Спортивное снаряжение кинолюбителя и правила плавания под водой. Выбор акваланга Для чего под водой нужен акваланг

Данная статья не является попыткой пересказа общеизвестных фактов, и создания еще одной, похожей друг на друга статьи.

Задача – сформировать однозначное и прозрачное понимание устройства и принципов работы, одного из основных элементов снаряжения для занятия дайвингом.

Лично у меня, долгое время, было именно приблизительное понимание основ работы регулятора для дайвинга, и это не правильно.

Знание общих принципов построения и основ работы, позволит Вам более осмысленно подходить к выбору данного элемента снаряжения для дайвинга.

Когда мы говорим «» - мы подразумеваем, что это часть автономного легководолазного снаряжения.
Для того, что бы не было путаницы, стоит сказать, что существует легководолазное снаряжение двух типов – использующее замкнутую и открытую схемы дыхания.

Дыхательный аппарат с замкнутой схемой, называют ребризером.

Дыхательный аппарат с открытой схемой, называют аквалангом.

Само слово «Акваланг» - не несет смысловой нагрузки, и появилось, благодаря Жаку-Иву Кусто, и Эмилю Ганьяну, которые назвали этим именем фирму (Aqualung, Aqua Lung), начавшую массово производить эту часть автономного легководолазного снаряжения.

Со временем, это название стало привычным общеупотребительным на территории Европы и Азии. В нашей стране, подводная охота с аквалангом запрещена.

Акваланг состоит из двух основных частей баллонов со сжатой дыхательной смесью и редуктора , понижающего высокое давление в баллоне, до значений, необходимых для вдоха.

Баллон может быть изготовлен, из стали, алюминиевых сплавов, титана, углеволокна и т.д., как следствие, разница в весе, долговечности, стоимости. Главное требование – выдерживать высокое давление. Условно, оборудование разделено на оборудование с возможным давлением до 230 атм., и 300 атм.

При погружении, на пловца, начинает действовать давление воды, возрастающее по мере роста глубины. Для того, что бы сделать вдох, нужно преодолеть эту силу.

Силы мышц грудной клетки не достаточно для вдоха, даже на метровой глубине. Поэтому вдыхаемый воздух, должен подаваться под давлением, компенсирующим давление воды.

Чем больше глубина, тем больше должно быть давление подаваемого воздуха. При этом дыхание должно оставаться максимально естественным и комфортным. Эту работу выполняет регулятор для дайвинга.

При погружении на значительные глубины, и как следствие, нахождение под действием большего внешнего давления, вызывает сложные физиологические изменения в организме человека. Следствием попыток избежать негативных последствий этого воздействия, явилось использование в качестве дыхательной смеси, различных газовых смесей, что потребовало конструктивных изменений регулятора.

В задачи этой статьи входит рассмотрение только общих принципов работы.

Преобразование давления воздуха до давления, необходимого для вдоха, происходит в два этапа. Первый, основной этап понижения обеспечивает редуктор - часть регулятора для дайвинга устанавливаемая непосредственно на вентиль баллона.

Второй этап понижения давления и автоматизацию процесса дыхания выполняет "дыхательный автомат" - часть, находящаяся во рту дайвера и соединенная с редуктором воздушным шлангом.

Редуктор или первая ступень, может быть двух типов, поршневой и мембранной.

Большинство используемых регуляторов используют схему с мембраной. Для понимания принципов работы, на мой взгляд, достаточно будет рассмотреть только ее.

Проще всего понять как это работает, можно посмотрев эту анимацию:

Здесь показаны этапы работы сбалансированной первой ступени регулятора.

Когда давление с шланге, достигает определенного давления, клапан редуктора, перекрывает подачу воздуха из баллона.

Система начинает находиться в равновесии. Давление в шланге, в данном случае, управляет открытием - закрытием клапана.

Кок только дайвер делает вдох и давление падает, клапан открывается и подается новая порция воздуха.

Когда фаза вдоха заканчивается, давление в шланге возрастает и клапан первой ступени регулятора для дайвинга закрывается.

Основной задачей подводного дыхательного аппарата (акваланга) является обеспечение сбалансированной подачи воздуха к легким водолаза под таким давлением, которое равно окружающей среде. Акваланг состоит из трех основных частей:

  1. Баллоны. Высокопрочные стальные емкости, в которые закачивается воздух под высоким давлением. В последнее время используются баллоны из алюминиевого сплава. Давление в баллоне - 200 - 300 атм.
  2. Регулятор давления. Является редуктором преобразования высокого давления в баллоне в низкое, под которым воздух подается к дыхательной маске.
  3. Вспомогательное оборудование: маска, соединительные шланги, ремни для крепления и грузовая система.
  4. Компенсатор плавучести. Представляет собой резиновую емкость, в которую подкачивается воздух в зависимости от глубины погружения.

Чаще всего заправляются чистым обезвоженным воздухом. Также используются различные дыхательные смеси, составленные из кислорода, азота и гелия. Особенно они необходимы при большой глубине погружения. Для заправки баллонов используется специальный компрессор. Он сжимает воздух до необходимого давления, а также очищает его от частиц воды и смазочного масла. Чистота дыхательной смеси - важнейшее условие для безопасного дайвинга. Используются многоступенчатые фильтры с адсорбентами и сепараторы. Баллоны рекомендуется хранить заправленными, так как тогда исключается попадание посторонних веществ и воды, что сильно увеличивает коррозию внутренней поверхности.

Регулятор давления - важнейший узел аппарата для дайвинга. Сейчас пользуются комбинированными моделями. Они одновременно выполняют несколько функций:

  • Снижение давления воздуха до необходимого значения, которое зависит от глубины погружения.
  • Контроль за давлением в баллоне (на корпусе установлен манометр).
  • Крепление дыхательных шлангов на маске. Размещение выпускного клапана.

Одноступенчатый устанавливается на вентилях баллонов на спине. При положении лицом вниз (а это одно из основных положений дайвера), он находится на 20 - 30 сантиметров выше легких, что затрудняет дыхание. Поэтому сейчас стали пользоваться двухступенчатой системой. Узел второй ступени именуется как легочный автомат, а первая - редуктор давления. Двухступенчатая система отличается хорошей функциональностью и особенно часто используется в дайвинг-клубах, так как обеспечивает комфорт.

Редуктор регулятора размещают как можно ближе к баллону в целях безопасности, так как соединение выполняется магистралью высокого давления. Иногда используют два редуктора, отдельный на каждый баллон. Давление в магистрали от редуктора к легочному автомату - 10 - 15 атм. Легочный автомат навешивают на маску. В особо ответственных случаях используют дублирующую дыхательную систему. Тогда контуры от обоих баллонов делаются полностью раздельными и независимыми друг от друга.

Огромное значение для безопасного погружения имеет субъективный контроль за расходом воздуха. Основной прибор, который для этого используется - манометр. Сейчас делают по аналоговой схеме. Она отличается простотой и надежностью. Цифровые приборы пока распространены мало, но по ним проще отсчитывать оставшееся время погружения. Манометр непосредственно контролирует давление в баллоне и соединяется с ним гибкой магистралью высокого давления.

Все основные части аппарата для дайвинга соединяются в единую систему при помощи различных резиновых шлангов. Ремни обеспечивают закрепление аппарата на спине. Компенсатор плавучести имеет вид жилета с наполняемой воздухом емкостью. Благодаря компенсатору по мере погружения во все более плотную среду воды, плавучесть дайвера остаётся неизменной.

