Электрохимические и электрофизические установки,электролизные установки. Электролизер своими руками: обзор разновидностей и рекомендации по их изготовлению Виды и типы

5.13.1. При эксплуатации электролизных установок должны контролироваться: напряжение и ток на электролизерах, давление водорода и кислорода, уровни жидкости в аппаратах, разность давлений между системами водорода и кислорода, температура электролита в циркуляционном контуре и температура газов в установках осушки, влажность водорода после установок осушки, чистота водорода и кислорода в аппаратах и содержание водорода в помещениях установки.

Нормальные и предельные значения контролируемых параметров должны быть установлены на основе инструкции завода-изготовителя и проведенных испытаний и строго соблюдаться при эксплуатации.

5.13.2. Технологические защиты электролизных установок должны действовать на отключение преобразовательных агрегатов (двигателей-генераторов) при следующих отклонениях от установленного режима:

разности давлений в регуляторах давления водорода и кислорода более 200 кгс/м 2 (2 кПа);

давлении в системах выше номинального;

межполюсных коротких замыканиях;

однополюсных коротких замыканиях на землю (для электролизеров с центральным отводом газов);

исчезновении напряжения на преобразовательных агрегатах (двигателях-генераторах) со стороны переменного тока.

При автоматическом отключении электролизной установки, а также повышении температуры электролита в циркуляционном контуре до 70°С, при увеличении содержания водорода в воздухе помещений электролизеров и датчиков газоанализаторов до 1% на щит управления должен подаваться сигнал.

После получения сигнала оперативный персонал должен прибыть на установку не позднее чем через 15 мин.

Повторный пуск установки после отключения ее технологической защитой должен осуществляться оперативным персоналом только после выявления и устранения причины отключения.

5.13.3. Электролизная установка, работающая без постоянного дежурства персонала, должна осматриваться не реже 1 раза в смену. Обнаруженные дефекты и неполадки должны регистрироваться в журнале (картотеке) и устраняться в кратчайшие сроки.

При осмотре установки оперативный персонал должен проверять:

соответствие показаний дифференциального манометра-уровнемера уровням воды в регуляторах давления работающего электролизера;

положение уровней воды в регуляторах давления отключенного электролизера;

открытие клапанов выпуска газов в атмосферу из регуляторов давления отключенного электролизера;

наличие воды в гидрозатворах;

расход газов в датчиках газоанализаторов (по ротаметрам);

нагрузку и напряжение на электролизере;

температуру газов на выходе из электролизера;

давление водорода и кислорода в системе и ресиверах;

давление инертного газа в ресиверах.

5.13.4. Для проверки исправности автоматических газоанализаторов 1 раз в сутки должен проводиться химический анализ содержания кислорода в водороде и водорода в кислороде. При неисправности одного из автоматических газоанализаторов соответствующий химический анализ должен проводиться каждые 2 ч.

5.13.5. На регуляторах давления водорода и кислорода и на ресиверах предохранительные клапаны должны быть отрегулированы на давление, равное 1,15 номинального. Предохранительные клапаны на регуляторах давления должны проверяться не реже 1 раза в 6 мес., а предохранительные клапаны на ресиверах - не реже 1 раза в 2 года. Предохранительные клапаны должны испытываться на стенде азотом или чистым воздухом.

5.13.6. На трубопроводах подачи водорода и кислорода в ресиверах, а также на трубопроводе подачи обессоленной воды (конденсата) в питательные баки должны быть установлены газоплотные обратные клапаны.

5.13.7. Для питания электролиза должна применяться вода, по качеству соответствующая дистилляту (обессоленная вода, конденсат). При этом удельная электрическая проводимость воды должна быть не более 5 мкСм/см (или удельное сопротивление - не менее 200 кОм/см).

Для приготовления электролита в соответствии с действующими государственными стандартами должен применяться гидрат окиси калия (КОН): технический высшего сорта, поставляемый в виде чешуек, или марок ЧДА, Ч.

5.13.8. Чистота водорода, вырабатываемого электролизными установками, должна быть не ниже 99,5% (в электролизных установках типа СЭУ-4м и СЭУ-8м - не ниже 99%), а кислорода - не ниже 98,5%.

5.13.9. Температура электролита в электролизере должна быть не выше 80, а разность температур наиболее горячих и холодных ячеек электролизера не более 20°С.

