Как рассчитать заземляющий контур промышленного предприятия. Расчет заземления и заземляющих устройств. Пошаговый расчет контура заземления

Нормы > Все про заземление

РАСЧЕТ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, так как заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и устойчивости к коррозии. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитывают последовательно сопротивление соединительной линии и сопротивление заземлителя, чтобы суммарное сопротивление не превышало расчетного.
Расчет сопротивления заземлителя проводится в следующем порядке:
1. Устанавливается необходимое по ПУЭ допустимое сопротивление заземляющего устройства . Если заземляющее устройство является общим для нескольких электроустановок, то расчетным сопротивлением заземляющего устройства является наименьшее из требуемых.
2. Определяется необходимое сопротивление искусственного заземлителя с учетом использования естественного заземлителя, включенного параллельно, из выражений

где - расчетное сопротивление заземляющего устройства по п. 1; - сопротивление искусственного заземлителя; - сопротивление естественного заземлителя.
3. Определяется расчетное удельное сопротивление грунта с учетом повышающих коэффициентов, учитывающих высыхание грунта летом и промерзание его зимой.
При отсутствии точных данных о грунте можно воспользоваться табл. 12-1, где приведены средние данные по сопротивлениям грунтов, рекомендуемые для предварительных расчетов.

Таблица 12-1 Удельное сопротивление грунтов

Наименование грунта

Удельное сопротивление r , Ом Ч м

Наименование грунта

Удельное сопротивление r , Ом Ч м

Глина (слой 7-10 м, далее скала, гравий)
Глина каменистая (слой 1-3 м, далее гравий)
Земля садовая
Известняк
Лесс
Мергель
Песок
Песок крупнозернистый с валунами
Скала

70
100
50
2000
250
2000
500
1000
4000

Суглинок
Супесок
Торф
Чернозем
Вода:
грунтовая
морская
прудовая
речная

100
300
20
30
50
3
50
100

Примечание: Удельные сопротивления грунтов определены при влажности 10-20% к массе и на глубине 1,5 м.

Повышающие коэффициенты k для различных климатических зон приведены в табл. 12-2 для горизонтальных и вертикальных электродов.
4. Определяется сопротивление растеканию одного вертикального электрода
по формулам из табл. 12-3. Эти формулы даны для стержневых электродов из круглой стали или труб. При применении углов для вертикальных электродов в качестве диаметра подставляется эквивалентный диаметр уголка

где b - ширина сторон уголка.

Таблица 12-2 Значения коэффициента k для различных климатических зон

Данные, характерезующие климатические зоны и тип применяемых электродов

Климатические зоны

1. Климатические признаки зон:
Средняя многолетняя температура
(январь), °С
Средняя многолетняя высшая температура (июль), °С
Среднее количество осадков, см
Продолжительность замерзания вод, дни

2. Коэффициент k
а) при применении стержневых электродов длиной 2-3 м и глубине заложения их вершин 0,5-0,8 м
б) при применении протяженных электродов и глубине заложения их вершин 0,8 м


От -20 до -15

Oт +16 до +18
40
190-170
1,8-2,0
4,5-7,0


От -14 до -10

От +18 до +22
50
150
1,5-1,8
3,5-4,5


От -10 до 0

От +22 до +24
50
100
1,4-1,6
2,0-2,5


От 0 до +5

От +24 до +26
30-50
0
1,2-1,4

Таблица 12-3 Расчет сопротивлений растеканию одного электрода

Тип заземлителя

Расположение заземлителя

Формула

Пояснения

Вертикальный у поверхности земли

Вертикальный ниже уровня земли

Горизонтальный протяженный ниже уровня земли

b - ширина полосы; если землитель круглый диаметром d , то b=2d

Пластинчатый вертикальный ниже уровня земли

a и b - размеры сторон пластины

Кольцевой горизонтальный ниже уровня земли

b -ширина полосы; если заземлитель круглый диаметром d , то b = 2d

5. Определяется примерное число вертикальных заземлителей n при предварительно принятом коэффициенте использования :

где - необходимое сопротивление искусственного заземлителя.
Коэффициенты использования вертикальных заземлителей даны в табл. 12-4 в случае расположения их в ряд и в табл. 12-5 в случае размещения их по контуру без учета влияния горизонтальных электродов связи.
6. Определяется сопротивление растеканию горизонтальных электродов
по формулам из табл. 12-3. Коэффициенты использования горизонтальных электродов для предварительно принятого числа вертикальных электродов принимаются по табл. 12-6 при расположении их в ряд и по табл. 12-7 при расположении их по контуру.

