Бытовые кондиционеры технические характеристики паспорт. Технические характеристики кондиционера. Мощность электропотребления сплит-системы

Гидравлические сопротивления в трубопроводах

Расчет гидравлических сопротивлений является одним из важнейших вопросов гидродинамики, он необходим для определения потерь напора , расхода энергии на их компенсацию и подбора побудителя тяги.

Потери напора в трубопроводах обусловлены сопротивлением трения и местными сопротивлениями. Они входят в уравнение Бернулли для реальных жидкостей.

a) Сопротивление трения существует при движении реальной жидкости по всей длине трубопровода и зависит от режима течения жидкости.

b) Местные сопротивления возникают при любых изменениях скорости потока по величине и направлению (вход в трубу и выход, отводы, колена, тройники, арматура, расширения, сужения).

Потеря напора на трение

1) Ламинарный режим .

При ламинарном режиме может быть рассчитано теоретически с использованием уравнения Пуазейля:

;

По уравнению Бернулли для горизонтального трубопровода постоянного сечения напор, теряемый на трение:

;

;

;

Подставляя значение в уравнение Пуазейля и заменяя получаем:

;

;

;

Таким образом, при ламинарном движении по прямой круглой трубе:

;

Величину называют коэффициентом гидравлического трения.

уравнение Дарси-Вейсбаха:

;

Это уравнение может быть получено и другим путем – с помощью теории подобия.

Известно, что

;

Для ламинарного потока найдено: .

;

;

уравнение Дарси-Вейсбаха:

;

Определим потерю давления: .

уравнение Дарси-Вейсбаха:

Подставив значение для ламинарного режима, получим:

;

Таким образом, для ламинарного режима:

уравнение Гагена-Пуазейля:

;

Это уравнение справедливо при и особенно важно при исследования течения жидкости в трубах малого диаметра, а также в капиллярах и порах

Следовательно, для установившегося ламинарного движения:

Для некруглого сечения: , где зависит от формы сечения:

;

Выражение называется коэффициентом сопротивления.

Следовательно:

;

;

2) Турбулентный режим .

Для турбулентного режима также справедливо уравнение Дарси-Вейсбаха:

;

Однако, коэффициент трения не может быть в этом случае определен теоретически из-за сложности структуры турбулентного потока. Расчетные уравнения для определения получают при обобщении экспериментальных данных методами теории подобия.

a) Гладкие трубы .

;

;

;

Следовательно, при турбулентном течении в гладких трубах:

формула Блазиуса:

b) Шероховатые трубы .

Для шероховатых труб коэффициент трения зависит не только от , но и от шероховатости стенок.

Характеристикой шероховатых труб является относительная шероховатость : отношение средней высоты выступов (бугорков) на стенках трубы (абсолютной шероховатости) к эквивалентному диаметру трубы:

Пример ориентировочных значений абсолютной шероховатости:

· Трубы стальные новые ;

· Трубы стальные при незначительной коррозии ;

· Стеклянные трубы ;

· Бетонные трубы ;

Влияние шероховатости на величину определяется соотношением между абсолютной шероховатостью и толщиной ламинарного подслоя .

1. При , когда жидкость плавно обтекает выступы, влиянием шероховатости можно пренебречь, и трубы рассматриваются как гидравлически гладкие (условно) – зона гладкого трения .

2. При возрастании величина уменьшается, и потери на трение возрастают вследствие вихреобразования около выступов шероховатости – зона смешанного трения .

3. При больших значениях , перестает зависеть от и определяется лишь шероховатостью стенок , т.е. режим автомоделен по - автомодельная зона .

Необходимо отметить, что, поскольку , труба может быть шероховатой при одном расходе жидкости и гидравлически гладкой при другом.

Для данной трубы приближенно:

;

Для шероховатых труб при турбулентном движении применимо следующее уравнение:

;

Для области гладкого трения – или по уравнению Блазиуса, или по уравнению:

;

;

Разделив на 1,8, можно получить формулу Филоненко.

формула Филоненко:

;

Для автомодельной области :

;

Практически расчет проводится по номограммам. Зависимость коэффициента трения от критерия и степени шероховатости - рис 1.5, Павлов, Романков.