Скачать 1xbet на Андроид бесплатно с зеркала официального сайта. На смену старым создаются новые работающие зеркала. Чтобы не тратить время на поиски копий сайта бетторы устанавливают специальную программу на телефон....

Зеркало всегда в рабочем состоянии. Скачать 1xBet на андроид бесплатно. Скачать 1xBet Билд. Читать ещёЗеркало всегда в рабочем состоянии. Если домен заблокирован, автоматически меняется адрес ресурса. Поэтому не стоит...

XBet зеркало на сегодня: техника безопасности. Оператор не рекомендует обращаться к сторонним источникам в поисках рабочего 1xBet зеркала. Любой серьезный ресурс, размещающий подобную информацию, рискует столкнуться с...

Преимущества мобильного приложения 1хБЕТ. Самый главный плюс приложения – доступность. Если для входа на официальный сайт всегда приходится искать зеркала и проверять их актуальность, то мобильная версия не...

В 1хбет скачать на компьютер бесплатно можно сразу несколько приложений и программ, представленных в специальном В отзывах люди писали, что загружали с сайта архив, а потом при распаковке требовалось отправить...

Скачать на андроид приложение 1xBet. Скачать андроид версию приложения можно с официального сайта букмекера Все бонусы и промокоды при регистрации в приложении также работают. В 1xбет есть неплохой приветственный бонус...

Подробный обзор официального сайта 1xbet. Описание коэффициентов, линия ставок, зеркала, регистрация на официальном сайте букмекерской конторы 1 икс бет. Полный перечень функциональных возможностей ресурса, его...

Комплектом №1 принято называть набор снаряжения, который наиболее часто используется для подводного плавания без акваланга и включает маску, трубку и ласты.

Маски

Почти все мы пробовали открывать глаза под водой. Как уже ска­зано выше, разница коэффициентов преломления воды и воздуха не корректируется глазами, и картина подводного мира состоит из раз­мытых пятен, не имеющих четких границ. Для полноценного зрения под водой достаточно наличия воздушной прослойки перед глазами. Самое простое приспособление для этого - плавательные очки. Од­нако нырять в них на глубину более 1 - 2 м не следует: давление под очками при этом становится заметно меньше давления окружающей среды и тканей нашего тела, очки начинают работать как присоски. Результат - сеточка кровоизлияний в глазах и вокруг них, а на боль­ших глубинах возможны более серьезные неприятности (подробнее - в главе 3.3). Поэтому для подводного плавания необходимо использование маски, позволяющей за счет выдоха носом выравнивать да­вление в подмасочном пространстве с давлением окружающей сре­ды. Напоминаем, что, согласно международным кодексам всех под­водных федераций, пребывание в воде с аквалангом без маски счита­ется сигналом бедствия.

По общепринятому мнению маска - предмет номер один в инди­видуальном снаряжении подводника. Для выбора маски необходимо располагать знаниями о разнообразии существующих конструкций и их особенностях. Любая маска состоит из мягкого корпуса, жест­кого ободка, в который вставлены один или несколько иллюминато­ров (линз), и крепежного ремешка.

Материалы

Большинство современных масок имеют силиконовый корпус. Од­нако маски с резиновым корпусом остаются в эксплуатации и продол­жают выпускаться. Силикон мягче и эластичнее резины, хотя уступа­ет ей в прочности, он в меньшей степени подвержен разрушительно­му действию солнечных лучей и более долговечен. Силикон может быть прозрачным, матовым, или черным. Выбор здесь является делом вкуса. Сквозь прозрачный силикон различаются очертания предме­тов, что отчасти увеличивает поле зрения. Боковые лучи, проходящие через корпус из прозрачного силикона, осветляют общую картину мира, но могут создавать легкие блики на смотровом иллюминаторе. Черный силикон исключает возникновение бликов на стекле, что ва­жно при подводной фото - и видеосъемки.

Ободок может быть сделан из ударопрочного пластика или метал­ла. Для изготовления линз используются различные материалы. Ил­люминатор маски должен быть прочным, а разбившись, не образо­вывать кусков с острыми гранями. Иллюминатор подводной маски в сравнении с линзами "сухопутных" очков в значительно большей степени подвержен действию различных неблагоприятных факто­ров. Сюда относится как абразивное воздействие песка и взвеси, так и химическое воздействие морской воды. Необходимым требовани­ям отвечают некоторые пластики и закаленное стекло. Первые- весьма дорогостоящие - в основном применяются для изготовления профессиональных масок. Подавляющее большинство масок, ис­пользуемых подводниками-любителями, имеют линзы из закален­ного стекла. В любом случае, на иллюминаторе обязательно должна быть маркировка "TEMPERED" или "SAFETY". Ремешок маски мо­жет быть сделан как из резины, так и из силикона. Последний вари­ант предпочтительнее ввиду уже описанных выше свойств силикона.

^ Объем подмасочного пространства

Подмасочным называется пространство, ограниченное маской с одной стороны и лицом подводника - с другой. Если подмасочный объем заполнен воздухом - а именно это и предполагается конструк­цией - то маска имеет некоторую положительную плавучесть, сила которой направлена вверх. Эта сила ощутима (при вертикальном по­ложении головы) для масок с большим подмасочным объемом (300 - 400 мл) и малозаметна для масок с малым объемом (около 200 мл).

^ Угол обзора

Чем шире поле зрения - тем лучше. Характеризуя маску, необхо­димо оценивать угол обзора по вертикали и по горизонтали. Чем боль­ше стекло и чем ближе оно к глазам - тем шире поле зрения. Угол об­зора неразрывно связан с конструкцией и размером маски (см. ниже).

^ Гидродинамическое сопротивление

Гидродинамическое сопротивление зависит от размеров и формы маски. Чем меньше эта величина - тем удобнее маска.

^ Общая форма

Всем хорошо знакомы маски традиционной овальной формы. Ни­жняя часть их корпуса имеет два углубления, позволяющие зажать нос для продувания ушей. При нырянии в первом комплекте достато­чно зажать нос пальцами одной руки. Если же у вас во рту находится загубник легочного автомата, размеры последнего не позволят под­ступиться к носу одной рукой и для продувания ушей необходимо ис­пользовать указательные или большие пальцы обеих рук. Несколько поколений подводников погружались именно в таких масках. Одна­ко, в последнее время они практически полностью вытеснены маска­ми с отдельно выполненным выступом для носа (фото 2.1). Такая кон­струкция обеспечивает возможность продуваться одной рукой в лю­бой ситуации. К очевидным преимуществам относится также умень­шение подмасочного объема, увеличение утла зрения за счет при­ближения стекла к глазам подводника и уменьшение гидродинами­ческого сопротивления.

^ Маски с одной и двумя линзами

Минимальное расстояние от смотрового стекла до глаз подводни­ка в традиционной овальной маске определяется размером носа. В маске с отдельным выступом для носа естественным ограничителем становится переносица. Дальнейшее приближение смотрового стек­ла к глазам возможно при разделении его на две линзы. Угол зрения при этом увеличивается на несколько градусов; тем не менее, многие подводники предпочитают одно-линзовые маски без вертикальной перегородки посередине.