5.13.10. При использовании кислорода для нужд электростанции давление в ресиверах кислорода должно автоматически поддерживаться ниже давления водорода в них.

5.13.11. Перед включением электролизера в работу все аппараты и трубопроводы должны быть продуты азотом. Чистота азота для продувки должна быть не ниже 97,5%. Продувка считается законченной, если содержание азота в выдуваемом газе достигает 97%.

Продувка аппаратуры электролизеров углекислым газом не допускается.

5.13.12. Подключение электролизера к ресиверам, находящимся под давлением водорода, должно осуществляться при превышении давления в системе электролизера по отношению к давлению в ресиверах не менее чем на 0,5 кгс/см 2 (50 кПа).

5.13.13. Для вытеснения воздуха или водорода из ресиверов должен применяться углекислый газ или азот. Воздух должен вытесняться углекислым газом до тех пор, пока содержание углекислого газа в верхней части ресиверов не достигнет 85%, а при вытеснении водорода - 95%.

Вытеснение воздуха или водорода азотом должно производиться, пока содержание азота в выдуваемом газе не достигнет 97%.

При необходимости внутреннего осмотра ресиверов они должны предварительно продуваться воздухом до тех пор, пока содержание кислорода в выдуваемом газе не достигнет 20%.

Азот или углекислый газ должен вытесняться водородом из ресиверов, пока в их нижней части содержание водорода не достигнет 99%.

5.13.14. В процессе эксплуатации электролизной установки должны проверяться:

плотность электролита - не реже 1 раза в месяц;

напряжение на ячейках электролизеров - не реже 1 раза в 6 мес.;

действие технологических защит, предупредительной и аварийной сигнализации и состояние обратных клапанов - не реже 1 раза в 3 мес.;

влажность водорода - не реже 1 раза в сутки.

5.13.15. При работе установки сорбционной осушки водорода или кислорода переключение адсорберов-осушителей должно выполняться по графику. Температура точки росы водорода после установки осушки должна быть не выше минус 5°С.

При осушке водорода методом охлаждения температура водорода на выходе из испарителя должна быть не выше минус 5°С.

Для оттаивания испаритель должен периодически по графику отключаться.

5.13.16. При отключении электролизной установки на срок до 1 ч разрешается оставлять аппаратуру под номинальным давлением газа, при этом сигнализация повышения разности давлений в регуляторах давления кислорода должна быть включена.

При отключении электролизной установки на срок до 4 ч давление газов в аппаратах должно быть понижено до 0,1 - 0,2 кгс/см 2 (10 - 20 кПа), а при отключении на срок более 4 ч аппараты и трубопроводы должны быть продуты азотом. Продувка должна выполняться также во всех случаях вывода электролизера из работы при обнаружении неисправности.

5.13.17. При работе на электролизной установке одного электролизера и нахождении другого в резерве вентили выпуска водорода и кислорода в атмосферу на резервном электролизере должны быть открыты.

5.13.18. Промывка электролизеров, проверка усилия затяжки их ячеек и ревизия арматуры должны производиться 1 раз в 6 мес.

Текущий ремонт, включающий вышеупомянутые работы, а также разборку электролизеров с заменой прокладок, промывку и очистку диафрагм и электродов и замену дефектных деталей, должен осуществляться 1 раз в 3 года.

Капитальный ремонт с заменой асбестовой ткани на диафрагменных рамах должен производиться 1 раз в 6 лет.

При отсутствии утечек электролита из электролизеров и сохранении нормальных параметров технологического режима допускается удлинение срока работы электролизной установки между текущими и капитальными ремонтами по решению технического руководителя энергообъекта.

5.13.19. Трубопроводы электролизной установки должны окрашиваться в соответствии с действующими государственными стандартами; окраска аппаратов должна выполняться по цвету окраски трубопроводов соответствующего газа; окраска ресиверов - светлой краской с кольцами по цвету окраски трубопроводов соответствующего газа.

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Электрооборудование металлорежущих станков отличается разнообразием, сложностью и высоким уровнем автоматизации. Наиболее массовым видом металлорежущего оборудования является сравнительно небольшое число типов станков общепромышленного назначения, повсеместно распространенных на предприятиях самого различного профиля. К ним относятся универсальные станки широкого назначения для точения, сверления, нарезания резьбы и т. д.