При неизотермическом течении меняется вязкость жидкости по сечению трубы, меняется профиль скоростей и .

В уравнения для определения (кроме автомодельной области) вводят специальные поправочные множители (Павлов, Романков)

Потеря напора на местные сопротивления

В различных местных сопротивлениях измерение скорости происходит:

а) по величине =>

б) по направлению =>

в) по величине и направлению =>

Кроме потерь, связанных с трением, при этом возникают дополнительные потери напора (образование завихрений из-за действия инерционных сил (при изменении направления), образование завихрений из-за обратных токов жидкости и др. (при внезапном расширении)).

Потери напора на местные сопротивления выражают через скоростной напор. Отношение потери напора в данном местном сопротивлении к скоростному напору в нём называется коэффициентом местного сопротивления:


Для всех местных сопротивлений трубопровода:

(суммируется при наличии прямых участков длиной не менее 5d)

Коэффициенты приводятся в таблицах, например:

· вход в трубу ;

· выход из трубы

· задвижка до => ;

· кран , =>

· вентиль =>

· вентиль =>

Полная потеря напора

Величина выражается в метрах столба жидкости и не зависит от рода жидкости, а величина потери давления зависит от плотности жидкости.

Гидравлические расчёты аппаратов в принципе не отличаются от расчётов трубопроводов.

Расчёт диаметра трубопровода

Стоимость трубопроводов составляет значительную часть капитальных вложений и большие эксплуатационные расходы. В соответствии с этим большое значение имеет правильный выбор диаметра трубопровода.

Величина диаметра определяется скоростью жидкости. Если выбрана большая скорость, то диаметр трубопровода уменьшается, это обеспечивает:

Уменьшение расхода металла;

Уменьшение затрат на изготовление, монтаж и ремонт.

Однако вместе с этим увеличивается перепад давлений, необходимый для перемещения жидкости. Это требует больших затрат на перемещение жидкости.

Оптимальный диаметр должен обеспечивать минимум эксплуатационных расходов . (сумма стоимости энергии, амортизации и ремонта).

Годовые затраты на эксплуатацию => М (руб/год)=А+Э;

А – затраты на амортизацию (стоимость/годы) и ремонт;

Э – стоимость энергии.

На основании технико-экономических соображений рекомендуется следующие пределы скоростей движения:

Капельные жидкости :

Самотёком = 0,2 – 1 м/с

При перекачке = 2 – 3 м/с

Газы :

При естественной тяге = 2 – 4 м/с

При небольшом давлении (вентилятор) = 4 – 15 м/с

При большом давлении (компрессор) = 15 – 25 м/с

Пары :

Насыщенные водяные пары = 20 – 30 м/с

Перегретые водяные пары = 30 – 50 м/с.

Обычно потери давления должны составлять не более 5-15% от величины давления нагнетания.

Оптимальный диаметр трубопровода должен соответствовать ГОСТу. В ГОСТе установлено понятие условного диаметра Dy . Это наминальный внутренний диаметр трубопровода. По этому диаметру подбираются также соединительные части – фланцы, тройники, заглушки и др., а так же арматура: краны, вентили, задвижки и т.д.

Каждому условному диаметру соответствует определённый наружный диаметр, при этом толщина стенки может быть различной. Например (мм) (могут быть и отклонения от этой таблицы).

Материал трубопровода

Применяют различные материалы, что связано с различной температурой среды и агрессивностью.

Чаще всего используют стальные трубы:

Чугунные трубы до 300 0 С

Применяют также другие металлические трубы => медные, алюминиевые, свинцовые, титановые и др. И неметаллические => полиэтиленовые, фторопластовые, керамические, асбоцементные, стеклянные и др.

Способы соединения трубопроводов

а) Неразъёмные – сварные

б) Разъёмные

Фланцевые

Резьбовые

Раструбные (применяются для чугунных, бетонных и керамических труб)

Арматура трубопроводов

1. Конденсатоотводчики .

В паровых и газовых коммуникациях вследствие охлаждения всегда может происходить конденсация воды, смолы или другой жидкости, содержащейся в газе в виде пара. Накопление конденсата очень опасно, так как, двигаясь по трубам с большой скоростью (), жидкостная пробка, обладающая большой инерцией, будет вызывать сильнейшие гидравлические удары . Они расшатывают трубопроводы и могут вызывать их разрушение.