^ Возможность компенсации зрения

До недавнего времени подводники в нашей стране были выну­ждены проявлять чудеса сообразительности для коррекции зрения под водой. Самый простой на первый взгляд способ - ис­пользование контактных линз - имеет серьезные недостатки: по­мимо того, что для сколько-нибудь глубоких погружений необ­ходимы специальные линзы с микроотверстиями, допускающими выход пузырьков воздуха из - под линз, контактные линзы любой конструкции легко слетают с глаза при попадании воды под мас­ку. Подводники со стажем помнят и другой прием: очки среднего размера со снятыми дужками легко помещаются под стекло стан­дартной отечественной маски овальной формы и встают в распор резинового корпуса. Потратив немного большее время, можно приклеить линзы очков к внутренней поверхности стекла маски. Если клей прозрачен, а линзы подобраны и ориентированы пра­вильно, то такая маска будет достаточно удобна. Наиболее разумное решение проблемы коррекции зрения под водой - спе­циальные двулинзовые маски с заменяемыми линзами. Диоптри­ческие стекла подбираются отдельно для правого и левого глаза. Так, например, для маски "Look" фирмы Technisub (фото 2.2) вы­пускаются линзы с диоптриями от - 1 до - 10 и от + 1,5 до +3,5 с шагом 0,5 диоптрии. На заводе - изготовителе все маски комплек­туются обычными стеклами, которые в течение нескольких минут можно заменить на диоптрические, подобранные по вашим гла­зам.

^ Антизапотевающие стекла

Для масок со сменными стеклами выпускаются линзы с антизапотевающим покрытием. Нанесенный с внутренней стороны стекла слой материала препятствует выпадению отдельных капель влаги - она образует равномерный слой, не влияющий на четкость изобра­жения.

^ Боковые и нижние стекла

Наличие дополнительных боковых стекол увеличивает поле зре­ния. Под водой происходит смещение изображения в боковых окнах маски за счет преломления лучей света. Это, с одной стороны, допо­лнительно увеличивает поле зрения, с другой стороны, расширяет "мертвые зоны", образованные вертикальными стойками. Тем же эффектом обладают нижние стекла в шестистекольных масках. Ма­ски с дополнительными линзами имеют больший подмасочный объ­ем, нежели одно - или двулинзовые маски.

^ Маски с клапанами

Клапан, встроенный в нижнюю часть маски, позволяет продувать ее от воды без помощи рук: достаточно сделать выдох носом под ма­ску. Единственное необходимое условие - чтобы клапан распола­гался в нижней части маски - выполняется при обычном положе­нии головы (вертикальном или наклоненном вперед).

^ Крепежный ремень должен обеспечивать надежное крепление ма­ски и иметь удобный регулировочный механизм. Ремни большинст­ва современных масок имеют расширение с одним - тремя окнами в затылочной части для лучшего облегания головы. Регулировка ре­мешка может выполняться за счет обычных передвижных пряжек, но гораздо удобнее механизм быстрой регулировки, позволяющий подтянуть или ослабить ремень, не снимая маски. Поворотные пряж­ки позволяют подобрать оптимальный угол крепежного ремня.

Размер

Маски одной модели имеют стандартный размер. Некоторые фирмы выпускают специальные детские маски меньшего размера.

^ Выбор маски во многом определяется стоящими перед вами задача­ми. Так, например, для ныряния в первом комплекте особенно удоб­ны маски с минимальным подмасочным объемом, так как запас ва­шего воздуха для поддувания маски при погружении весьма ограни­чен, а если вы ныряете с аквалангом - это уже не так актуально. Вы­бирая между прозрачным и непрозрачным материалом корпуса большинство подводников склоняются в пользу первого, но для про­фессиональной фото- и видеосъемки предпочтительнее маски с черным корпусом, максимально приближающие картину окружаю­щего мира к виду через объектив камеры. Форма, размер, количест­во линз во многом определяются вашим вкусом.

Выбирая маску, обязательно приложите ее к своему лицу и попы­тайтесь сделать вдох носом. Хорошо подобранная маска прижмется к вашему лицу и сделает вдох невозможным. Если же воздух где - то проходит, возможны следующие варианты:

1. Под верхний фланец маски попали волосы. Уберите их со лба и с висков назад и попробуйте еще раз. Для лучшего контроля мо­жно встать перед зеркалом.

2. Мужчины, носящие усы, будут вынуждены либо расстаться с ними, либо смириться с медленным, но неизбежным подтеканием маски. Ничего страшного в этом нет - периодическое продувание маски от воды скоро станет для вас привычным.

3. Вы слишком широко улыбае­тесь во время примерки и по образующимся складочкам во­здух протекает под маску. По­думайте о чем-нибудь серьез­ном и попробуйте еще раз.

4. Маска пропускает воздух по со­единению корпуса со смотро­вым стеклом или имеет перфо­рацию в мягком корпусе. Заме­ните маску.

5. Форма и качество материала мягкого корпуса не обеспечивают герметичного прилегания маски к лицу. Попробуйте маску другой модели.

^ Уход за маской

После погружения в морской воде промойте маску чистой пре­сной водой. Старайтесь не оставлять маску надолго под прямыми солнечными лучами, не кладите ее рядом с нагревательными прибо­рами. Берегите стекло (стекла) от соприкосновений с твердыми предметами, а мягкий корпус - от излишней и продолжительной де­формации. Для транспортировки масок предпочтительно использо­вать специальные пластиковые боксы.

Трубка

Использование трубки позволяет спокойно дышать лежа на по­верхности воды и не затрачивать усилий на подъем головы. Трубка весьма удобна для ныряния в первом комплекте и совершенно не­обходима для подводника-аквалангиста. В последнем случае она используется при передвижении по поверхности для экономии воз­духа в аппарате. Мнение, что можно нырять без трубки, а в случае необходимости - проплыть требуемое расстояние по поверхности на спине - следствие недостатка грамотности и опыта. Кто хотя бы раз был вынужден проплыть сотню метров с пустым аквалангом и не в полный штиль - тот вряд ли когда - нибудь пренебрежет труб­кой.

Для использования в сочетании с аквалангом трубка крепится на ремешок маски с левой стороны, так как с правой проходит шланг легочного автомата. При необходимости переключиться с дыхания из аппарата на дыхание через трубку вы должны правой рукой вы­нуть изо рта загубник акваланга, а левой - вставить загубник труб­ки - после этого делаете резкий выдох для очищения трубки от во­ды и начинаете дышать атмосферным воздухом. Трубка обязатель­но должна иметь специальную систему крепежа к маске в виде пла­стикового зажима или резинового кольца. Вставление трубки под ремешок маски без дополнительного крепления допустимо при плавании в первом комплекте, когда Вы все время удерживаете трубку во рту, но при плавании с аквалангом может привести к ее потере.

Дыхание через трубку комфортно и безопасно при нахождении непосредственно под поверхностью воды. Погружение даже на 20 - 30 см делает дыхание затрудненным, так как на легкие действу­ет возрастающее давление воды, а давление вдыхаемого воздуха ос­тается атмосферным. Поэтому трубки по длине рассчитаны на ис­пользование вблизи поверхности. Конечно же, чем длиннее трубка, тем выше она поднимается над водой и тем меньше заливается вол­нами и брызгами. Но и тем больший объем воды необходимо выду­вать из нее при выныривании. Чем толще трубка - тем меньше ее сопротивление потоку воздуха, но и тем больше объем воды, подлежащей удалению. При обычном дыхании некоторый объем воздуха, называемый мертвым, остается при выдохе в легких и дыхательных путях. В этом воздухе по сравнению с окружающим повышена кон­центрация углекислого газа. Объем дыхательной трубки увеличива­ет мертвый объем. Таким образом, чем она больше - тем выше бу­дет концентрация углекислого газа в легких подводника. Поэтому ис­пользование слишком длинной и широкой трубки может привести к отравлению углекислым газом. Все перечисленные факторы опреде­лили оптимальные размеры дыхательных трубок подводников: их длина от изгиба до окончания составляет приблизительно 40 см, а внутренний диаметр - около 2, 5 см.

