программных термостатов защиты от замораживания на основе датчика температуры обратного теплоносителя

Вентсистема

Температура обратного теплоносителя при срабатывании термостата, ºС

Как видно из таблицы, работа программных термостатов защиты от замораживания на основе датчика температуры обратного теплоносителя является удовлетворительной.

Проверка схем контроля срабатывания магнитных пускателей проводилась по формированию следующих сигналов аварии:

Система П1-В1: 52P 1_RaFanStsAlm , 52P 1_SaFanStsAlm , 52P 1_Htg 1PmpStsAlm ;

Система П2-В2: 52P 2_RaFanStsAlm , 52P 2_SaFanStsAlm , 52P 2_Htg 1PmpStsAlm ;

Система П3-В3: 52P 3_RaFanStsAlm , 52P 3_SaFanStsAlm , 52P 3_Htg 1PmpStsAlm ;

Система П4-В8: 52P 4_RaFanStsAlm , 52P 4_SaFanStsAlm , 52P 4_Htg 1PmpStsAlm ;

Система В4: 52V 4_RaFanStsAlm ;

Система В5: 52V 5_RaFanStsAlm ;

Система В6: 52V 6_RaFanStsAlm ;

Система В7: 52V 7_RaFanStsAlm ;

Система В8: 52V 8_RaFanStsAlm ;

Система P В1 : 52RV1 _RaFanStsAlm .

Все схемы контроля показали свою работоспособность. Реакция систем автоматики соответствовала алгоритмам работы систем (Приложения 6, 7, 8)

Проверка датчиков обрыва ремней вентиляторов проводилась по формированию сигналов следующих аварии:

Система П1-В1: 52P 1_RaFanDpsAlm , 52P 1_SaFanDpsAlm ;

Система П2-В2: 52P 2_RaFanDpsAlm , 52P 2_SaFanDpsAlm ;

Система П3-В3: 52P 3_RaFanDpsAlm , 52P 3_SaFanDpsAlm ;

Система П4-В8: 52P 4_SaFanDpsAlm ;

Система В4: 52V 4_RaFanDpsAlm ;

Система В5: 52V 5_RaFanDpsAlm ;

Система В6: 52V 6_RaFanDpsAlm ;

Система В7: 52V 7_RaFanDpsAlm ;

Системы автоматики отработали сигналы аварий в соответствии с алгоритмами работы систем (Приложения 6, 7, 8).

При имитации аварии преобразователей частоты приточных вентиляторов установок П1-В1 и П2-В2 осуществлялось замыканием соответствующего контакта реле. При имитации срабатывания тепловых реле автоматов защиты электродвигателей (путем нажатия кнопки «TEST » на автоматах) соответствующие электродвигатели отключились, системы автоматики управляли оборудованием в соответствии с алгоритмами работы систем (Приложения 6, 7, 8).

При имитации сигнала «Пожар» от станции пожарной сигнализации отключились приточные и вытяжные вентиляторы, закрылись воздушные клапаны, в режиме «ЗИМА» циркуляционные насосы продолжали работать.

При переводе систем в автоматический режим обеспечивалась последовательная работа узлов и агрегатов в соответствии с алгоритмами работы, приведенными в Приложениях 6, 7, 8.

Продолжительности выхода систем на номинальный режим при их включении в работу приведены в таблице 10.3.

Таблица 10.3 - Продолжительность выхода систем на номинальный режим, мин

Контур регулирования

Температура за воздухоохладителем

Температуры приточного воздуха

Относительной влажности приточного воздуха

Лето (*)

Лето (*)

Лето (*)

Лето (*)

Лето (*)

После выхода на номинальный режим все контуры регулирования обеспечили поддержание регулируемого параметра с заданной точностью (см. п.3).

Проверки реакции контуров регулирования на вносимые возмущения проводились в соответствии с методикой, описанной в п.6. Проверки были выполнены для следующих контуров:

1) Систем П1-В1, П2-В2 сезон «ЗИМА»

· относительной влажности приточного воздуха;

· температуры обратного теплоносителя после воздухонагревателя первого подогрева;

· температуры обратного теплоносителя после воздухонагревателя первого подогрева при аварийном понижении температуры.

2) Систем П1-В1, П2-В2, сезон «ЛЕТО» (*)

· температуры воздуха после второго подогрева;

3) Систем П3-В3, П4-В8, сезон «ЗИМА»

· температуры обратного теплоносителя после воздухонагревателя подогрева;

· температуры обратного теплоносителя после воздухонагревателя подогрева при аварийном понижении температуры.