Таблица 12-4 Коэффициенты использования вертикальных электродов


электродами к их длине

2
3
5
10
15
20

0,84-0,87
0,76-0,80
0,67-0,72
0,56-0,62
0,51-0,56
0,47-0,50

2
3
5
10
15
20

0,90-0,92
0,85-038
0,79-0,83
0,72-0,77
0,66-0,73
0,65-0,70

2
3
5
10
15
20

0,93-0,95
0,90-0,92
0,85-0,88
0,79-0,83
0,71-0,80
0,74-0,79

Таблица 12-5 Коэффициенты использования вертикальных электродов

Отношение расстояния между вертикальными
электродами к их длине

Число вертикальных электродов в ряду

4
6
10
20
10
60
100

0,66-0,72
0,58-0,65
0,52-0,58
0,44-0,50
0,38-0,44
0,36-0,42
0,33-0,39

4
6
10
20
10
60
100

0,76-0,80
071-0,75
0,66-0,71
0,61-0,66
0,55-0,61
0,52-0,58
0,49-0,55

4
6
10
20
10
60
100

0,84-0,86
0,78-0,82
0,74-0,78
0,68-0,73
0,64-0,69
0,62-0,67
0,59-0,65

Таблица 12-6 Коэффициенты использования горизонтальных электродов

Коэффициент использования при числе вертикальных электродов в ряду n

1
2
3

0,77
0,89
0,92

0,74
0,86
0,90

0,67
0,79
0,85

0,62
0,75
0,82

0,42
0,56
0,68

0,31
0,16
0,58

0,21
0,36
0,49

0,20
0,34
0,47

Таблица 12-7 Коэффициенты использования горизонтальных электродов

Отношение рассюииия между вертикальными электродами к их длине

Коэффициент использования при числе вертикальных электродов в контуре n

1
2
3

0,45
0,55
0,70

0,40
0,48
0,64

0,36
0,48
0,60

0,34
0,40
0,56

0,27
0,32
0,45

0,24
0,30
0,41

0,21
0,28
0,37

0,20
0,26
0,35

0,10
0,24
0,33

7. Уточняется необходимое сопротивление вертикальных электродов с учетом проводимости горизонтальных соединительных электродов из выражений

где - сопротивление растеканию горизонтальных электродов, определенное в п. 6.
8. Уточняется число вертикальных электродов с учетом коэффициентов использования по табл. 12-4 или 12-5:

Окончательно принимается число вертикальных электродов из условий размещения.
9. Для установок выше 1000 В с большими токами замыкания на землю проверяется термическая стойкость соединительных проводников по формуле (12-5).

Пример 12-1. Требуется рассчитать заземление подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 100 кВ 3,2 кА; наибольший ток через заземление при замыканиях на землю на стороне 10 кВ 42 А; грунт в месте сооружения подстанции - суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы - опоры с сопротивлением заземления 1,2 Ом.

Решение
1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом. Для стороны 10 кВ по формуле (12-6)

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство используется также для установок подстанции до 1000 В. Таким образом, в качестве расчетного принимается сопротивление .
2. Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы - опоры;

3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя - суглинке по приведенным выше данным составляет 100 Ом Ч м. Повышающие коэффициенты для климатической зоны 2 по табл. 12 2 принимаются равными 4,5 для горизонтальных протяженных электродов при глубине заложения 0,8 м и 1,8 для вертикальных стержневых электродов длиной 2-3 м при глубине заложения их вершины 0,5-0,8 м.
Расчетные удельные сопротивления:
для горизонтальных электродов

для вертикальных электродов

4. Определяется сопротивление растеканию одного вертикального электрода - уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 12-3:

где

6. Определяется сопротивление растеканию горизонтальных электродов - полос 40 X 4 мм2, приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре при числе уголков порядка 100 и отношении по табл. 12-7 равен: .
Сопротивление растеканию полосы по формуле из табл. 12-3

7. Уточненное сопротивление вертикальных электродов

Принятом из табл. 12-5 при n =100 и :

Окончательно принимается 117 уголков.
Дополнительно к контуру на территории подстанции устраивается сетка из продольных полос, расположенных на расстоянии 0,8-1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления; проводимость их идет в запас.
9. Проверяется термическая стойкость полосы 40 X 4 мм2. Минимальное сечение полосы из условий термической стойкости при к. з. на землю по формуле (12-5) при приведенном времени прохождения тока к. з.