Поэтому газопроводы монтируют с небольшим уклоном, а в наинизшей точке ставится конденсатоотводная трубка.

Гидравлический затвор. Для вакуумных трубопроводов =>

через барометрическую трубу.

При больших давлениях используют специальные конструкции конденсатоотводчиков (рассматриваются далее).

2. Вентили.

1 - корпус;

3 - клапан;

4 - шпиндель;

5 - сальник.

Клапан притёрт к седлу и плотно перекрывает движение среды.

Шпиндель имеет нарезную часть и соединён с маховиком. Герметичность обеспечивается сальником.

Вентили являются запорно-регулирующей арматурой, т.е. позволяют плавно регулировать расход.

3. Краны.

В корпусе вращается пришлифованная коническая или шаровая пробка со сквозным отверстием. Краны используют преимущественно как запорную арматуру. Регулировать расход сложно.

4. Задвижки.

Шиберная

Бывают плоско-параллельные и клиновые задвижки. Перемещение шибера производится с помощью шпинделя перпендикулярно оси трубопровода и происходит его перекрывание.

Эта арматура запорная и регулирующая. Для целей автоматизации привод может быть пневматическим, электрическим, гидравлическим и т.д.

5. Существует также предохранительная и защитная арматура (предохранительные и обратные клапаны), контрольная арматура (указатели уровня, пробные краны и т.д.)

Вся арматура имеет индексацию:

например: 15 кч 2бр.

15=>вентиль; кч=>ковкий чугун (материал корпуса); 2=>номер модели по каталогу; бр=>уплотнительная поверхность из бронзы.

Арматура выбирается в зависимости от давления в трубопроводе.

Различают:

1) Рабочее давление – наибольшее избыточное давление, при котором арматура работает длительное время при рабочей температуре среды .

2) Условное давление – наибольшее давление (изб.), создаваемое средой при 20 0 С.

Существует ряд условных давлений, согласно которому изготовляют арматуру:

P y =1;2,5;4;6;10;16;25;40;64;100;160;200;250;320;400…атм.

Выбор P y осуществляется по таблицам в зависимости от марки стали, наибольшей температуры среды и рабочего давления.

Пример : Сталь Х12H10T

t среды = 400 0 С P раб =20атм: P y =25атм

P раб =80атм: P y =100атм

t среды = 660 0 С P раб =20атм: P y =64атм

P раб =80атм: P y =250атм

Местными гидравлическими сопротивлениями называются участки трубопроводов (каналов), на которых поток жидкости претерпевает деформацию вследствие изменения размеров или формы сечения, либо направления движения. Простейшие местные со-противления можно условно разделить на расширения, сужения, которые могут плавными и внезапными, и повороты, которые также могут плавными и внезапными.

Но большинство местных сопротивлений являются комбинациями указанных случаев, так как поворот потока может привести к изменению его сечения, а расширение (сужение) потока — к отклонению от прямолинейного движения жидкости (см. рисунок 3.21, б). Кроме того, различная гидравлическая арматура (краны, вентили, клапаны и т.д.) практически всегда является комбинацией простейших местных сопротивлений. К местным сопротивлениям также относят участки трубопроводов с разделением или слиянием потоков жидкости.

Необходимо иметь в виду, что местные гидравлические сопротивления оказывают существенное влияние на работу гидросистем с турбулентными потоками жидкости. В гидросистемах с ламинарными потоками в большинстве случаев эти потери напора малы по сравнению с потерями на трение в трубах. В данном разделе будут рассмотрены местные гидравлические сопротивления при турбулентном режиме течения.

Потери напора в местных гидравлических сопротивлениях называются местными потерями .

Несмотря на многообразие местных сопротивлений, в большинстве из них потери напора обусловлены следующими причинами:

Искривлением линий тока;

Изменением величины скорости вследствие уменьшения или увеличения живых сечений;

Отрывом транзитных струй от поверхности, вихреобразованием.

