Портативная электролизная установка. Электролизная установка гипохлорита натрия Многоконтурные и одноконтурные установки

Электролизер– это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

Что это

Электролизерработает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

Виды и типы
По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
  1. Прессованными обожженными анодами.
  2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
  3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:
  • Сухие.
  • Проточные.
  • Мембранные.
  • Диафрагменные.

Устройство

Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

Устройство в большинстве случаев состоит из следующих элементов:
  • Электропроводящий корпус.
  • Катод.
  • Анод.
  • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

Принцип действия

В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

Применение

Электролизершироко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

  • Добычи цветных металлов (магний, алюминий).
  • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
  • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
  • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.

Такая технология, как обеззараживание воды гипохлоритом натрия, применяется уже более ста лет. Она отличается достаточно высокой эффективностью и не требует больших трудозатрат, поэтому гидрохлорид натрия на сегодняшний день находит применение в самых различных областях промышленности. С его помощью можно:

  • дезинфицировать воду в бассейнах и искусственных водоемах различного назначения;
  • обеззараживать природные воды, которые затем будут находить применение в организации хозяйственно-бытового водоснабжения;
  • очищать от опасных загрязнителей сточные воды.

Поэтому современные экологи успешно используют в своей работе электролизные установки с гипохлоритом натрия. И если перед вами стоит задача очистки от микроорганизмов большого объема воды (независимо от ее назначения), вам также следует уделить внимание рассматриваемой технологии.

Следует отметить, что обеззараживание гипохлоритом позволяет получать достаточно чистую и прозрачную воду, полностью лишенную болезнетворных бактерий и микроорганизмов. Однако в случае использования рассматриваемой технологии необходимо чрезвычайно серьезно отнестись к некоторым деталям. В частности, если вами осуществляется чистка бассейнов за счет обеззараживания воды гипохлоритом натрия, следует обязательно следить за содержанием в воде активного хлора, а также за показателями рН среды (идеальный рН составит 7,6 - 7,8).

Хотите воспользоваться этим универсальным методом очистки? Тогда рекомендуем заказать электролизные установки гипохлорит натрия в компании «Экоконтроль С». У нас представлено оборудование самого лучшего качества, которое очищает воду очень быстро, эффективно и безопасно. Причем мы предлагаем абсолютно автоматизированные электролизеры, которые не требуют постоянного контроля со стороны специалиста.

Как показывает практика, с помощью обеззараживания гипохлоритом можно добиться очень высоких показателей качества воды. Однако для этого необходимо хорошее оборудование. И если вы хотите приобрести его, поспешите стать клиентом нашей компании - мы предлагаем исключительно сертифицированную продукцию и способны гарантировать ее превосходное качество и эффективность работы.

OSEC ® L - электролизные системы компании WALLACE & TIERNAN ® .

Система OSEC ® L генерирует раствор гипохлорита натрия <1,0% через электролиз рассола, потребляя только воду, соль и электричество. Производительность до 400г/час. Полностью автоматизирована и укомплектована для быстрой установки, безопасной работы и простого обслуживания.

Система OSEC® BP вырабатывает 0.8% раствор гипохлорита натрия путём электролиза рассола, используя для этого только воду, соль и электричество. Система полностью автоматизирована, что делает её идеальной для эксплуатации без постоянного контроля оператора. Настенный монтаж. Выпускаются в четырех стандартных вариантах производительности в диапазоне от 5,5 до 22 кг / день.

OSEC® B-Pak. Электролизная система генерирует 0,8% раствор гипохлорита натрия путём электролиза рассола, потребляя только воду, соль и электричество. Производство гипохлорита на месте и по мере необходимости устраняет проблемы, связанные с транспортировкой и хранением сжиженного хлора или растворов товарного гипохлорита натрия. Производительность до 5 кг / ч.

Система OSEC® B-PLUS вырабатывает 0.8% раствор гипохлорита натрия путём электролиза рассола, используя для этого только воду, соль и электричество. Система OSEC® B-Plus полностью автоматизирована и укомплектована для быстрой установки, безопасной работы и простого обслуживания. Модули поставляются предварительно протестированными на неисправности, с полной обвязкой и электрической разводкой. Производительность до 40 кг/ч (возможно увеличение производительности).