Электрооборудование таких станков обычно однотипно и определяется использованием простых электроприводов ограниченной мощности. В системах управления широко применяют серийную электроаппаратуру (магнитные и тиристорные пускатели, автоматические выключатели, разнообразные реле и т. п.).

В качестве примера рассмотрим основные части и электрическую схему универсального токарно-винторезного станка 1К62 (рис. 143).

Рис. 143. Общий вид (а) и схема управления (б) токарно-винторезного станка 1К62:
1 - передняя бабка; 2 - шпиндель; 3 - суппорт; 4 - задняя бабка; 5 - шит управления; 6 - ходовой винт; 7 - вал; 8 - коробка подачи; 9 - станина

Привод шпинделя 2, ходовых винта 6 и вала 7 осуществляется через коробку скоростей, расположенную в передней бабке 1, и коробку подач 8 от главного электродвигателя М 1, скрытого внутри станины 9. Мощность Ml составляет 10 кВт. Кроме главного двигателя станок оборудован электродвигателем М4 (электродвигатель быстрых ходов установочных перемещений суппорта 3), электродвигателем насоса охлаждения М2 и электродвигателем привода гидросистемы М3, подключаемым с помощью штепсельного разъема ШР. Двигатель М3 используют тогда, когда на станке применяется гидрокопировальное устройство. Задняя бабка 4 станка служит для установки второго поддерживающего центра (при обработке в центрах) или режущего инструмента для обработки отверстий (сверла, метчика, развертки). Резцы устанавливают в головке суппорта, сообщающего им продольную и поперечную подачу.

Напряжение на станок подается включением пакетного выключателя Q1. Питание цепи управления осуществляется через разделительный трансформатор Т с вторичным напряжением 110 В.

Двигатель М1 запускается кнопкой SВП, с нажатием которой включается контактор КМ. Одновременно с Ml запускается двигатель М2 (двигатель насоса охлаждения) при включенном пакетном выключателе Q2 и М3 (двигатель гидросистемы) при включенном штепсельном разъеме ШР.

Работа двигателя Ml на холостом ходу ограничивается выдержкой времени реле КТ. Обмотка реле КТ включается переключателем SO, замыкающим контакты при остановке шпинделя. Если пауза в работе превышает 3 - 8 мин, то контакт реле КТ размыкается и на контактор КМ питание не подается, и двигатель Ml останавливается, ограничивая тем самым работу холостого хода, уменьшая потери электроэнергии.

Работа двигателя М4 зависит от перемещения суппорта, который нажимает на переключатель SAB, через контакт замыкает цепь катушки контактора КМБ и включает двигатель. Возврат рукоятки суппорта в среднее положение приводит к отключению двигателя М4.

Трансформатор Т обеспечивает освещение станка напряжением 36В. Защита от коротких замыканий осуществляется предохранителями F1 - F5, а от перегрузок - тепловым реле KST1, KST2 и KST5. Двигатель М4 работает кратковременно и в защите от перегрузок не нуждается.

Электрооборудование сварочных установок

Среди большого разнообразия сварочных электроустановок широкое общепромышленное применение получили установки электродуговой сварки.

Наиболее простыми являются сварочные установки (посты) для ручной дуговой сварки . Основу электрооборудования такого сварочного поста составляет источник сварочного тока. В качестве источников применяют специальные сварочные трансформаторы, выпрямители и электромашинные преобразователи переменного тока в постоянный. Кроме источника тока в состав сварочного поста входят распределительный щит, соединительные гибкие провода и электрододержатель.

Сварочные трансформаторы по конструктивным и электромагнитным схемам подразделяют на трансформаторы: с отдельным дросселем, с совмещенным дросселем, с подвижными обмотками, с магнитным шунтом и с подмагничиванием постоянным током. Дроссели, магнитные шунты, подвижные обмотки или подмагничивание постоянным током используют в этих трансформаторах для регулировки сварочного тока.