4) Систем П1-В1, П2-В2, сезон «ЛЕТО» (*)

· температуры воздуха за воздухоохладителями;

· температуры воздуха после второго подогрева;

· относительной влажности приточного воздуха.

5) Системы РВ1, сезон «ЗИМА»

· температуры приточного воздуха;

Результаты подбора параметров приведены в таблице 10.4.

Как видно из таблицы, в процессе наладки были подобраны параметры контуров, которые обеспечивают удовлетворительное качество переходных процессов.

(*) – наладка систем осуществлялась в режиме «ЗИМА»

Таблица 10.4 - Результаты наладки контуров регулирования (система П1-В1)

Регулируемый параметр

Параметры регулятора

Температура воздуха после второго подогрева

Относительная влажность приточного воздуха

Условия испытаний: режим «Зима»Тнар.в=-7ºС;

режим «Лето»Тнар.в=____ºС.

Таблица 10.4,продолжение - Результаты наладки контуров регулирования (система П2-В2)

Регулируемый параметр

Параметры регулятора

Параметры переходного процесса (возмущение вида1)

Параметры переходного процесса (возмущение вида2)

Относительная влажность приточного воздуха

Температура воздуха после второго подогрева

Температура обратного теплоносителя после воздухонагревателя первого подогрева

Температура обратного теплоносителя после воздухонагревателя первого подогрева при аварийном понижении температуры

Температура воздуха за воздухоохладителями

Температура воздуха после второго подогрева

Относительная влажность приточного воздуха

Условия испытаний: режим «Зима»Тнар.в= -10ºС;

режим «Лето»Тнар.в=____ºС.

Таблица 10.4,продолжение - Результаты наладки контуров регулирования (система П3-В3)

Регулируемый параметр

Параметры регулятора

Параметры переходного процесса (возмущение вида1)

Параметры переходного процесса (возмущение вида2)

Температура обратного теплоносителя после воздухонагревателя первого подогрева

Температура обратного теплоносителя после воздухонагревателя первого подогрева при аварийном понижении температуры

Температура воздуха за воздухоохладителями

Температура воздуха после второго подогрева

Относительная влажность приточного воздуха

Условия испытаний: режим «Зима»Тнар.в= -12ºС;

режим «Лето»Тнар.в=____ºС.

Таблица 10.4,продолжение - Результаты наладки контуров регулирования (система П4-В8)

Регулируемый параметр

Параметры регулятора

Параметры переходного процесса (возмущение вида1)

Параметры переходного процесса (возмущение вида2)

Температура воздуха после подогрева

Температура обратного теплоносителя после воздухонагревателя первого подогрева

Температура обратного теплоносителя после воздухонагревателя первого подогрева при аварийном понижении температуры

Температура воздуха за воздухоохладителями

Температура воздуха после второго подогрева

Относительная влажность приточного воздуха

Условия испытаний: режим «Зима»Тнар.в= -11ºС;

режим «Лето»Тнар.в=____ºС.

Таблица 10.4,продолжение - Результаты наладки контуров регулирования (система РВ1)

Регулируемый параметр

Параметры регулятора

Параметры переходного процесса (возмущение вида1)

Параметры переходного процесса (возмущение вида2)

Температура приточного воздуха

Условия испытаний: режим «Зима»Тнар.в= -6ºС;

режим «Лето»Тнар.в=____ºС.

1. Системы автоматики обеспечивают работу вентиляционных установок в автоматическом режиме в соответствии с проектными решениями раздела АОВ и требованиями эксплуатирующей организации.

2. В диапазонах температур наружного воздуха, при которых проводились испытания (зима: -20..+2 ºС), применяемое оборудование (приводы, клапаны, датчики) обеспечивает поддержание значений параметров регулирования в заданных диапазонах. Испытания и наладка систем в режиме «ЛЕТО» будет произведена в мае.

3. В процессе пусконаладочных работ систем автоматики вентиляционных установок подобраны и записаны в энергонезависимую память контроллеров параметры и уставки, обеспечивающие устойчивое функционирование технологического оборудования вентиляционных установок. Достигнутые при наладочных работах заданные режимы функционирования и параметры регулирования систем обеспечиваются при нормальной эксплуатации оборудования и своевременном проведении технического обслуживания (чистка фильтров, натяжение ремней, промывка контуров и т.д.).

11. Эксплуатацию систем автоматики вентустановок необходимо выполнять согласно требованиям технических описаний, инструкций по эксплуатации и руководства пользователю (см. приложения к настоящему