Карта с перечнем объектов использующих электролизные установки типа OSEC (поставка OOO "Экоконтроль С")

Промышленные электролизеры воды - установки электролиза воды и сточных вод

Специальный промышленный электролизер, производящий 0,8% раствор гипохлорита натрия, может находить применение при эксплуатации самых разнообразных производственных объектов, а также объектов общественного назначения. Это высокоэффективное оборудование, используемое для обеззараживания питьевых и сточных вод, вод фонтанов и бассейнов, природных вод и т.д. Причем электролизеры могут быть самыми разными, и нередко в них находят применение даже современные мембранные технологии.

Для каких целей они применяются?

С помощью рассматриваемого оборудования можно осуществлять:

  • обеззараживание воды, предназначенной для питья,
  • очистку сточных вод;
  • очистку технических вод;
  • обработку воды в фонтанах;
  • обработку воды в бассейнах.

При этом электролиз воды обойдется вам куда дешевле, чем использование уже готового гипохлорита натрия.

Суть работы современных электролизеров

Как же работают осуществляющие электролиз воды установки? На сегодняшний день они применяются для производства электрохимическим способом хлора и каустика, которые затем используются с целью обеззараживания воды. Причем чаще всего в таких аппаратах находят применение сульфакатионитные мембраны, которые, благодаря своим основным особенностям, позволяют получать высококачественные продукты реакции, обеспечивая эффективность и стабильность процесса очистки воды. И если вы осуществляете электролиз сточных вод с использованием подобных аппаратов, то можете рассчитывать на самый лучший конечный результат.

Преимущества технологии

Далее необходимо поговорить о тех достоинствах, которыми обладают современные промышленные электролизеры воды, и которые позволяют именно этому оборудованию с каждым годом удостаиваться все большей популярности. К этим достоинствам относятся:

  • финансовая доступность, безопасность и простота метода очистки;
  • отсутствие зависимости от компаний, являющихся поставщиками гипохлорита натрия;
  • возможность производить дезинфицирование не только воды, но и водопроводных труб;
  • полное растворение реагентов в воде (благодаря использованию технологии электролиза воды, вы получаете так называемую «хлорную» воду);
  • предотвращения появления в воде любых болезнетворных бактерий, вредных грибков и водорослей;
  • возможность полного удаления органических примесей.

Благодаря всем перечисленным преимуществам, установки для электролиза воды в наше время очень активно применяются самыми различными гражданскими, промышленными и коммунальными объектами. И если вы также нуждаетесь в высокоэффективном и недорогом водоочистительном оборудовании, обязательно обратите на них внимание. Причем все устройства для электролиза сточных вод, вод фонтанов, бассейнов и других искусственных водоемов, а также вод хозяйственно-бытового назначения целесообразнее всего заказывать в компании «Экоконтроль С». Наши сотрудники грамотно подберут для вас самое лучшее оборудование, дадут профессиональные консультации, помогут настроить и наладить аппараты, обеспечат гарантийное и сервисное обслуживание. И все это на самых выгодных условиях!

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Электрохимические и электрофизические установки,электролизные установки

Электролиз - это явление выделения вещества на электродах при прохождении через электролит тока, процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов.
Электролизер - это ванна, в которой процесс идет с поглощением электрической энергии.
Принцип действия можно рассмотреть на схеме электролизера с анодным растворением и катодным осаждением (рис. 1.3-1) .

Основными элементами установки являются: электролит (1), электроды (2) и источник питания (3).
Напряжение на электролизной ванне (U) состоит из трех состааляющих:



Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются:
- циркуляция электролита, для выравнивания температуры;
- вибрация электродов;
- импульсный источник питания.
В промышленности электролиз металлов и исходная среда определяются электрическим потенциалом выделяемого металла.
Металлы с положительным потенциалом выделяют из твердой черновой основы путем ее растворения (например, медь с потенциалом «+0,34 В»).
Металлы с отрицательным потенциалом больше выделяют из растворов их солей (например, цинк с потенциалом «-0,76 В»).
Металлы с отрицательным потенциалом меньше выделяют из расплавов их солей (например, алюминий с потенциалом «-1,43»).
Примечание - Потенциалы металлов определены по отношению к «водороду», у которого электрический потенциал равен «нулю».
Электролиз меди применяется для получения чистой электролитической меди из черновой (полученной после плавки в печах) и дли извлечения ценных металлов, находящихся в ней.
Процесс ведется в электролизных ваннах.
Анодом является литая черновая медь в виде плит толщиной 35...45 мм и массой около 300 кг.
Катодом является электролитическая (чистая) медь в виде пластин толщиной 0,6...0,7 мм, подвешенных на ушках между анодами. Расстояние междусоседними анодами и катодами 35...40 мм.
Электролитом, которым заполняется ванна, является водный раствор медного купороса (CuSO 4), подкисленный серной кислотой (H 2 S0 4) для уменьшения сопротивления.

В целях выравнивания концентрации ионов меди у электродов и обеспечения необходимой температуры применяется прямая циркуляция электролита, который подается снизу и сливается сверху ванны.
Электролиз цинка применяется для получения высококачественного цинка (Zn) из водных растворов его солей.
Катодом являются алюминиевые пластины толщиной 4 мм. Анодом являются свинцовые пластины толщиной 5... 8 мм, с добавкой 1 % серебра для снижения коррозии.
Электролитом является 5...6% водный раствор сернокислого цинка (ZnS0 4) и серной кислоты (H 2 S0 4). Во время электролиза на катоде осаждается металлический цинк (Zn), который периодически снимают.
На аноде выделяется газообразный водород (Н), а в растворе образуется серная кислота (H 2 S0 4).

Снятие цинка с катодов производится до 2 раз в сутки, затем его промывают, формуют в пакеты и переплавляют в печах.
В процессе электролиза износ катодов составляет около 1,5 кг/т цинка, а анодов - 0,8... 1,5 кг/т цинка.
Резкое повышение падения напряжения на ванне (до 3,3...3,6 В) указывает на необходимость очистки анодов от шлама.
Такая необходимость очистки анодов - один раз в 20.. .25 дней, а катодов - один раз в 10 дней.
Шлам удаляется через отверстие в дне ванны.
В электролизном цехе ванны устанавливают рядом длинными бортами по 20...30 штук и соединяют в один блок.
Для поддержания заданной температуры ванны охлаждаются водой, подаваемой по алюминиевым или углеродистым змеевикам.
Для снижения выделения водорода на катоде в раствор добавляют поверхностно-активные вещества.
Электролиз алюминия применяется для получения качественного алюминия (Аl ) из расплавленных солей путем электролиза.
Анодом является угольный электрод, который расходуется в процессе электролиза, так как находится в сильно агрессивной среде.
Анод подвешивается на подвижной раме, которая автоматически перемещается по металлоконструкциям печи. Управляющим сигналом является потеря напряжения в электролите.
Электролитом является раствор оксида алюминия (AI 2 O 3) в расплавленном криолите (Na 3 АlF 6). Присутствие фтора (F 6) придает среде высокую агрессивность.
Катодом являются подовые блоки печи.
Ток к ванне подводится с двух сторон.
К аноду - по пакетам алюминиевых шин, по гибким медным токопроводам, по стальным штырам.
К катоду - по специальным токопроводам (блюмсам).
Размеры анода определяются заданной мощностью ванны и допустимой плотностью тока.

Электролизеры объединяют в серию из 160... 170 шт., причем 4...5 из них являются резервными.
Выливают металл из ванны вакуум-ковшами
Вылитый из ванн алюминий поступает в миксеры литейного корпуса, где он после усреднения и отстаивания разливается в слитки.

Электролиз – это явление выделения вещества на электродах при прохождении через электролит тока, процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов.


Электролизёр – это ванна, в которой процесс идёт с поглощением электрической энергии.


Принцип действия:



Рис. 1.1.


Основными элементами установки являются: электролит 1, электроды 2 и источник питания 3.


Напряжение на электролизной ванне (U) состоит из трёх составляющих:


U = U1 + Uак + Uэ, (1.1)



Uак – приэлектродное напряжение;


Uэ – напряжение в электролите.