Рис. 144. Сварочный трансформатор с подвижными катушками

Наиболее часто применяют трансформаторы с подвижными обмотками, как наиболее простые и надежные (рис. 144). Сердечник такого трансформатора - стержневого типа, шихтованный. Первичная и вторичная обмотки - слоевые, с развитой поверхностью охлаждения. Каждая обмотка состоит из двух катушек, которые могут соединяться последовательно и параллельно. На магнитопроводе 1 расположены неподвижная первичная 4 и подвижная вторичная 3 обмотки, которые ходовым винтом с помощью рукоятки регулирования тока 2 перемешаются вдоль магнитопровода, изменяя магнитный поток рассеяния, а следовательно, сварочный ток. Для повышения коэффициента мощности служит конденсатор 5.


Рис. 145. Сварочный выпрямитель:
а - внешний вид; б - электрическая схема.

Сварочные выпрямители (рис. 145) применяют при сварке на постоянном токе, представляющем более широкие технологические возможности, чем переменный ток. Основными составными частями выпрямителей являются трехфазный трансформатор, состоящий из неподвижных 3 и подвижных 2 катушек с регулировкой напряжения и блок ВБ полупроводниковых вентилей 1, собранных по схеме трехфазного моста. Сварочный ток изменяется рукояткой 5. Для охлаждения сварочною агрегата используют электровентилятор 4.

Все более широкое распространение получает полуавтоматическая сварка в среде защитных газов и под флюсом. При полyaвтоматической сварке механизирована подача сварочной проволоки в зону сварки. Одним из наиболее простых по конструкции и управлению является шланговый полуавтомат ПШ для сварки под флюсом (рис. 146).


Рис. 146. Электрическая схема шагового сварочного полуавтомата ПШ

В электроприводе подающего механизма использован асинхронный электродвигатель М с короткозамкнутым ротором. Двигатель через редуктор (на схеме не показан) связан с ведущим роликом ВР механизма подачи сварочной проволоки СП. Питание двигателя осуществляется от двух однофазных трансформаторов Т1 и Т2, понижающих напряжение до безопасного значения (42 В). Реверс двигателя для установочных ходов механизма подачи осуществляется с помощью переключателя ПР. Ступенчатая регулировка скорости подачи проволоки производится изменением передаточного отношения редуктора механизма.

Для управления полуавтоматом используется однокнопочный пост SB, смонтированный на рукоятке горелки. При нажатии SB срабатывает промежуточное реле Р, которое включает двигатель подачи М и силовой контактор КМ. Во время работы полуавтомата кнопка SB, не имеющая самоблокирования, должна быть нажата. При отпускании SB сварочный трансформатор отключается. Общий выключатель и аппараты на схеме не показаны.

При сварочных работах выполняют ряд условий по соблюдению правил охраны труда и техники безопасной работы. Если электросварочные работы проводят внутри помещений, то они должны быть хорошо вентилируемые. Электросварщик должен работать в специальной одежде (брезентовом костюме, рукавицах, ботинках), для защиты глаз и лица использовать щиток-шлем или маску с защитными стеклами.

Сварочный агрегат и его аппаратуру осматривают и чистят не реже одного раза в месяц. Ремонт сварочного оборудования выполняют в соответствии с графиком, утвержденным главным энергетиком предприятия.

При текущих ремонтах установки измеряют сопротивление изоляции электрических цепей, а после капитального ремонта изоляцию испытывают на электрическую прочность.

Электролизные установки

Электролиз - это электрохимический процесс окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Электролиз осуществляют в специальных аппаратах-электролизерах.

Электролизер представляет собой сосуд или систему сосудов, наполненных электролитом с размещенными в нем электродами - катодом и анодом, -соединенными соответственно с отрицательным и положительным полюсами источника постоянного тока. Процесс электрохимического окисления происходит на аноде, а восстановление - на катоде. Аноды изготовляют из графита, углеграфитового материала, окислов некоторых металлов, свинца и его сплавов, а катоды - из стали.

Современные крупные электролизные установки имеют нагрузку до 500 кА. В промышленности с помощью электрохимических процессов в электролизных установках получают простые и сложные вещества. Электролиз является основным методом промышленного получения алюминия, едкого натра, хлора и др. Путем электролиза воды получают кислород и водород. Электролиз применяют также для обработки поверхностей гальванопокрытиями (катодные процессы), полировки, травления, анодирования (анодные процессы) металлических изделий.