Таким образом, полоса 40 X 4 мм2 условию термической стойкости удовлетворяет.

По результатам примера 12-1 можно видеть, что при достаточно большом количестве вертикальных электродов горизонтальные электроды, соединяющие верхние концы вертикальных, весьма слабо влияют на результирующее расчетное сопротивление контура заземления. При этом также обнаруживается дефект существующей методики расчета для случаев, когда требуется достаточно малое сопротивление контура. В выполненном примерном расчете этот дефект выявился в том, что учет дополнительной проводимости контура от горизонтальной соединительной полосы привел не к уменьшению потребного количества вертикальных электродов, а наоборот, к его увеличению примерно на 5%. На основании этого можно рекомендовать в подобных случаях рассчитывать необходимое количество вертикальных электродов без учета дополнительной проводимости соединительных и других горизонтальных полос, полагая, что их проводимость будет идти в запас надежности.

Пример 12-2. Требуется рассчитать заземление подстанции с двумя трансформаторами 6/0,4 кВ мощностью 400 кВ Ч А со следующими данными: наибольший ток через заземление при замыкании на землю со стороны 6 кВ 18 А; грунт в месте сооружения - глина; климатическая зона 3; дополнительно в качестве заземления используется водопровод с сопротивлением растеканию 9 Ом.
Решение
Предполагается сооружение заземлителя с внешней стороны здания, к которому примыкает подстанция, с расположением вертикальных электродов в один ряд на длине 20 м; материал - круглая сталь диаметром 20 мм, метод погружения - ввертыванием; верхние концы вертикальных стержней, погруженные на глубину 0,7 м, приварены к горизонтальному электроду из той же стали.
1. Для стороны 6 кВ требуется сопротивление заземления, определяемое формулой (12-6) :

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство выполняется общим для сторон 6 и 0,4 кВ. Далее согласно ПУЭ сопротивление заземлителя не должно превышать 4 Ом.
Расчетным, таким образом, является сопротивление заземления .
2. Сопротивление искусственного заземлителя рассчитывается с учетом использовании водопровода в качестве параллельной ветви заземления:

3. Рекомендуемое для расчетов сопротивление грунта в месте сооружения заземлителя - глины по табл. 12-1 составляет 70 Ом Ч м. Повышающие коэффициенты для климатической зоны 3 но табл. 12-2 принимаются равными 2,2 для горизонтальных электродов при глубине заложения 0,8 м и 1,5 для вертикальных электродов длиной 2--3 м при глубине заложения их вершины 0,5-0,8 м.
Расчетные удельные сопротивления грунта:
для горизонтальных электродов

для вертикальных электродов

4. Определяется сопротивление растеканию одного стержня диаметром 20 мм и длиной 2 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 12-3:

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования :

6. Определяется сопротивление растеканию горизонтального электрода из круглой стали диаметром 20 мм, приваренного к верхним концам вертикальных стержней. Коэффициент использовании горизонтального электрода в ряду из стержней при числе их примерно равном 5 и отношении расстояния между стержнями к длине стержня в соответствии с табл. 12-6 принимается равным 0,86.
Сопротивление растеканию горизонтального электрода по формуле из табл. 12-3

7. Уточненное сопротивление растеканию вертикальных электродов

8. Уточненное число вертикальных электродов определяется при коэффициенте использования , принятом из табл. 12-4 при n =4 и :

раздел подготовлен согласно типового проекта СЕРИЯ 3.407-150
Заземляющие устройства
основы электороснабжения
Требования к заземляющим устройствам
основы электроснабжения
Расчет заземляющих устройств
основы электроснабжения
Электрокоррозия подземных сетей блуждающими токами
основы электроснабжения
Повторное заземление нулевого провода на вводе в индивидуальный жилой дом

) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчета сопротивления заземления одиночного вертикального заземлителя:


где:
ρ - удельное сопротивление грунта (Ом*м )
L - длина заземлителя (м)
d - диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования ".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления ".

Сервис расчета вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект , защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Заземление - одна из основных мер безопасности при использовании электрических приборов. В случае износа внутренней изоляции под напряжением может оказаться внешний корпус техники, при касании к которому может случится поражение электрическим током. Именно для предотвращения таких происшествий и организуется монтаж заземления. А чтобы защитная конструкция была максимально эффективной, необходимо провести её расчёт заземления, который может отличаться в зависимости от множества исходных факторов.