Мощность, выделяющаяся в электролизной ванне (Рэв), определяется выражением:


Рэв = I(U1 + Uа + Uк + Il/σ), (1.2)


где I – ток в ванне, А;


Uа,Uк – падение напряжения на аноде и катоде, В;


l – расстояние между электродами, м;


σ – удельная проводимость электролита, 1/(Ом·м).


Только часть этой мощности расходуется на разложение вещества. Остальная мощность идёт на нагрев электролита и транспортировку ионов через раствор. Эффективность электролизного процесса оценивается выходом по энергии (Аэ, %).


Аэ=α·(Ат/U)·10 2 , (1.3)


где α – электрохимический эквивалент вещества;


Ат – выход металла по току, г/Дж;


U – напряжение на электролизёре, В.


Выход металла по току – это количество металла (г), выделяемое на единицу затраченной энергии (Дж).


Интенсивность процесса определяется электродной плотностью тока



jэ = I/S, (1.4)


где I – ток, А;


S – площадь погружённой в электролит части электрода, м2.


Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются:


Циркуляция электролита, для выравнивания температуры;


Вибрация электродов;


Импульсный источник питания.


Электролиз является одним из видов технологических процессов. Сущность его заключается в выделении из электролита при протекании по нему постоянного тока частиц вещества и в осаждении их на погружённых в электролит электродах (электроэкстракция) или переносе вещества с одного электрода через электролит на другой (электролитическое рафинирование).


Электролиз применяется:


В цветной металлургии для получения лёгких металлов (алюминия, магния, кадмия и др.) и рафинирования тяжёлых металлов (меди, серебра, золота, никеля, свинца и др.);


В электрохимии для получения хлора, водорода, тяжёлой воды,


кислорода, фтора, калия, натрия и др.;


В машиностроении для нанесения защитных и декоративных покрытий металлических и неметаллических изделий (цинкование, никелирование, кадмирование, свинцевание, меднение, хромирование, серебрение, оксидирование и др.);


В чёрной металлургии для лужения жести и электролитической очистки.


В металлургии используется две разновидности электролиза: электролиз водных растворов и электролиз расплавленных солей. Первый применяется для получения и электролитического рафинирования металлов с низким нормальным потенциалом (цинк, хром, олово, никель, свинец, серебро) и осуществляется при температуре не выше 100 С, второй – для получения металлов с высоким нормальным потенциалом (магний, алюминий, щелочноземельные металлы) при температуре около 1000 С.


Электролиз проводится в специально оборудованных ваннах - электролизёрах. Напряжение на ванне составляет несколько вольт, а токи достигают десятков и сотен тысяч ампер. В целях экономичной канализации больших токов одинаковые ванны соединяются в серии последовательно, соответственно напряжению преобразовательной установки.


Изменение электрического сопротивления ванн из-за нагрева электролита, изменения его химического состава, утечек тока, нарушений нормального режима эксплуатации, вывода из работы отдельных ванн серии, а также изменений напряжения питающей сети вызывает необходимость регулирования электрических параметров. Для обеспечения заданной производительности электролизной установки применяют автоматическое регулирование напряжения, мощности и силы тока серии. Наиболее распространённым способом регулирования является поддержание постоянства силы тока серии.


В цветной металлургии к наиболее мощным установкам электролиза относятся серии ванн для получения алюминия и магния. Для получения алюминия используют электролизёры напряжением 4–5 В и токами 100–150 кА, напряжения серий составляет 450–850 В. Режимы работы электролизных установок продолжительные и непрерывные. При выводе отдельных ванн в ремонт они шунтируются специальными шинами. По категории надёжности установки относятся к первой категории. Некоторые из них, например установки электролиза алюминия, благодаря большой теплоёмкости ванн, допускают кратковременные (на несколько минут) перерывы, но длительная остановка может привести к застыванию электролита и значительному расстройству технологического процесса, на восстановление которого может понадобиться до 10 суток.


В электрохимии используются электролизёры с напряжениями от 2 до 10–12 В, а в некоторых случаях до 10–220 В (установки для разложения воды, выполненные по принципу фильтр-пресса, в которых все электроды соединяют последовательно). Напряжения серий ванн принимаются 150–850 В. При электролизе хлора ток ванн составляет 100–190 кА. Режим работы установок электрохимии непрерывный. Установки электрохимии относятся к первой категории надёжности. Для установок хлора особенно опасны перерывы в электроснабжении в периоды пуска.