Металлопокрытие проводят в гальванических ваннах при напряжении 3,5 - 24 В и токах до 500 А. Электропитание ванн осуществляют от общих магистралей преобразователей, а регулирование напряжения и тока - с помощью реостатов. Если от одного генератора питается несколько ванн, то их включают параллельно с установкой реостата у каждой ванны. Шинопровод выполняют, как правило, из алюминиевых шин со сварными контактными соединениями, имеющими меньшее переходное сопротивление, чем болтовые соединения контактов.

Обслуживание электролизных установок заключается в организации периодических осмотров, измерений сопротивления изоляции всех частей установки и проведении ремонтов в соответствии с графиками ППРЭО.

Внешний осмотр установок дежурный электромонтер проводит ежесменно. При осмотре обращается внимание на температуру контактных соединений, состояние шинопроводов, отсутствие замыканий в цепи анодов и катодов, состояние поверхности изоляции шинопроводов (изоляторов, прокладок, клиц и т. д.), наличие и исправность защитных приспособлений. Кроме того измеряют потенциал на концах линий электролизных ванн по отношению к земле.

Сопротивления изоляции всех частей установки измеряют не реже одного раза в три месяца.

Капитальный ремонт всех токопроводящих элементов электролизных установок проводят не реже одного раза в год, а для тех участков, которые находятся в зоне высоких температур или подвергаются коррозии, механическим воздействиям, периодичность может быть уменьшена и устанавливается местной инструкцией.

Электротермические установки

Электрические печи служат для нагревания, расплавления или обработки металлов за счет теплового эффекта электрических явлений. По способу преобразования электрической энергии в тепловую различают печи дуговые, индукционные и сопротивления.

В состав электропечной установки входят электрическая печь, электропечной трансформатор, выпрямитель, генератор повышенной частоты; коммутационное оборудование (выключатель, разъединитель и т. д.) и вспомогательное оборудование (дроссели, конденсаторы, анодные выпрямители и др.). Электрические печи являются энергоемкими установками.

Дуговые электропечи применяют для плавки стали, чугуна, меди и других металлов. Мощность этих печей достигает 80000 кВт. Участок электросети от трансформатора до электродов печи состоит из шин, гибких соединений и токопровода. В этой сети ток достигает несколько десятков тысяч ампер.

Индукционные однофазные печи (рис. 147) работают при различных частотах тока (50-75 000 Гц). Нагрев происходит за счет токов, индуктируемых в металле.


Рис. 147. Схема установки индукционного нагрева:
1 - источник питания; 2 - конденсатор; 3 - индуктор; 4 - нагреваемое тело; 5 - тигель.

Индукционные печи нормальной частоты представляют собой трансформатор, в котором роль вторичной обмотки выполняет металлическая ванна в виде замкнутого кольца. Мощность этих печей достигает 17000 кВт.

Широкое применение имеют установки индукционного нагрева для сушки электрических машин, аппаратов, подогрева жидкостей в трубопроводах и т. д. Печи, работающие с частотой 2500 - 8000 Гц, используются для закалки металлов.

Осмотр электропечных установок производят ежедневно. Во время осмотров удаляют пыль, грязь, проверяют состояние контактов электроде держателей, шинопроводов, кабелей, проводов, смазку механизмов. Особое внимание обращают на работу и состояние блокировочных устройств: нарушение их работы может привести к нарушению технологии, поломке оборудования и к несчастным случаям. Периодически в дуговых печах очищают окалину с контактных поверхностей электрододержателей, из трансформаторов печных установок отбирают для анализа пробы масла.

При осмотре печей сопротивления обращают внимание на работу нагревательных элементов. Работа печей с неисправными нагревательными элементами, с нагревателями, установленными на другие марки сплава; отключенными элементами; неравномерной нагрузкой по фазам на печах с керамическими нагревателями не допускается. Каждая установка электрической печи сопротивления должна иметь инструкцию по обслуживанию. Весь обслуживающий персонал проходит специальное обучение по эксплуатации этих печей и соблюдению правил охраны труда.

Ремонты электропечных установок проводят в соответствии с графиком, установленным главным энергетиком предприятия.

Аккумуляторные батареи

Основными частями кислотного аккумулятора являются бак с электролитом и свинцовые пластины, изолированные друг от друга сепараторами. В качестве положительных используют свинцовые пластины с большим числом ребер, увеличивающих рабочую поверхность, а в качестве отрицательных - пластины коробчатой формы. Электролит представляет собой смесь серной кислоты с дистиллированной водой. Для пополнения в аккумуляторах электрической энергии служат зарядные и подзарядные устройства.