Для аквалангистов наиболее удобны трубки с гибким сегментом

(фото 2.3 А), позволяющие быстро и удобно переключаться с аппара­та на трубку.

^ Размещение тарельчатых клапанов в нижней и средней части трубки (фото 2.3 В, Г) уменьшает усилие, необходимое для очищения ее от воды. Клапаны выпускают воду и воздух из трубки, но не впус­кают обратно. Когда Вы всплываете на поверхность часть воды само­теком уходит из трубки, подчиняясь закону сообщающихся сосудов:

Уровень воды в трубке опускается до уровня окружающей воды. Ос­тавшийся объем составляет около трети от начального и легко удаля­ется частично через клапаны, частично - через верхнее отверстие трубки.

^ Клапан с шариком, размещенный на вершине трубки, препятст­вует проникновению в нее воды во время ныряния (фото 2.3 Г). Та­кие трубки называются сухими.

Использование трубок с клапанами вполне оправдано при ныря­нии в первом комплекте (например, при подводной охоте), когда трубка все время находится во рту и непрерывно заполняется во­дой и продувается. Однако, это не столь актуально для акваланги­стов: переключаться на трубку приходится, как правило, не чаще двух-трех раз за время погружения. Используя трубку с клапа­ном, нужно быть готовым к тому, что при погружении в клапан мо­жет случайно попасть песчинка или иная частица (особенно при ра­боте в мутной воде или зарослях водорослей), которая нарушит нормальную работу клапана. Всплыв на поверхность после утоми­тельного погружения и переключившись на трубку, Вы рассчиты­ваете на незначительное усилие при продувании и нормальную по­дачу воздуха после него, а получаете непрерывное заполнение трубки водой. Многие аквалангисты с удовольствием используют трубки с клапанами, не сталкиваясь с описанными неприятностя­ми.

Пользуясь трубкой, состоящей из нескольких сегментов, контро­лируйте целостность соединений. Вы окажетесь в очень неприятной ситуации, обнаружив при переключении на трубку, что она осталась без загубника.

Ласты

Можно ли плавать без ласт? Несомненно. Хороший пловец легко проводит в воде несколько часов, преодолевая за это время значи­тельное расстояние. Можно нырять в маске и без ласт, наслаждаясь красотами подводного мира. Но все меняется, когда мы надеваем ак­валанг. Его вес в воде невелик, но масса, т.е. мера инерции, остается такой же, как и на суше - около 20 кг. Жесткие баллоны за спиной уменьшают гибкость тела и сковывают свободу движений. Примене­ние ласт компенсирует возникшие трудности. Правильно подобран­ные, удобные и эффективные ласты во многом определяют комфорт аквалангиста под водой. Выбор наиболее подходящей модели ласт за­висит от стоящих перед вами задач и ваших индивидуальных особен­ностей. Для оценки пригодности ласт выделим два параметра:

1. удобство крепления к ноге;

2. эффективность при плавании.

Первое определяется конструкцией галоши, второе - конструк­цией лопасти и общей формой ласты.

Разнообразие конструкций галош сводится к двум принципиаль­ным вариантам: с закрытыми и открытыми пятками. Первые весьма удобны при надевании на босую ногу и обеспечивают наиболее плот­ное соединение ласты со стопой. Для надевания на ботики гидрокос­тюма удобнее использовать ласты с открытой пяткой, снабженные ремешком. Они называются также регулируемыми. Современные модели регулируемых ласт позволяют подтягивать и ослаблять реме­шок прямо на ноге.

Разнообразие конструкций лопастей ласт весьма велико. Для ласт, как и для любого двигателя, чрезвычайно важен коэффициент полезного действия, т.е. отношение полезной работы к затраченной энергии. Под водой все измеряется воздухом: чем энергичнее физи­ческая работа - тем больше его расход.Чем эффективнее ласты - тем меньшее количество воздуха необходимо для преодоления опре­деленного расстояния. При прочих равных условиях, эффектив­ность ласт и их соответствие вашим индивидуальным особенностям может изменять скорость расхода воздуха на 20 - 30%. Соответ­ственно, на столько же изменится время пребывания под водой.

Всем знакомы простые резиновые ласты, имеющие лопасть клас­сической формы с двумя ребрами жесткости по бокам. В начальной фазе гребка часть энергии аккумулируется сгибающейся лопастью ласты и затем отдается в завершающей фазе с разгибанием лопасти. Один из возможных путей увеличения эффективности работы ласты - наращивание площади гребной поверхности. Однако после изве­стного предела оно становится неоправданным. Для резиновых ласт предел целесообразной длины 60 - 70 см от пяточной части до вер­шины лопасти. Ласты шириной более 20 - 22 см задевают друг дру­га при плавании.

Другой путь увеличения эффективности ласт - применение ма­териалов большей упругости. При этом увеличиваются как возмож­ность аккумуляции энергии в начальной фазе гребка, так и допустимая длина лопасти. Великолепными гидродинамическими свойства­ми обладают длинные ласты с лопастями из тонкого, упругого и дос­таточно жесткого пластика и резиновыми калошами. По скоростным качествам подобные ласты превосходят подавляющее большинство других моделей и оптимальны для плавания без акваланга. Не слу­чайно подводные охотники всего мира предпочитают ласты именно такой конструкции. Аквалангисты, напротив, весьма редко пользу­ются ими, так как они проигрывают ластам меньшего размера в ма­невренности. Для плавания с аппаратом выпускаются ласты с менее длинными лопастями из аналогичного материала.

Еще один способ увеличения эффективности - ласты с окнами (фото 2.4 А). В чем их смысл? Во время гребка с одной стороны греб­ной поверхности создается зона повышенного давления, а с другой - пониженного. Возникающие в результате вихревые потоки по краям ласты создают дополнительное сопротивление. Щели в осно­вании лопасти пропускают воду, уменьшают разницу давлений и тем самым ослабляют вихревые потоки. Подобная конструкция не уве­личивает скорости, сообщаемой ластами, но уменьшает усилие при гребке.

Значительно повышается КПД ласт при использовании туннель­ного эффекта (фото 2.4 Б-Е). Во время гребка некоторое количест­во воды неизбежно скатывается в стороны, не участвуя в создании поступательного движения подводника. Если внутренняя часть лопа­сти ласты сделана из более мягкого материала, чем боковые части, то при гребке ласта прогибается, образуя желоб, ориентирующий по­ток воды в нужном направлении, уменьшая тем самым количество воды, скатывающейся вхолостую. Другой способ создания туннель­ного эффекта - разделение пластиковой лопасти 2 - 4 продольны­ми резиновыми желобками, допускающими поперечный изгиб. Разновидностью туннельного эффекта является эффект ложки или ковша, достигаемый клиновидной вставкой более мягкого материала (фото 2.5) или резиновыми желобками разной длины. Сегодня ласты с туннельным эффектом наиболее популярны среди подводни­ков - аквалангистов.

Как выбрать ласты? Во-первых, Вам необходимо сделать выбор между ластами с закрытой или открытой пяткой. Для занятий в бас­сейне, скоростного плавания или подводной охоты имеет смысл ос­тановиться на первом варианте. Если же Вы планируете всерьез за­ниматься плаванием с аквалангом, мы рекомендуем приобрести лас­ты с открытой пяткой и регулируемыми ремешками и обзавестись неопреновыми носками или ботиками, так как без них плавание в ре­гулируемых ластах крайне неудобно и часто приводит к образова­нию мозолей.