В установках металлопокрытий напряжение ванн колеблется от 3,5 до 9–10 В и максимально 25 В. Токи ванн меняются в пределах 0,1–5 кА и выше. В большинстве случаев требуется регулирование величины тока в широких пределах. Различие в режимах работы отдельных ванн не допускает последовательного их включения. Ванны чаще всего питаются от общих магистралей напряжением 6–12 В через индивидуальные регулировочные реостаты. Установки металлопокрытий, используемые в поточных автоматических линиях, относятся к приёмникам первой категории, отдельные ванны – ко второй категории. Суммарная мощность преобразовательных установок в цехах металлопокрытий составляет 50–200 кВт. Источником питания их являются цеховые сети напряжением 380 В. Режимы работы установок циклические, связанные с загрузкой изделий в ванны и их разгрузкой.


Для промышленного электролиза применяют постоянный ток. Наряду с традиционными методами ведения электролиза на постоянном токе, применяют режимы, связанные с использованием токов сложной формы, периодическими изменениями постоянного тока. Питание установок электролиза постоянным током производится от генераторов постоянного тока, в том числе и униполярных, и от статических полупроводниковых преобразовательных агрегатов.


Преобразовательный агрегат состоит из силового трансформатора, одного, двух или четырех выпрямительных блоков, а также коммутационной, управляющей и вспомогательной аппаратуры (защита, сигнализация). Агрегаты с выпрямленным током до 6,25 кА имеют вентильный трансформатор с одной вторичной обмоткой, при токе 12,5 кА – с двумя, при токе 25 кА – с четырьмя обмотками и соответственно с одним, двумя и четырьмя выпрямительными блоками (рис. 1.1).




Рис. 1.1.


Для преобразовательных агрегатов применяются шестифазная нулевая схема с соединением вторичных обмоток трансформатора по схеме «две обратные звезды с уравнительным реактором» (рис. 1.2 а) и трёхфазная мостовая схема (рис. 1.2 б). Преобразовательные агрегаты малой мощности собираются по трёхфазной нулевой схеме (рис. 1.2 в).





Рис. 1.2.


Большинство электролизных установок требуют регулирования напряжения выпрямленного тока. Необходимость изменения напряжения на зажимах электролизной серии в нормальном режиме ее работы определяется следующими причинами:


а) изменением напряжения в питающей сети переменного тока;


б) изменением количества ванн в электролизной серии вследствие вывода некоторого количества ванн в ремонт либо шунтирования по технологическим причинам;


в) изменением режима работы ванн, в частности, при изменении силы тока или межэлектродного пространства.


В пусковых режимах электролизных установок обычно требуется регулирование напряжения в широких пределах. Причинами этого являются, во-первых, то обстоятельство, что серия электролиза, как правило, пускается не целиком, а частями или даже отдельными ваннами. Во-вторых, пусковой режим работы ванны может существенно отличаться от нормального рабочего. Так, например, алюминиевые ванны перед пуском обжигаются (без электролита) и на них бывает пониженное напряжение, зато в первый период после пуска напряжение на ваннах держится более высоким, чем в нормальном режиме.


Поэтому регулирование напряжения осуществляется двумя способами:


1. ступенчато преобразовательным трансформатором (ТДНПВ – трёхфазный, Д – дутьевое охлаждение, Н – с РПН, ПВ – преобразователь вентильный; ТМНПУ-У – с уравнительным реактором);


2. плавное регулирование осуществляется дросселем насыщения (ДН–6300, предел регулирования 49 В).


В преобразовательных подстанциях каждый вентиль защищается быстродействующим предохранителем.


Быстродействующий предохранитель обладает токоограничивающей способностью, т. е. время плавления FU значительно меньше, чем время нарастания тока к. з. до максимального значения.


В составе преобразовательной подстанции имеются: РУ переменного тока, преобразовательные агрегаты и РУ выпрямленного тока. От РУ переменного тока, помимо агрегатов и трансформаторов собственных нужд преобразовательных подстанций, в ряде случаев питаются и другие потребители электроэнергии предприятия.