Несмотря на многообразие местных сопротивлений, в большинстве из них изменение скоростей движения приводит к возникновению вихрей, которые для своего вращения используют энергию потока жидкости (см. рисунок 3.21, б). Таким образом, основной причиной гидравлических потерь напора в большинстве местных сопротивлений является вихреобразование. Практика показывает, что эти потери пропорциональны квадрату скорости жидкости, и для их определения используется формула Вейсбаха

При вычислении потерь напора по формуле Вейсбаха наибольшей трудностью является определение безразмерного коэффициента местного сопротивления . Из-за сложности процессов, происходящих в местных гидравлических сопротивлениях, теоретически найти удается только в отдельных случаях, поэтому большинство значений этого коэффициента получено в результате экспериментальных исследований. Рассмотрим способы определения коэффициента для наиболее распространенных местных сопротивлений при турбулентном режиме течения.


Для внезапного расширения потока (см. рисунок 3.21, б) имеется теоретически полученная формула Борда для коэффициента , который однозначно определяется соотношением площадей до расширения (S 1) и после него (S 2) :

Следует отметить частный случай, когда жидкость вытекает из трубы в бак, т. е. когда площадь сечения потока в трубе S 1 значительно меньше таковой в баке S 2 . Тогда из формулы (3.35) следует, что для выхода трубы в бак = 1. Для оценки коэффициента потерь напора при внезапном сужении используется эмпирическая формула, предложенная И.Е. Идельчиком, которая также учитывает соотношение площадей до расширения (S 1) и после него (S 2) :

. (3.36)

Для внезапного сужения потока тоже необходимо отметить частный случай, когда жидкость вытекает из бака по трубе, т. е. когда площадь сечения потока в трубе S 2 значительно меньше таковой в баке S 1 . Тогда из (3.36) следует, что для входа трубы в бак = 0,5.

В гидравлических системах достаточно часто встречаются плавное расширение потока (рисунок 3.21, в) и плавное сужение потока (рисунок 3.21, г ). Расширяющееся русло в гидравлике принято называть диффузором, а сужающееся - конфузором. При этом, если конфузор выполнен с плавными переходами в сечениях 1 "-1 2 "-2 ", то его называют соплом. Эти местные гидравлические сопротивления могут иметь (особенно при малых углах α) достаточно большой длины l . Поэтому кроме потерь из-за вихреобразования, вызванного изменением геометрии потока, в этих местных сопротивлениях учитывают потери напора на трение по длине.

Значения коэффициентов для плавного расширения и плавного сужения находят с введением поправочных коэффициентов в формулы (3.35) и (3.36): и .

Поправочные коэффициенты k p и k c имеют численные значения меньше единицы, зависят от углов α, а также от плавности переходов в сечениях и 1 "-1 " и 2 "-2 ". Их значения приводятся в справочниках.

Весьма распространенными местными сопротивлениями являются также повороты потоков. Они могут быть с внезапным поворотом трубы (рисунок 3.21, д ) или с плавным поворотом (рисунок 3.21, е ).

Внезапный поворот трубы (или колено) вызывает значительные вихреобразования и поэтому приводит к существенным потерям напора. Коэффициент сопротивления колена определяется в первую очередь углом поворота δ и может быть выбран из справочника.

Плавный поворот трубы (или отвод) существенно снижает вихреобразование и, следовательно, потери напора. Коэффициент для данного сопротивления зависит не только от угла поворота δ, но и от относительного радиуса поворота R/d . Для определения коэффициента существуют различные эмпирические зависимости, например, , (3.37) либо находятся в справочной литературе.

Коэффициенты потерь других местных сопротивлений, встречающихся в гидравлических системах, также могут быть определены по справочнику.

Следует иметь в виду, что два или более гидравлических сопротивления, установленных в одной трубе, могут оказывать взаимное влияние, если расстояние между ними менее 40d (d - диаметр трубы).

Определение местных гидравлических сопротивлений

Потери напора в местных сопротивлениях определяют по формуле Вейсбаха: , (39)

· где x - безразмерный коэффициент, зависит от вида и конструктивного выполнения местного сопротивления, состояния внутренней поверхности и Re.

· J - скорость движения жидкости в трубопроводе, где установлено местное сопротивление.