Теперь о выборе конкретной модели. Общий дизайн и цветовые вариации имеют серьезное значение, но гораздо важнее гидродина­мические свойства ласт. В зависимости от вашего телосложения и физических возможностей те или иные ласты будут для Вас наибо­лее удобны. Мы предлагаем следующий тест, позволяющий сделать грамотный выбор. Все, что для этого нужно - это плавательный бассейн или открытый водоем. Наденьте маску и ласты, успокойте дыха­ние и пронырните на одном вдохе фиксированную дистанцию, близ­кую к пределу ваших возможностей. Для кого - то это будет 25 м, для кого-то - 50 или более. Отдохните и повторите опыт в других лас­тах. Выбирайте те, с которыми это упражнение дается Вам легче все­го. Они вовсе не обязательно развивают максимальную скорость, тем самым уменьшая время проныривания, но наиболее выгодно преобразуют вашу энергию в поступательное движение, а значит - будут лучше всего экономить воздух при погружении.

Если ласты не имеют металлических деталей, их не обязательно промывать пресной водой после каждого морского погружения, но желательно сделать это перед длительным перерывом в эксплуата­ции. Не оставляйте их надолго под прямыми солнечными лучами, не сушите на печке или ином нагревательном приборе, избегайте де­формации при транспортировке и хранении. Для последнего не пре­небрегайте использованием пластиковых вставок в калошу, входя­щих в комплект поставки. Для снятия регулируемых ласт очень удоб­но расстегивать замочки на ремешке. Оставшаяся на ласте часть зам­ка при неудачном движении или ударе о другой предмет (деталь сна­ряжения, борт судна) может соскочить с посадочного места. Обра­щайте на это внимание и старайтесь поскорее застегнуть ремешок после снятия ласты.

При соблюдении этих простых правил ласты прослужат Вам дол­гие годы.

^ Глава 2.2. Дыхательные аппараты

Дыхание под водой

Произошел ли человек в процессе эволюции или явился результа­том Божественного Творения - в любом случае умение плавать при­шло к людям в глубокой древности или было унаследовано от диких предков. Умение нырять под воду, видимо, появилось немногим поз­же. Упоминания о подводных ныряльщиках имеются в летописях, да­тированных задолго до Рождества Христова. Герой месопотамских мифов царь Гильгамеш опускался на дно моря за растением, заклю­чавшим в себе тайну вечной жизни. В древней Греции ныряльщики брали с собой под воду козьи меха, заполненные воздухом.

Согласно древним рукописям, Александр Македонский спускал­ся под воду в специально сконструированном стеклянном ящике - вероятно это был первый прообраз водолазного колокола. Принцип его действия весьма прост: если мы возьмем любой сосуд с одним от­верстием (например, обычный стакан), перевернем его отверстием вниз и опустим в воду, воздух останется в сосуде, и его давление бу­дет равно давлению окружающей воды. Вспомним закон Бойля - Мариотта: воздух сжимается во столько раз, во сколько увеличится его давление. Таким образом, на глубине 10 м, где давление воды 2 атм. (см. главу 1.1), стакан или водолазный колокол наполовину за­полнится водой. Известны упоминания о подводных колоколах времен средневековья. Одна из таких конструкций принадлежит знаме­нитому ученому Галлею, чье имя носит известная всем комета. В на­ше время водолазные колокола используются для спуска и подъема профессиональных водолазов и для иных технических задач. Сжа­тый воздух из баллонов или подающийся с поверхности по шлангу позволяет "поддувать" обитаемое пространство колокола при погру­жении и сохранять, таким образом, его объем.

Работа дыхательной системы человека, как Вы помните из гла­вы 1.2, возможна лишь при равенстве (почти равенстве) давления вдыхаемого воздуха давлению внешней среды, действующему на грудную клетку. Поэтому, дыхание под водой из трубки, соединяю­щей пловца с поверхностным воздухом, возможно лишь на очень не­большой глубине, измеряемой сантиметрами. Уже на глубине 20 - 30 см подобное занятие кроме быстрой усталости может принести и неприятные последствия для здоровья (подробнее - см. главу 3.2). Первое снаряжение с использованием сжатого воздуха, подаваемого водолазу под давлением, равным давлению окружающей среды, бы­ло предложено в 1865 г. Рукайролом и Денайрузом (Rouquayrol и Denayrouze).

С начала XX века и до настоящего времени для выполнения раз­личных подводно-технических задач используется вентилируемое снаряжение - просторный комбинезон из прочной резины, герме­тично соединенный с металлическим шлемом. Такой костюм полно­стью изолирует тело водолаза от контакта с водой. К шлему подсое­диняется шланг, по которому производится постоянная подача воз­духа с поверхности, например, с помощью ручной или автоматичес­кой помпы. В задней части шлема имеется стравливающий клапан, срабатывающий при легком нажатии на него головой. Принцип дей­ствия прост: стравливая необходимое количество воздуха, водолаз изменяет объем костюма, тем самым регулируя собст­венную плавучесть. Давле­ние воздуха внутри костю­ма, естественно, равняется давлению окружающей во­ды. Если водолаз перестает нажимать на стравливаю­щий клапан, его плавучесть увеличивается вместе с раз­дуванием костюма, что мо­жет привести к всплытию на поверхность.

Вентилируемое снаряже­ние обеспечивает ни с чем не сравнимый комфорт при выполнении работ, не тре­бующих активного передви­жения под водой. Его недос­татки - низкая мобиль­ность, необходимость гро­моздкой материальной базы (помпа, шланг и т.д.), обяза­тельное соединение водолаза с берегом или судном, наличие не­скольких квалифицированных помощников.

Новая эпоха в развитии водолазного дела началась с изобретени­ем акваланга. Э. Ганьян и Ж. - И. Кусто создали подводный аппарат, удобный и практичный в обращении, позволяющий человеку авто­номно перемещаться под водой, имея при себе достаточно большой запас воздуха. Слово "Акваланг" (Aqualung) буквально переводится как водное (aqua) легкое (lung). Так назывался первый подводный ап­парат. Это слово прижилось и используется для обозначение всех по­следующих конструкций аналогичного типа. Другим популярным названием акваланга стало английское - SCUBA - Self-Contained Underwater Breathing Apparatus (автономный подводный дыхатель­ный аппарат).

Сегодня существуют различные конструкции подводного снаря­жения и способы его классификации по разным признакам. Напри­мер, все виды водолазного снаряжения можно разделить по типу схемы дыхания: с открытой, полузакрытой и закрытой. При откры­той схеме дыхания выдыхаемый газ выводится в окружающую сре­ду, при закрытой - направляется в специальное устройство, очища­ющее его от углекислоты и обогащающее кислородом, откуда опять поступает на вдох. Подобное обновление выдыхаемого газа называ­ется регенерацией. При полузакрытой схеме часть выдыхаемого га­за идет в окружающую среду, часть - на регенерацию. Если весь за­пас воздуха находится в баллонах, несомых самим подводником, та­кое снаряжение называется автономным. Для выполнения многих технических работ удобнее шланговое снаряжение. Основное количестно воздуха подается водолазу по шлангу с поверхности, а за пле­чами у подводника лишь небольшой резерв.

В настоящей книге мы рассматриваем технику, наиболее часто используемую подводными пловцами-любителями, а именно - ав­тономное снаряжение с открытой схемой дыхания, т.е. акваланг. За пределами этой книги также остается снаряжение, приспособлен­ное к работе на газовых смесях, а не на сжатом воздухе, так как эта тема относится к более профессиональной сфере знания, чем подра­зумевает настоящее издание.