Виды заземляющих конструкций

Для организации заземления используются проводники из металлоконструкций различной формы (балка, труба, уголок и так далее). Эти базисные элементы могут быть использованы в одной из трёх основных систем:

  • С использование одиночного глубинного заземлителя;
  • Монтаж комплексной модульной конструкции;
  • Организация электролитического заземления.

Вне зависимости от типа выбранной конструкции, её сопротивление должно укладываться в определённые рамки. Для трёхфазной сети на 380 Вольт сопротивление заземления должно составлять не более 4 Ом. Более распространённая однофазная сеть на 220 Вольт потребует не более 8 Ом. Также предварительные расчёты позволяют заранее определиться с количеством необходимых материалов, что даёт возможность существенно сэкономить.

Формула расчёта одиночного заземлителя

Существует ряд факторов, влияющих на окончательный результат расчёта заземляющей конструкции, а именно:

  • Используемые материалы (решающие значение имеет вид металла, но немаловажным могут быть и показатели электролита);
  • Форма элементов-электродов (влияет незначительно);
  • Расстояние между элементами электродами;
  • Глубина, на которую погружается монтируемый контур.

Необходимо отметить, что для получения системы, имеющий сопротивление в 4–8 Ом, применяемые металлические элементы должны обладать определёнными минимальными параметрами:

  • Плоская балка - 12 мм в ширину, 4 мм в высоту;
  • Уголок - 4 мм в высоту
  • Шест - диаметр не менее 10 мм;
  • Труба - толщина не менее 3.5 мм.

Расчёт защитного заземления можно провести при помощи специализированного программного обеспечения или онлайн-калькуляторов. Но для их правильного использования необходимо знать общую формулу, по которой проводятся вычисления и значение всех переменных. Традиционно в рассматриваемой формуле используются следующие обозначения:

  • R - расчётное заземление (Ом);
  • L - протяжённость заземляющего элемента-заземлителя (м);
  • d - диаметр элемента (м);
  • T - заглубление: расстояние между от середины каждого заземляющего элемента до поверхности грунта (м);
  • ρ - сопротивление грунта (Ом×м). Смотрите таблицу.
  • π - число Пи (3.14)

Расчёт такого типа контура заземления производится по такой формуле:

Измерить все перечисленные значения не составить большой трудности, за исключением разве что параметра ρ. Произвести эту процедуру можно самостоятельно при помощи Омметра, но нужно понимать, что полученные данные могут существенно изменяться при изменении температуры, влажности и других параметров окружающей среды. Поэтому гораздо удобнее будет воспользоваться усреднёнными табличными данными:

Формула расчёта системы заземлителей

С целью достижения оптимального значения сопротивления создаваемой конструкции одиночные заземлители можно расположить в ряд или сформировать из них замкнутый контур (круг, прямоугольник или любую другую фигуру). Для расчёта такого заземления в указанную выше формула войдут дополнительные параметры:

  • R1 - искомое сопротивление (Ом);
  • R - сопротивление, вычисленное по базовой формуле (Ом);
  • N - число элементов в системе заземлителей;
  • Ки - коэффициент использования.

О последнем параметре необходимо рассказать подробнее. Вокруг каждого электрода, используемого для заземления электрического тока, можно представить воображаемую зону, в которой его эффективность достигает 90 %. Она формируется из всех точек, удалённых от поверхности электрода на расстояние, равное его длине. При расчёте заземление необходимо избегать пересечения этих зон, что позволяет достичь максимального коэффициента полезного действия формируемой системы.

Для подсчётов удобнее всего пользоваться табличными значениями, полученных в результате практического применения формулы.

Сама же формула выглядит следующим образом:

Таким образом, если предварительно вычислить переменную и взять её за константу, то по данной формуле можно вычислить оптимальный набор электродов, необходимый для создания заземляющей конструкции:

При это стоит учитывать, что скорее всего полученное значение будет дробным, поэтому его необходимо будет округлить в большую сторону.

Формула расчёта электролитического заземления

В упрощённой модели электролитическую систему заземления можно описать как металлическую трубу, заполненную веществом-электролитом. Это вещество повышает сопротивление всей конструкции и, что более важно, способствует сохранению её параметров с течением времени. Это достигается за счёт того, что со временем электролит проникает в почву и накапливается в ней.