Для компенсации реактивной мощности, генерируемой преобразовательными установками, используются продольная емкостная компенсация, резонансные фильтры, многофазные схемы выпрямления и компенсационные выпрямительные агрегаты.


Преобразовательные подстанции, питающие электролизные установки по производству алюминия, магния и хлора характеризуются значительным количеством параллельно работающих выпрямительных агрегатов и большой мощностью.


Выпрямительный агрегат является источником высших гармоник тока и напряжения, вызывающих ухудшение коэффициентов мощности и дополнительные потери электроэнергии, а также помехи в каналах связи и телевидения. Степень влияния высших гармоник обратно пропорциональна числу фаз выпрямления. С ростом мощности агрегата влияние увеличивается.


Увеличение числа фаз выпрямления приводит к исчезновению гармонических составляющих порядка ниже – 1.


Увеличение числа фаз выпрямления достигается специальным выполнением обмоток либо созданием эквивалентного многофазного режима для групп агрегатов, каждый из которых работает в шестифазном режиме выпрямления. В качестве оптимальной принята двенадцатифазная схема выпрямления.


Для других производств, имеющих электролизеры на меньший ток, характерна работа одиночных агрегатов на каждую электролизную серию.


При небольшом количестве (2–4) агрегатов РУ переменного тока подстанции обычно имеет одиночную секционированную систему шин (рис. 1.3).





Рис. 1.3.


При большом числе преобразовательных агрегатов предпочтение отдается РУ с двойной системой шин (рис. 1.4).





Рис. 1.4.


Двойная система шин предпочтительна так же по условиям обеспечения пусковых режимов. Для большинства электролизных установок в пусковом режиме требуется регулирование выпрямленного напряжения в значительных пределах. Если выпрямительные агрегаты не могут обеспечить необходимого диапазона, то для дополнительного снижения напряжения временно, на пусковой период, устанавливают понижающий трансформатор. При двух системах сборных шин на одну из них через автотрансформатор подается пониженное напряжение, необходимое для преобразовательных агрегатов, а на другой системе шин поддерживается нормальное напряжение, необходимое для других потребителей электроэнергии.


Преобразовательные подстанции большой мощности обычно получают питание от понижающих трансформаторов 220/10 кВ мощностью 180–200 МВА, имеющих на стороне низшего напряжения расщепленные обмотки. Для уменьшения токов к. з. на шинах 10 кВ применяют раздельную работу расщепленных обмоток.


Высокие требования к бесперебойности питания электролизных установок вынуждают применять в системах их питания повышенное резервирование, которое достигается за счет секционирования всех звеньев системы электроснабжения, применения двойной системы сборных шин, установки секционных выключателей с устройством АВР.


Преобразовательные агрегаты мощных электролизных установок присоединяют к серии непосредственно без коммутационной аппаратуры. Установки сравнительно небольшой мощности подключают с использованием автоматических выключателей, являющихся одновременно и защитной аппаратурой агрегата. Сильноточная коммутационная аппаратура применяется так же при подпитке током серий или отдельных электролизеров, шунтировании ванн при гашении анодных вспышек, выводе их в ремонт и т. п.


Быстродействующие автоматические выключатели серии ВАБ и ВАТ используются для оперативных отключений без нагрузок и редких отключений под нагрузкой. Они состоят из унифицированных узлов-блоков, укомплектованы однотипными реле и блоками управления. Выключатели серии ВАТ отличаются от серии ВАБ наличием индукционно-динамического привода. Быстродействие привода обеспечивается тем, что удерживающий магнитный поток вытесняется в параллельный участок магнитной цепи.


К электролизным ваннам ток от источников питания подводится по специальным шинопроводам, состоящим из собранных в пакеты отдельных прямоугольных шин. Обычно шинопроводы выполняются из алюминиевых шин, медь применяется только там, где алюминий непригоден вследствие его малой антикоррозионной стойкости.


Сечения шинопроводов определяют, исходя из экономической плотности тока. Рассчитанное сечение шинопровода затем проверяют на допустимое значение потерь напряжения (не более 3 %), допустимый нагрев в установившемся режиме (не выше 343 К) и на механическую прочность.