^ Общее устройство акваланга

Любой акваланг состоит из баллонного блока и регулятора

(рис. 2.4 А). Баллонный блок имеет один или два (очень редко - три) баллона со сжатым воздухом, снабженных вентилем. Широкое ис­пользуются баллоны, рассчитанные на 150, 200, 230 и 300 атм. Давле­ние в баллонах называется высоким давлением. Как Вы помните (глава 1.2), человек может сделать вдох, если вдыхаемый им воздух находится под тем же давлением, что и грудная клетка. Для подачи воздуха подводнику под давлением окружающей среды служит ре­гулятор, подсоединяющийся к выходу из баллонного блока. Подав­ляющее большинство регуляторов состоит из двух элементов, в ко­торых редукция (уменьшение) давления воздуха происходит поэ­тапно. Такая схема редукции называется двухступенчатой. Устрой­ство, именуемое редуктором, осуществляет первую ступень редук­ции - уменьшает давление воздуха до величины, превышающей да­вление окружающей среды на 5-10 атм. Это давление называется промежуточным, или средним. Легочный автомат (легочник) осу­ществляет вторую ступень редукции - выравнивая давление сжатого воздуха до давления окружающей среды, которое именуется низким давлением*.

* иногда давление на выходе из редуктора называют низким давле­нием, тогда давление на выходе из легочника можно называть окру­жающим давлением

Глава 2.3. Баллоны и баллонные блоки

Баллоны аквалангов имеют цилиндрическую форму с закруглен­ным дном с одной стороны и вытянутой горловиной с другой сторо­ны (фото 2.6 А). Горловина снабжена внутренней резьбой, коничес­кой у российских моделей и цилиндрической - у иностранных. В эту резьбу вкручивается короткий патрубок с одним или двумя вен­тилями в случае однобаллонного блока (фото 2.6 Б) и трубка высоко­го давления, ведущая к вентилю (вентилям) в случае двух - или трех­баллонного варианта.

^ Материал баллонов

Современная промышленность выпускает стальные и алюминие­вые баллоны. Первые распространены шире. Основное преимущест­во стали перед алюминием - значительно большая прочность. Недо­статок стали - подверженность коррозии. Для того, чтобы замед­лить коррозионные процессы, используют различные способы:


  • применение легированных сталей, т.е. с добавками других ме­таллов, преимущественно хрома и молибдена;

  • покрытие внутренней и внешней поверхности баллона тонким слоем цинка;

  • покрытие внешней поверхности полимерной краской, а иногда и пластиком;

  • покрытие внутренней поверхности специальными вазелиноподобными смазками.
Стальные баллоны хорошего качества при правильном уходе мо­гут служить десятилетиями.

Подверженность коррозии изделий из алюминия и алюминиевых сплавов значительно ниже. Это объясняется способностью алюми­ния образовывать на поверхности оксидную пленку, предохраняю­щую более глубокие слои металла от дальнейшего окисления. Так как прочность алюминия значительно ниже, чем стали, стенки бал­лона должны быть толще, нежели стальные, рассчитанные на то же давление. Однако, алюминий почти втрое легче железа - основного компонента стали. В результате удельный вес алюминиевых или сплавных баллонов получается ниже, чем у стальных баллонов того же объема и той же прочности.

В общем и целом, стальные баллоны практичнее алюминиевых, и именно их предпочитают большинство аквалангистов. Но не будем забывать еще об одном свойстве алюминия. Он не намагничивается, не влияет на направление стрелки магнитного компаса и показания иных магнитных приборов. Поэтому, если Вам необходимо проби­раться через минные заграждения с магнитными ловушками, поль­зуйтесь алюминиевыми баллонами.

^ Дополнительные приспособления

Для удобства хранения и транспортировки нижняя часть балло­нов, как правило, вставляется в резиновый башмак. Переносить однобаллонник, берясь за пластиковую рукоятку, значительно удоб­нее, нежели за вентильный механизм. Рукоятки бывают цельными и складывающимися. Капроновые защитные сетки оберегают внеш­нее покрытие баллонов от повреждений, что особенно актуально при использовании баллонов в соленой воде, где любая царапина на кра­ске приводит к коррозии.

^ Высокое, рабочее и проверочное давление. Клеймо

Напомним, что давление воздуха в баллонах называется высоким. Максимально допустимое при эксплуатации высокое давление для данного баллонного блока именуется рабочим давлением. Перед вы­пуском с завода - изготовителя любой баллон подвергается проверке давлением в полтора раза превышающим рабочее - так называе­мым проверочным. Каждый баллон снабжен клеймом, содержащим его основные характеристики. Клеймо выбито на горловине и обяза­тельно содержит следующую информацию:


  • название или фирменный знак изготовителя;

  • заводской номер баллона;

  • рабочее давление;

  • проверочное давление;

  • месяц и год изготовления и проверки;

  • масса баллона (без вентиля);

  • объем баллона.
Различные варианты клейм представлены на рисунке 2.4 Б, В.

На отечественных баллонах после даты изготовления через де­фис следует год следующей надлежащей проверки. На иностранных баллонах обычно выбит тип баллона, т.е. для каких целей он предна­значен.

Через пять лет после изготовления необходимо провести повтор­ную проверку баллонов. Ее осуществляют организации, имеющие на это лицензию. Проверка включает целый ряд действий: прежде все­го взвешивание баллона, осмотр его наружной и внутренней поверх­ности и гидравлические испытания проверочным давлением. Если баллон прошел проверку и признан годным к дальнейшей эксплуата­ции, проверяющая организация ставит на него клеймо, обязательно содержащее собственное название или фирменный знак, месяц и год проверки и величину проверочного давления.

^ Количество, форма и размер баллонов

Наиболее популярны среди ныряльщиков всего мира однобалонные комплекты емкостью 12 - 15л. Они удобны в обращении, а за­пас воздуха при давлении около 200 атм. достаточен для бездекопрессионных погружений, какие чаще всего совершают любители под­водного мира. Отечественной промышленностью выпускаются пре­имущественно двухбалонные аппараты с емкостью баллонов 7 лит­ров каждый. Таким образом, наиболее обычный российский аква­ланг - двухбаллонник общей емкостью 14л. Акваланг АВМ - 5 допу­скает разделение баллонов, и тогда один из них, снабженный венти­лем, можно использовать в одинарном варианте, однако 7 л. при дав­лении 150 или 200 атмосфер - не слишком большой запас воздуха для погружения на открытой воде. Подобные баллоны удобно ис­пользовать для занятий в бассейне. С одной стороны, 15-ти литро­вый однобаллонник немного легче 14-ти литрового двухбаллонника, с другой стороны, центр тяжести двухбаллонника расположен на несколько сантиметров ближе к центру тяжести пловца, что умень­шает инерцию его поворота в воде. Вопрос о предпочтении одно - или двухбаллонного варианта акваланга при их приблизительно рав­ном объеме не однозначен и является делом вкуса.

Если Вы достаточно опытны и собираетесь на глубокое погруже­ние с декомпрессионными паузами при всплытии (см. главу 3.4), име­ете задачу погружаться под лед, планируете исследование подвод­ных пещер или поиск сокровищ внутри затонувших кораблей, Вам полезно подумать об увеличении запаса воздуха. Для этого можно:


  • Использовать баллоны, рассчитанные на большее давление воз­духа. Сегодня широко применяются баллоны с рабочим давле­нием 230 и 300 атм.;

  • Использовать баллоны большего объема. Максимальный объ­ем, остающийся в разумных пределах, составляет 18л.;

  • Увеличить количество баллонов. Наиболее распространенным вариантом, помимо отечественного 7+7, является 10+10 и 12+12;
Конечно, Вы можете спарить два 18 литровых баллона, рассчитан­ных на 300 атмосфер, но вряд ли это будет оправдано и целесообраз­но. Для столь серьезных задач можно использовать более компакт­ное регенеративное снаряжение, обзор которого выходит за рамки настоящей книги.