Помимо описанных выше параметров в формуле расчёта электролитического заземления используется параметр C, который описывает концентрацию электролита в почве. Его допустимые значения могут колебаться в промежутке между 0.5 и 0.05. Чем дольше рассматриваемая система находится в грунте, тем меньше становится значение этого параметра: если при начале установки он равнялся 0.5, то через полгода он составить всего 0.125 (но дальнейшее его падение прекратиться).

В этом случае требуемая формула будет такой:

Если в монтируемой системе присутствует несколько электродов электролитического типа, тогда её сопротивление может быть рассчитано по формуле из предыдущего раздела. С той лишь разницей, что коэффициент использования тут будет несколько иной:

В данной статье мы рассмотрели основные типы электрического заземления и все необходимые формулы для их расчёта. Очевидно, что в основе всех вычислений лежит расчёт контура одиночного заземления, в то время как два основных вида получаются при помощи его расширения и доработки. Стоит ещё раз указать на то, что большую одну из ключевых ролей в организации эффективного заземления играет расстояние между электродами, которое не должно быть меньше их отдельной длинны. Все приведённые выше вычисления можно существенно упростить, если воспользоваться специализированным программным обеспечением или онлайн-инструментами. Обладая минимум знаний о том, какие параметры участвуют в расчёте заземления, эти утилиты позволят существенно сократить время проведения работ, при этом обеспечивая довольно высокую точность.

Видео по теме

Защитное заземление - преднамеренное электрическое соединение с землей металлических нетоковедущих частей электроустановок, которые нормально не находятся под напряжением, но могут оказаться под ним (прежде всего вследствие нарушения изоляции).

При замыкании фазы на металлический корпус электроустановки он приобретает электрический потенциал относительно земли. Если к корпусу такой электроустановки прикоснется человек, стоящий на земле или токопроводящем полу (например, бетонном), он немедленно будет поражен электрическим током.

Посредством защитного заземления ток замыкания перераспределяется между заземляющим устройством и человеком обратно пропорционально их сопротивлениям.

Поскольку сопротивление тела человека в сотни раз превышает величину сопротивления растеканию тока заземляющего устройства, через тело человека, прикоснувшегося к поврежденному заземленному оборудованию, пройдет ток, не превышающий предельно допустимого значения (10 мА), а основная часть тока уйдет в землю через контур заземления. При этом напря-жение прикосновения на корпусе оборудования не превысит 42 В.

Контур заземления выполняют из стальных стержней, уголков, некондиционных труб и др. В траншее глубиной до 0,7 м вертикально забиваются стержни (трубы, уголки и др.), а выступающие из земли верхние концы соединяются сваркой внахлест стальной полосой или прутком.

При этом необходимо соблюдать следующие условия.

Рис. 2. Установка одиночного заземлителя в двухслойном грунте:
L - длина одиночного заземлителя ; D - диаметр одиночного заземлителя ;
Н - толщина верхнего слоя грунта; Т - заглубление заземлителя (расстояние
от поверхности земли до середины электрода); t - глубина траншеи (заглубление соединительной полосы)

  1. Расстояние между соседними стержнями рекомендуется выбирать равным длине стержня (если иное не предусмотрено условиями эксплуатации) (рис. 3).

Стержни можно располагать в ряд (рис. 3) или в виде какой-либо геометрической фигуры (квадрата, прямоугольника) в зависимости от удобства монтажа и используемой площади. Совокупность стержней, соединенных между собой полосой, образует контур заземления. В помещении контур заземления приваривается к корпусу силового щита и к заземляющей магистрали (шине заземления), которая проходит вдоль стен здания. На практике часто используются естественные заземлители (части коммуникаций, зданий и сооруже-ний производственного или иного назначения), находящиеся в соприкосновении с землей. Это канализационные трубы, железобетонные конструкции фундаментов, свинцовые оболочки кабелей и др.

Рис. 3. Конструкция заземляющего устройства:
L - длина одиночного заземлителя ; K - расстояние между соседними (смежными) заземлителями

Измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные Правилами эксплуатации электроустановок потребителей (ПЭЭП) не реже одно-го раза в шесть лет, а также после каждого капитального ремонта и длительного бездействия установки.