Если между сечениями 1-1 и 2-2 потока расположено много местных сопротивлений и расстояние между ними больше длины их взаимного влияния (»6d ), то местные потери напора суммируются. В большинстве случаев так и предполагается при решении задач.

.

· В нашей задаче местные потери напора равны:

å h м = h вн.суж . + h в + 2h пов . + h вых = (x вн.суж . + x в + 2x пов . + x вых Q 2 /(w 2 × 2g);

å h м = å x× Q 2 /(w 2 × 2g); где å x =x вн.суж . + x в + 2x пов . + x вых

· В нашей задаче суммарные потери напора равны:

h 1-2 = (l×l/d+åx) × Q 2 /(w 2 × 2g.

· При развитом турбулентном движении в местном сопротивлении (Re > 10 4) имеет место турбулентная автомодельность - потери напора пропорциональны скорости во второй степени, и коэффициент сопротивления не зависит от числа Re ( квадратичная зона для местных сопротивлений). При этом x кв =const и определяется по справочным данным (Приложение 6).

· В большинстве практических задач имеет место турбулентная автомодельность и коэффициент местного сопротивления - постоянная величина.

· При ламинарном режиме x = x кв ×j, где j - функция числа Re (Прил. 7).

· При внезапном расширении трубопровода коэффициент внезапного расширения определяется так:

x вн. расш = (1-w 1 /w 2 ) 2 = (1-d 1 2 /d 2 2) 2 (40)

· Когда w 2 >>w 1 , что соответствует выходу жидкости из трубопровода в резервуар, . x вых. =1.

· При внезапном сужении трубопровода коэффициент внезапного сужения

x вн. суж. равен:

, (41)

где w 1 -площадь широкого (входного) сечения, а w 2 -площадь узкого (выходного) сечения.

· Когда w 1 >>w 2 , что соответствует входу жидкости из резервуара в трубопровод, x вх. =0,5 (при острой входной кромке).

· Коэффициент сопротивления вентиля x в зависит от степени открытия крана (Приложение 6).

.

В нашей задаче закон сохранения энергии имеет вид:

Это расчетное уравнение для определения величины R – силы на штоке поршня.

4. Вычисляем величины, входящие в уравнение (42). Исходные данные подставляем в системе СИ.



· площадь сечения 1-1 w 1 = p×d 1 2 /4 = 3,14×0,065 2 /4 = 3,32×10 -3 м 2 .

· площадь сечения трубопровода w = p×d 2 /4 = 3,14×0,03 2 /4 = 0,71×10 -3 м 2 .

· сумма коэффициентов местных сопротивлений

å x =x вн.суж . + x в + 2x пов . + x вых = 0,39+5,5 + 2×1,32+1=9,53.

· коэффициент внезапного сужения

· коэффициент резкого поворота на 90° x пов. = 1,32 (Приложение 6);

· коэффициент сопротивления при выходе из трубы x вых. = 1 (формула 40);

· коэффициент трения l


Так как число Рейнольдса Re >Re кр (2,65×10 5 >2300), то коэффициент трения рассчитывался по формуле (38).

По условию кинематический коэффициент вязкости задан в сантистоксах (сСт). 1сСт = 10 -6 м 2 /с.

· Коэффициент Кориолиса a 1 в сечении 1-1

Так как режим движения в сечении 1-1 турбулентный, то a 1 =1.

· Сила на штоке


4.6.2. Определение расхода жидкости

Внимание!

Поскольку все необходимые пояснения и теоретические основы применения уравнения Бернулли были подробно сделаны при решении задачи 1, закон сохранения энергии для данной задачи выводится без подробных пояснений.

1. Выбираем два сечения 1-1 и 2-2 , а также плоскость сравнения 0-0 и записываем в общем виде уравнение Бернулли:

.

Здесь р 1 и р 2 – абсолютные давления в центрах тяжести сечений; J 1 и J 2 – средние скорости в сечениях; z 1 и z 2 – высоты центров тяжести сечений относительно плоскости отсчета 0-0; h 1-2 –потери напора при движении жидкости от первого до второго сечения.

2. Определяем слагаемые уравнения Бернулли в данной задаче.