^ Форма баллонов

Она достаточно стандартна, но допускает ряд вариаций при оди­наковом объеме. Так, например, 12-литровые баллоны выпускают­ся в нескольких модификациях. Преимущества вытянутого баллона - в лучшей гидродинамике и более близком расположении его цен­тра тяжести к центру тяжести пловца, что, как уже упоминалось, уменьшает инерцию поворота в воде. Правда, такой баллон может создавать неудобства людям невысокого роста - им лучше подойдут баллоны более компактной формы.

Таким образом, выбор размера, количества и формы баллонов оп­ределяется стоящими перед Вами задачами и во многом - Вашим вкусом. Последнее относится также к цветам баллонов, обычно яр­ким и хорошо заметным в воде.

^ Вентильный механизм

Сам по себе баллон высокого давления, разумеется, не может слу­жить источником воздуха для дыхания. Первое устройство на пути воздуха из баллона - вентильный механизм, часто называемый просто вентилем (фото 2.6 Б). Последний термин представляется ме­нее корректным, так как иногда этот механизм состоит из несколь­ких вентилей, включает дополнительные устройства, а в случае двух- или трехбаллонного блока - разветвленную систему трубок высокого давления. Входной патрубок вентильного механизма имеет внешнюю резьбу, которая вворачивается во внутреннюю резьбу горловины баллона. Отечественная промышленность выпускает бал­лоны и вентили с конической резьбой, которая герметизируется спе­циальными уплотнителями (например, свинцовым гнетом), равно­мерно наносимыми на всю поверхность резьбы. Иностранные балло­ны и вентили имеют цилиндрические резьбы и уплотнение за счет кольцевой пластиковой прокладки. Вентили из баллонов выкручива­ются только при техническом освидетельствовании последних и только квалифицированными специалистами. Внутрь баллона вен­тильный механизм обращен трубкой длиной в несколько сантимет­ров, имеющей одно или несколько отверстий, иногда забранных мел­кой металлической сеткой. Такое устройство значительно уменьша­ет вероятность проникновения в воздушные пути акваланга частиц ржавчины, которые, как правило, пересыпаются по стенкам баллона. Запорные вентили имеют правую резьбу, т.е. открываются также, как и водопроводный кран, против часовой стрелки.

Один из ключевых моментов строения вентильного механизма - устройство для выхода воздуха. Оно должно быть приспособлено для удобного, быстрого и надежного крепления редуктора - первой ступени регулятора. Сегодня имеется два международных стандарта такого крепления:


  • Крепление посредством струбцины носит название YOKE (англ. - скоба, струбцина) или INT.

  • Крепление посредством резьбы диаметром 5/8 дюйма - DIN. В обоих случаях герметизация достигается за счет кольцевой ре­зиновой прокладки.
Соединение по типу YOKE многие аквалангисты считают более удобным в обращении, но оно более громоздко и из - за ограничений по прочности материала не рассчитано на давление более 230 атм. Соединение типа DIN позволяет достичь большей прочности и рас­считано на давление до 300 атм. Есть два стандарта резьбы DIN бал­лонов и редукторов: более короткая - для снаряжения, рассчитанного на давление до 230 атм., более длинная - до 300 атм. Смысл этих различий в том, чтобы исключить присоединение редукторов на 230 атм. к баллонам с давлением в 300 атм., так как в этом случае резино­вое уплотнительное кольцо редуктора не доходит до предназначен­ной для него поверхности на выходе из баллона. При неправильном присоединении воздух в большом количестве будет уходить по резь­бе соединения, и использование такого комплекта полностью исклю­чено. Присоединение редуктора на 300 атмосфер возможно к любым баллонам.

Подавляющее большинство современных баллонов иностранного производства приспособлено к использованию в обоих в вариантах, как YOKE, так и DIN. Механизм прост: баллон имеет выход с резьбой DIN, в которую герметично вворачивается втулка, наружная поверх­ность которой соответствует стандарту YOKE (фото 2.6 В).

Помимо международных соединений, имеется российский стан­дарт крепления редуктора на баллонах - резьба диаметром 24 мм. В последнее время некоторые производители наладили выпуск пере­ходников, позволяющих совмещать отечественные и иностранные баллоны и редукторы. Новейшая разработка отечественной про­мышленности - аппарат АВМ-12- 1 имеет соединение междуна­родного стандарта DIN.

Форма вентильных механизмов может быть весьма разнообраз­ной. В наиболее простом однобаллонном блоке имеется единствен­ный вентиль и единственный выход (фото 2.6 Б). При этом возможны различия в расположении вентиля и выходного отверстия, не играю­щие принципиальной роли. Существуют следующие варианты усло­жнения конструкции:

4- Дополнительный выход с отдельным вентилем для крепления второго регулятора. Два регулятора часто используются для большей надежности при погружениях повышенной сложно­сти, например - в пещерах, в затопленных помещениях, подо льдом или просто в холодной воде, когда есть риск замерзания редуктора или легочного автомата (см. ниже). В случае ка­кой-либо неисправности с регулятором Вы можете переклю­читься на запасной. Дополнительный выход с вентилем может быть съемным - тогда вентильный механизм комплектуется заглушкой, закрывающей место присоединения.


  • Выход для присоединения второго баллона. При использовании однобаллонного блока он закрыт наглухо; чтобы добавить второй баллон, открутите заглушку и подсоедините переходник.

  • В двухбаллонном блоке возможно снабжение каждого баллона отдельным вентилем; иногда имеется третий - общий - вентиль.
Механизм отдельной подачи резервного объема воздуха - ме­ханизм резерва. Он был разработан для оповещения подводни­ка об израсходовании большей части воздушного запаса. В са­мом простом и распространенном международном варианте, резервный механизм располагается после основного вентиля и представлен пружинным клапаном, соединенным со специаль­ным вентилем и имеющим два положения: открытое и закрытое. Перед погружением вентиль резерва устанавливается в за­крытое положение, при котором клапан будет пропускать воз­дух, пока его давление превышает определенную величину (как правило, 30-50 атм.); при ее достижении пружина закрывает клапан. Если Вы заметили, что подача воздуха становится за­трудненной или прекращается, переведите вентиль резерва в открытое состояние и клапан снова начнет пропускать воздух. После этого Вы знаете, что пора подниматься на поверхность. Резервные вентили большинства современных аппаратов имеют рабочий ход около 90 градусов от закрытого до открытого состояния и приводятся в движение специальной тягой, идущей с правой сторо­ны вниз вдоль баллона и заканчивающейся у его основания. Откры­тие резерва производится правой рукой перемещением тяги вниз на несколько сантиметров.