Сопротивление заземляющих устройств рекомендуется измерять в наиболее жаркие и сухие или в наиболее холодные дни года, когда грунт имеет наименьшую влажность. Чем меньше влажность, тем выше удельное сопротивление грунта. В первом случае влага из грунта испаряется, во втором - замерзает (лед практически не проводит электрический ток). При замерах в другие дни нужно полученные значения корректировать с помощью поправочных коэффициентов, которые приводятся в ПЭЭП .

Расчет заземляющего устройства сводится к определению числа вертикальных заземлителей и длины соединительной полосы. Для упрощения расчета примем, что одиночный вертикальный заземлитель представляет собой стержень, либо трубу малого диаметра.

где L и D - длина и диаметр стержня соответственно, м; P экв эквивалентное удельное сопротивление грунта, Ом*м ; Т - заглубление электрода (расстояние от поверхности земли до середины электрода), м.

Студенты неэлектротехнических специальностей могут определить сопротивление одиночного вертикального заземлителя по формуле:

(3)

или по упрощенной формуле:

(4)

Примечание: здесь и далее знаком (*) обозначаются формулы для расчетов, которые проводят студенты неэлектротехнических специальностей. Формулы, не отмеченные данным знаком, общие для студентов всех специальностей.

Величина эквивалентного удельного сопротивления грунта P экв для студентов неэлектротехнических специальностей задается преподавателем из табл. 2.

Эквивалентным удельным сопротивлением грунта P экв неоднородной структурой называется такое удельное сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой. Если грунт двухслойный, эквивалентное удельное сопротивление определяется из выражения:

P экв = Y*P 1 *P 2 L/, (5)

где Y - коэффициент сезонности (по табл. 2 - для стержневых заземлителей ); P 1 - удельное сопротивление верхнего слоя грунта, Ом*м ; P 2 - удельное сопротивление нижнего слоя грунта Ом*м ; Н - толщина верхнего слоя грунта, м; t - заглубление полосы, м.

Одиночный заземлитель должен полностью пронизывать верхний слой грунта и частично нижний.

Таблица 1 -Эквивалентное удельное сопротивление грунтов

Грунт

Удельное сопротивление R экв , Ом ? м

пределы колебаний

при влажности грунта 10...12%

Чернозем

9...53

Торф

9...53

Глина

8...70

Суглинок

40...150

Супесь

150...400

Песок

400...700

Заглубление полосы t принимается равным 0,7 м - это глубина траншеи (рис. 2). Величина удельного сопротивления грунта непостоянна и зависит от его влажности. Степень влажности грунта определяется в основном количеством выпавших осадков и процессами их высу-шивания . Поверхностные слои грунта подвержены значительным из-менениям влажности. Вследствие этого сопротивление заземлителя будет тем стабильнее, чем глубже он расположен в грунте. Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 м. Следовательно, заглубление стержня можно определить по формуле:

T = (L/2) + t (6)

Таблица 2 - Значения расчетных климатических коэффициентов сезонности сопротивления грунта

Заземлитель

Климатическая зона

Стержневой

1,8...2,0

1,6...1,8

1,4...1,5

1,2...1,4

Полосовой

4,5…7,0

3,5…4,5

2,0…2,5

1,5…2,0

  1. Определяем ориентировочное количество вертикальных заземлителей без учета сопротивления соединительной полосы:

n 0 = R 0 /R н , *(7)

где RH - нормируемое сопротивление растеканию тока заземляющего устройства согласно ПУЭ, Ом;

Для студентов электротехнических специальностей:

n 0 = R 0 *Y/R н .(8)

Коэффициент сезонности Y второй климатической зоны (средняя температура января от -15 до -10°С , июля - от +18 до +22°С) принимается равным 1,6...1,8.

Таблица 3 - Нормируемые значения величины сопротивления растеканию тока заземляющих устройств (для электроустановок напряжением до 1000 В)

Вид заземления

Напряжение сети, В

220/127

380/220

660/380

нормируемое сопротивление R н , Ом

Рабочее заземление нулевой точки трансформатора (генератора)

Повторное заземление нулевого провода на вводе в объект

Повторное заземление нулевого провода на воздушной линии

Величины, приведенные в табл. 3, справедливы при эквивалентном удельном сопротивлении грунта 100 Ом*м и менее. Если эквивалентное удельное сопротивление грунта более 100 Ом*м , необходимо эти величины умножить на коэффициент k з =r экв /100. Коэффициент k з не может быть меньше 1 и больше 10 (даже при больших удельных сопротивлениях грунта).