· Высоты центров тяжести сечений: z 1 = H ; z 2 =0.

· Средние скорости в сечениях: J 2 = Q/w 2 =4×Q/p/d 2 ;

J 1 = Q/w 1 . Так как w 1 >>/w 2 , то J 1 <<J 2 и можно принять J 1 =0.

· Коэффициенты Кориолиса a 1 и a 2 зависят от режима движения жидкости. При ламинарном режиме a=2, а при турбулентном a=1.

· Абсолютное давление в первом сечении р 1 = р м + р ат, р м – избыточное (манометрическое) давление в первом сечении, оно известно.

· Абсолютное давление в сечении 2-2 равно атмосферному р ат , так как жидкость вытекает в атмосферу.

· Потери напора h 1-2 складываются из потерь напора на трение по длине потока h дл и потерь на местные гидравлические сопротивления å h м .

h 1-2 = h дл +å h м.

· Потери по длине равны

.

· Местные потери напора равны

å h м =å x× J 2 /( 2g) = å x× Q 2 /(w 2 × 2g); где å x задано по условию

· Суммарные потери напора равны

h 1-2 = (l×l/d+åx) × Q 2 /(w 2 × 2g);

3. Итак, подставляем определенные выше величины в уравнение Бернулли.

В нашей задаче закон сохранения энергииимеет вид:

Сокращаем слагаемые с атмосферным давлением, убираем нули и приводим подобные члены. В результате получим:

. (43)

Это расчетное уравнение для определения расхода жидкости. Оно представляет собой закон сохранения энергии для данной задачи. Расход входит в правую часть уравнения непосредственно, а также в коэффициент трения l через число Re (Re = 4Q/(p×d×n) !

Не зная расход, невозможно определить режим движения жидкости и выбрать формулу для l. Кроме этого, при турбулентном режиме коэффициент трения зависит от расхода сложным образом (см. формулу (38)). Если подставить выражение (38) в формулу (43), то полученное уравнение не решается алгебраическими способами, то есть является трансцендентным. Такие уравнения решаются графическим способом или численно с помощью ЭВМ (чаще всего методом итераций).

Гидравлическое сопротивление или гидравлические потери – это суммарные потери при движении жидкости по водопроводящим каналам. Их условно можно разделить на две категории:

Потери трения – возникают при движении жидкости в трубах, каналах или проточной части насоса.

Потери на вихреобразование – возникают при обтекании потоком жидкости различных элементов. Например, внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п. Такие потери принято называть местными гидравлическими сопротивлениями.

Коэффициент гидравлического сопротивления

Гидравлические потери выражают либо в потерях напора Δh в линейных единицах столба среды, либо в единицах давления ΔP:

где ρ - плотность среды, g - ускорение свободного падения.

В производственной практике перемещение жидкости в потоках связано с необходимостью преодолеть гидравлическое сопротивление трубы по длине потока, а также различные местные сопротивления:
Поворотов
Диафрагм
Задвижек
Вентилей
Кранов
Различных ответвлений и тому подобного

На преодоление местных сопротивлений затрачивается определенная часть энергии потока, которую часто называют потерей напора на местные сопротивления. Обычно эти потери выражают в долях скоростного напора, соответствующего средней скорости жидкости в трубопроводе до или после местного сопротивления.

Аналитически потери напора на местные гидравлические сопротивления выражаются в виде.

h r = ξ υ 2 / (2g)

где ξ – коэффициент местного сопротивления (обычно определяется опытным путем).

Данные о значении коэффициентов различных местных сопротивлений приводятся в соответствующих справочниках, учебниках и различных пособиях по гидравлике в виде отдельных значений коэффициента гидравлического сопротивления, таблиц, эмпирических формул, диаграмм и т.д.

Исследование потерь энергии (потери напора насоса), обусловленных различными местными сопротивлениями, ведутся уже более ста лет. В результате экспериментальных исследований, проведенных в России и за рубежом в различное время, получено огромное количество данных, относящихся к разнообразнейшим местным сопротивлениям для конкретных задач. Что же касается теоретических исследований, то им пока поддаются только некоторые местные сопротивления.

В этой статье будут рассмотрены некоторые характерные местные сопротивления, часто встречающиеся на практике.