У отечественных аквалангов резервный механизм иного устрой­ства: в трубке высокого давления, соединяющей два баллона, распо­ложен клапан, перекрывающий подачу воздуха из правого баллона, когда давление в нем падает примерно до 60-ти атм. Когда иссяк­нет воздух в левом баллоне, необходимо открыть резервный вен­тиль, выпускающий остатки воздуха из правого баллона. Открывание резерва в такой конструкции сопровождается характерным звуком, слышным как на воздухе, так и в воде - звуком перепуска воздуха из правого баллона в левый до выравнивания давления ме­жду ними. Таким образом, после открытия резерва в обоих баллонах остается приблизительно по 30 атм. Вентили резерва в отечествен­ных баллонах имеют такой же рабочий ход, как и вентили основной подачи - немногим более одного оборота - и левую резьбу, т.е. в отличие от вентилей основной подачи открываются по часовой стрелке. В широко распространенных аппаратах АВМ - 5 и АВМ - 7 вентиль резерва приводится в действие тросиком, намотанным на маховик. Тросик следует вниз вдоль баллона внутри защитного ко­жуха и заканчивается грушевидной ручкой с пружинными фиксато­рами (фото 2.7 А). Для открывания резерва необходимо нажатием на фиксаторы освободить ручку и потянуть ее вниз до отказа. Такой механизм ввиду своей сложности требует тщательного регулярного ухода в виде переборки и смазки. В аппаратах серии "Подводник" применено другое конструкционное решение: акваланг "перевер­нут", т.е. его нормальное рабочее положение - вентилями вниз;

Вентиль резерва размещен под правой рукой подводника и открыва­ется без каких-либо дополнительных механизмов. Очевидное не­удобство такой конструкции - необходимость использования бо­лее длинного шланга, соединяющего редуктор с легочником, и пере­ворачивания баллона при каждом его надевании.

Насколько нужен резервный запаса воздуха? Его наличие обяза­тельно при отсутствии выносного манометра, показывающего дав­ление в баллонах. Если же такой манометр есть, механизм резерва становится дублирующим устройством, информирующим подвод­ника о том, что воздух на исходе. Вы можете залюбоваться красота­ми подводного мира и забыть вовремя взглянуть на манометр, но Вы не можете не заметить окончания основного запаса воздуха. С дру­гой стороны - любой механизм занимает объем, имеет вес и требу­ет ухода. Сегодня во всем мире налицо тенденция к отказу от меха­низма резерва, по крайней мере при погружениях в обычных усло­виях.

^ Крепление баллонов

В подавляющем большинстве случаев акваланги надеваются за спину как рюкзаки. Существуют и другие варианты: например, при подводном скоростном плавании или подводном ориентировании единственный баллон удерживается спортсменом за вентиль впере­ди на вытянутых руках. При креплении баллона за спиной возможны три разновидности конструкции:

1. Один или два баллона крепятся с помощью ремня (иногда - двух ремней) к жилету-компенсатору. Это наиболее распро­страненный в мировой практике способ крепления. В случае двухбаллонного блока часто используется пара крепежных бол­тов. Подробнее эти механизмы разбираются в главе, посвящен­ной компенсаторам плавучести,

2. Один или два баллона таким же образом крепят к специальной анатомической спинке, снабженной плечевыми и поясными ремнями.

3. Ремни крепятся к металлическим хомутам, охватывающим бал­лонный блок. Такой способ крепления используется в большин­стве отечественных аквалангов. У них, как правило, кроме пле­чевых и поясных ремней имеются брасовые - идущие между ног подводника. Назначение брасового ремня - предотвратить смещение акваланга наверх; неудобство - необходимость предварительного расстегивания при снятии или аварийном сбрасывании грузового пояса. Хорошо подогнанный по вашей талии поясной ремень делает брасовый необязательным. Сов­ременное любительское снаряжение международного стандар­та, как правило, не предусматривает его наличие.

Многие начинающие дайверы, решившие приобрести своё собственное снаряжение, задаются вопросом, как выбрать акваланг. Сегодня специализированные магазины предлагают широкий для дайвинга, рассчитанной как для начинающих ныряльщиков, так и для дайверов с опытом. Чтобы решить, какое снаряжение покупать, следует понять, в чём между ними разница.

Из чего состоит акваланг

Акваланг состоит из следующих составных частей:

  • баллон. Применяют обычно одну или две ёмкости, заполненные дыхательной смесью. Одна ёмкость вмещает в себя от 7 до 18 литров сжатого воздуха;
  • регулятор. Как правило, состоит из двух частей - редуктора и лёгочного автомата. В одном акваланге может содержаться от одного до нескольких редукторов;
  • компрессор плавучести. Это специальный надувной жилет, благодаря которому дайвер может регулировать глубину погружения.

Типы акваланга

Используется три типа аквалангов, различающихся между собой принципом дыхания.

Открытая схема

Достаточно недорогая, лёгкая и не имеющая больших габаритов экипировка. Этот тип дыхания работает только на подачу дыхательной смеси. Переработанный воздух при выдыхании выбрасывается в окружающую среду и не смешивается с воздухом в баллонах. Это позволяет избежать кислородного голодания или отравления углекислым газом. Отличается простотой конструкции и безопасен в использовании. Однако имеется один существенный недостаток: модели с открытой схемой дыхания не предназначены из-за высокого расхода дыхательной смеси на глубине.

Замкнутая схема

Принцип работы такого типа акваланга заключается в том, что выдыхаемый ныряльщиком переработанный воздух проходит очистку от углекислоты, насыщается кислородом и вновь становится пригодным для дыхания. Такая система обладает большим количеством преимуществ:

  • небольшая масса и габариты снаряжения;
  • возможность погружения на глубоководье;
  • большая длительность ;
  • возможность оставаться незамеченным.

Однако настоящий тип экипировки рассчитан на высокий уровень подготовки и не подходит новичкам. К недостаткам можно отнести значительную стоимость.

Полузакрытая схема

Принцип работы такой системы является гибридом открытой и закрытой схем дыхания. То есть часть переработанного воздуха вновь обогащается кислородом и становится доступной для дыхания, а избыток выбрасывается в окружающую среду. При этом для разной глубины погружения используются разные газовые коктейли для дыхания.

Резервный источник дыхания

Многие дайверы в качестве резервного баллона предпочитают использовать мини-акваланги. Мини-модели представляют собой компактную систему, предназначенную для дыхания под водой на небольшой глубине. В систему мини-акваланга входит малолитражная ёмкость с воздухом и редуктор с загубником. Объём воздуха зависит .

Выбор баллона

Выбирая баллоны для дайвинга, необходимо обратить внимание на их определённые характеристики.

Материал

Как правило, ёмкости для дыхательных смесей изготавливают из стали или алюминия. Стальные имеют повышенную прочность, но подвержены коррозии, чего нельзя сказать об алюминиевых. Однако большинство предпочитают приобретать именно баллоны из стали, поскольку при правильной эксплуатации они способны прослужить не один год.

Количество и объём

Какое количество баллонов приобретать - дело личных предпочтений. Нет разницы, что использовать: один баллон с объёмом 14 литров или два баллона по 7 литров. Объём следует увеличивать, если планируется погружение, требующее большого запаса дыхательной смеси.

Многие профессиональные дайверы предпочитают не приобретать баллоны, а вместо этого покупают собственный компрессор. Имея свой компрессор, баллоны можно просто брать напрокат и заправлять их самостоятельно. Приобретать новый компрессор или б/у - дело личных предпочтений и финансовых возможностей, поскольку стоит компрессор достаточно дорого. Новичкам же приобретать собственный компрессор рекомендуется только в том случае, если дайвингом планируется заниматься всерьёз и надолго.

Для новичков, не знающих, как выбрать акваланг, рекомендуется обращаться в специализированные магазины, где консультанты дадут все необходимые профессиональные рекомендации. Экономить на снаряжении не стоит, поскольку качественное спряжение исправно прослужит не один год.