Поскольку рабочие токи электролизных ванн достигают десятков и сотен килоампер, сечение шинопровода также получается большим – до 15 дм2.


Шинопроводы, подводящие электроэнергию от выпрямительной подстанций к электролизному цеху, монтируются на специальных эстакадах. Между отдельными электролизными ваннами внутри цеха шинопроводы прокладывают в специальных шинных каналах, закрытых железобетонными плитами.


Особенности преобразовательных подстанций:


1. Все преобразовательные агрегаты на подстанции работают параллельно на одну систему выпрямленных шин;


2. Количество трансформаторов на мощных преобразовательных подстанциях может достигать 10–11 штук;


3. Преобразовательные подстанции, располагаются в непосредственной близости от корпуса электролиза и выполняются в виде пристроенных или отдельностоящих.


Пристроенные подстанции:


«+» – малая длина токопровода со стороны выпрямленного тока (снижение потерь);


«–» – ухудшение условий охлаждения.


Отдельностоящие подстанции: всё наоборот.


Выводы: электролиз - физико-химический процесс, который возникает при прохождении электрического тока через раствор либо расплав электролита. Электролиз применяется в цветной и черной металлургии, в электрохимии и машиностроении

Используя принцип получения водорода с помощью электролиза водного раствора щелочи, я решил сделать простой и компактный аппарат, удобный для работы с небольшими деталями, при пайке твердыми припоями. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электролитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.


Относительно небольшая, но вполне достаточная производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожаро- и взрывобезопасность.


Устройство электролизера

Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaОH. Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.


Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор, которые сделаны из двух порожних баллончиков для заправки газовых зажигалок (можно использовать баллончики завода «Северный пресс» г. Ленинград). Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1: 1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку - иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800°С.


Рис. 1. Водяная горелка.

Для плат электролизера я использовал толстое оргстекло, толщиной 25 мм. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.

Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6-0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5-6 мм должна быть 2-3 мм.

Кольца, предназначенные для герметизации внутренней полости и электрической изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, но все же идеальным будет выполненный с помощью круглореза.

Четыре стальные шпильки M8, соединяющие детали, изолированы кембриком 10 мм и пропущены в соответствующие отверстия 11 мм.

Количество пластин в батарее - 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением - из расчета 2 В на пластину. Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток меньше, но лучше применять 4-8%-ный раствор - при электролизе он не так пенится.

Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5 А обеспечивает необходимую производительность горючей смеси для форсунки - иглы с внутренним 0,6 мм. Оптимальное соотношение диаметра иглы форсунки и производительности электролизера устанавливается опытным путем - так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горение начнется в самой игле, которая от этого быстро разогреется и оплавится.

Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе. Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизёра. Штуцеры емкостей сделаны из медных трубок 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного. пополам и с установленной на месте клапана тонкой трубкой.

Соедините короткой полихлорвиниловой трубкой 5 мм электролизер с промежуточной емкостью, последнюю - с водяным затвором, а его выходной штуцер более длинной трубкой - с форсункой-иглой (В качестве форсунки можно использовать медицинский шприц с иглой). Внутрь рукоятки (шприца) помещается огнегасительная набивка - латунная сетка, свернутая в спираль.





Рис. 2. Устройство электролизера:
1 - изолирующая полихлорвиниловая трубка 10 мм, 2 - шпилька М8 (4 шт.), 3 - гайка М8 с шайбой (4 шт.), 4 - левая плата, 5 - пробка-болт М10 с шайбой, 6 - пластина, 7 - резиновое кольцо, 8 - штуцер, 9 - шайба, 10 - полихлорвиниловая трубка 5 мм, 11 - правая плата, 12 - короткий штуцер (3 шт.), 13 - промежуточная емкость, 14 - основание, 15 - клеммы, 16 - барботажная трубка, 17 - форсунка-игла, 18 - корпус водяного затвора.

Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.

Если вам необходима большая производительность - увеличьте количество пластин и примените более мощный блок питания - с ЛАТРом и простейшим выпрямителем. Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно. Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600° С. Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1: 1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.



Ю. ОРЛОВ, г. Троицк, Московская обл.
Опубликовано: Моделист конструктор