Местные гидравлические сопротивления

Как уже было написано выше, потери напора во многих случаях определяются опытным путем. При этом любое местное сопротивление похоже на сопротивление при внезапном расширении струи. Для этого имеется достаточно оснований, если учесть, что поведение потока в момент преодоления им любого местного сопротивления связано с расширением или сужением сечения.

Гидравлические потери на внезапное сужение трубы

Сопротивление при внезапном сужении трубы сопровождается образованием в месте сужения водоворотной области и уменьшения струи до размеров меньших, чем сечение малой трубы. Пройдя участок сужения, струя расширяется до размеров внутреннего сечения трубопровода. Значение коэффициента местного сопротивления при внезапном сужении трубы можно определить по формуле.

ξ вн. суж = 0,5(1- (F 2 /F 1))

Значение коэффициента ξ вн. суж от значения отношения (F 2 /F 1)) можно найти в соответствующем справочнике по гидравлике.

Гидравлические потери при изменении направления трубопровода под некоторым углом

В этом случае вначале происходит сжатие, а затем расширение струи вследствие того, что в месте поворота поток по инерции как бы отжимается от стенок трубопровода. Коэффициент местного сопротивления в этом случае определяется по справочным таблицам или по формуле

ξ поворот = 0,946sin(α/2) + 2.047sin(α/2) 2

где α – угол поворота трубопровода.

Местные гидравлические сопротивления при входе в трубу

В частном случае вход в трубу может иметь острую или закругленную кромку входа. Труба, в которую входит жидкость, может быть расположена под некоторым углом α к горизонтали. Наконец, в сечении входа может стоять диафрагма, сужающая сечение. Но для всех этих случаев характерно начальное сжатие струи, а затем её расширение. Таким образом и местное сопротивление при входе в трубу может быть сведено к внезапному расширению струи.

Если жидкость входит в цилиндрическую трубу с острой кромкой входа и труба наклонена к горизонту под углом α, то величину коэффициента местного сопротивления можно определить по формуле Вейсбаха:

ξ вх = 0,505 + 0,303sin α + 0,223 sin α 2

Местные гидравлические сопротивления задвижки

На практике часто встречается задача расчета местных сопротивлений, создаваемых запорной арматурой, например, задвижками, вентилями, дросселями, кранами, клапанами и т.д. В этих случаях проточная часть, образуемая разными запорными приспособлениями, может иметь совершенно различные геометрические формы, но гидравлическая сущность течения при преодолении этих сопротивлений одинакова.

Гидравлическое сопротивление полностью открытой запорной арматуры равно

ξ вентиля = от 2,9 до 4,5

Величины коэффициентов местных гидравлических сопротивлений для каждого вида запорной арматуры можно определить по справочникам.

Гидравлические потери диафрагмы

Процессы, происходящие в запорных устройствах, во многом похожи на процессы при истечении жидкости через диафрагмы, установленные в трубе. В этом случае также происходит сужение струи и последующее её расширение. Степень сужения и расширения струи зависит от ряда условий:
режима движения жидкости
отношения диаметров отверстия диафрагмы и трубы
конструктивных особенностей диафрагмы.

Для диафрагмы с острыми краями:

ξ диафр = d 0 2 / D 0 2

Местные гидравлические сопротивления при входе струи под уровень жидкости

Преодоление местного сопротивления при входе струи под уровень жидкости в достаточно большой резервуар или в среду, не заполненную жидкостью, связано с потерей кинетической энергии. Следовательно, коэффициент сопротивления в этом случае равен единице.

ξ входа = 1

Видео о гидравлическом сопротивлении

На преодоление гидравлических потерь затрачивается работа различных устройств (насосов и гидравлических машин)

Для снижения влияния гидравлических потерь рекомендуется в конструкции трассы избегать использования узлов способствующих резким изменениям направления потока и стараться применять в конструкции тела обтекаемой формы.

Даже применяя абсолютно гладкие трубы приходится сталкиваться с потерями: при ламинарном режиме течения(по Рейнольдсу) шероховатость стенок не оказывает большого влияния, но при переходе к турбулентному режиму течения как правило возрастает и гидравлическое сопротивление трубы.