  1. Определяем сопротивление растеканию тока соединительной полосы:

(9)

где L п , b - длина и ширина соединительной полосы, м; t - заглубление соединительной полосы; Y п - коэффициент сезонности для полосы (по табл. 2 - для полосовых заземлителей ); h п - коэффициент использования полосы (табл. 4).

Формула для приближенного расчета:

(10)

Длину полосы можно определить по предварительному количеству вертикалъных заземлителей . Если принять что они размещены в ряд, то длина полосы составит:

L п = K(n 0 - 1), (11)

где К - расстояние между соседними вертикальными заземлителями , м,

  1. Определяем сопротивление вертикальных заземлителей с учетом сопротивления растеканию тока соединительной полосы (для студентов электротехнических специальностей):

R в = R п *R н (R п - R н ) (12).

  1. Определяем окончательное количество заземлителей (для студентов электротехнических специальностей):

n = R o /R в *h с , (13)

где h с - коэффициент использования вертикальных заземлителей .

Так как токи, растекающиеся с параллельно соединенных одиночных заземлителей , оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Это явление учитывается коэффициентом использования вертикальных заземлителей , величина которого зависит от типа и количества одиночных заземлителей , их геометрических размеров и взаимного расположения в грунте.

Таблица 4 - Коэффициенты использования вертикальных заземлителей h с
и соединительной полосы h п

Число

заземлителей

Заземлители размещены

в ряд

Заземлители размещены

по замкнутому контуру

h ñ

h ï

h ñ

h ï

0,91

0,83

0,89

0,78

0,55

0,77

0,82

0,73

0,48

0,74

0,75

0,68

0,40

0,70

0,65

0,65

0,36

0,67

0,56

0,63

0,32

0,40

0,58

0,29

Примечание. Значения коэффициентов даны с учетом того, что отношение длины заземлителей к расстоянию между ними равно двум.

  1. *Определяем сопротивление одиночного заземлителя с учетом коэффициента использования:

R сп = R 0 /h с .* (14)

  1. Определяем общее сопротивление вертикальных заземлителей с учетом сопротивления соединительной полосы:

R в = R п *R н /R п - R н . (15)

  1. Определяем окончательное количество заземлителей :

n = R сп /R в . (16)

Вычисленное количество заземлителей округляем до ближайшего большего целого числа.

По данным расчета составляем эскиз контура заземления (план размещения заземлителей в грунте - вид сверху, с нанесением размеров) и эскиз одиночного вертикального заземлителя (рис. 2).

Мы продолжаем рассматривать лучший софт для электриков, и в этой статье хотелось бы остановиться на обзоре программ для расчета заземления. Перед тем, как переходить к либо на подстанции, первым делом необходимо рассчитать сопротивление защитного заземления, а также количество электродов и длину горизонтального заземлителя. Помимо этого пригодятся рассчитанные данные, касающиеся сечения ГЗШ, главного PE-проводника и даже расчета шагового напряжения. Все это можно сделать, используя специальные программы, о которых мы сейчас и поговорим.

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие . Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:



Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим . Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

«Заземление»

Еще один программный продукт, чье название говорит само за себя. Как и в предыдущих двух программках, в этой можно без проблем разобраться, т.к. интерфейс простейший и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только осуществлять расчет ЗУ, но и оценивать возможность использования ЖБ фундаментов промышленных зданий в качестве защитного контура. Помимо этого программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводников системы уравнивания потенциалов. Еще одна полезная функциональная возможность продукта – расчет напряжения прикосновения и . Интерфейс вы уже встречали немного выше, выглядит он следующим образом:


Дело в том, что создатели этой программки одновременно являются и создателями «Электрик», поэтому вы можете скачать один из предоставленных в ассортименте продуктов.

«ElectriCS Storm»

Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.

Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.




Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.

Ну и замыкает наш список лучших программ для расчета заземления программный комплекс энергетика под названием «Акула», благодаря которому можно рассчитывать:

  • заземляющие устройства;
  • молниезащиту;
  • характеристики защитных аппаратов;
  • потери напряжения до 1 кВ;
  • мощность объектов, а также электрокотлов и кондиционеров;
  • сечение проводки;

Интерфейс также интуитивно понятен и представлен на русском языке:

«Акула» доступна для бесплатного скачивания, поэтому найти ее в просторах интернета не составит труда. Напоследок рекомендуем просмотреть очень полезное видео