Как правило, аккумуляторные батареи эксплуатируются и режиме постоянного подзаряда. В этом случае заряженную батарею включают на шины параллельно с постоянно работающим зарядным устройством. Метод постоянного подзаряда повышает надежность работы электроустановки, обеспечивает резерв в случае выхода из строя зарядного устройства. Аккумуляторную батарею поддерживают в полностью заряженном состоянии. Уровень напряжения на каждом элементе должен быть 2,1 -2,2 В. Плотность электролита поддерживают на уровне 1,24.

Щелочные аккумуляторы подразделяются на кадмиево-никелевые и железо-никелевые. Баки изготовляют из никелированного железа. Электролит составляют в стальной или эмалированной посуде и заменяют ежегодно. Для этого аккумуляторы разряжают до напряжения 1 В, сливают электролит, промывают дистиллированной водой и сразу заливают свежим электролитом. Через 2 ч проверяют плотность электролита и доводят до нормы (при t = 20 °С она должна быть равна 1.19-1,21) и включают на зарядку. В начале зарядки напряжение аккумулятора резко повышается с 1 В до 1,6 В, потом медленно возрастает до 1,75 В. Окончанием заряда является установившееся напряжение в течение 20 - 30 мин (у железо-никелевых - 1,8-1,9 В и у кадмиево-никелевых 1,75-1,85 В).

При обслуживании аккумуляторных установок строго соблюдают правила эксплуатации по обеспечению исправной и безаварийной работы и безопасному ее обслуживанию. В помещении аккумуляторных батарей поддерживают чистоту и следят за работой приточно-вытяжной вентиляции. Вентиляция должна быть включена во все время зарядки батареи и 1,5 - 2 ч после ее окончания.

В этих помещениях запрещено устанавливать предохранители, штепсельные розетки, автоматы, люминесцентные лампы, выключатели, у которых может образоваться искра.

Осмотр батарей проводят в следующие сроки: дежурный электромонтер - ежедневно, мастер - два раза в месяц, специалист-аккумуляторщик - по графику.

Все металлические части в помещении батареи окрашивают кислотоупорной краской. Покрашенные и непокрашенные шины аккумуляторных батарей смазывают вазелином.

При работах с кислотой или щелочью обязательно следует надевать костюм из грубой шерсти, защитные очки, резиновые перчатки, брюки костюма заправлять поверх голенищ резиновых сапог. Переносить бутыли с кислотой или щелочью необходимо вдвоем на специальных носилках, в которых бутыль закреплена. Во время составления раствора кислоту следует лить тонкой струей в сосуд с дистиллированной водой (а не наоборот!). Пораженные кислотой участки кожи промывают струей холодной воды и нейтрализуют 5 %-ным раствором соды, а при ожоге щелочью - промывают струей воды и нейтрализуют раствором борной кислоты.

Электролиз - это расщипление или очищение веществ под воздействием электрического тока. Это окислительно-восстановительный процесс, на одном из электродов - аноде - происходит процесс окисления - он разрушается, а на катоде - процесс восстановления - к нему притягиваются положительные ионы - катионы. При электролизе проходит электролитическая диссоциация - распад электролита (токопроводящего вещества) на положительно и отрицательно заряженные ионы (выделяют несколько степеней диссоциации).При включении тока происходит движение электронов от анода к катоду, при этом раствор электролита может обедняться (если он учавствует в процессе), его нужно постоянно пополнять. Окисляющийся анод может также растворяться в растворе электролита - тогда его частицы приобретают положительный заряд и притягиваются к катоду.

Анод - положительно заряженный электрод - на нем идет окисление
Катод - отрицательно заряженный электрод - на нем идет восстановление
Исходя из принципа, что разноименые заряды притягиваются, вместе с этим идет разделение или очищение вещества.

Материал электродов может быть различным, в зависимости от проиходящего процесса. Масса вещества которое получается при электрохимическом взаимодействии, определяется законами Фарадея и зависит от заряда (произведение силы тока на время протекания тока), также зависит от концентрации электролита от активности материалов, из которых сделаны электроды. Аноды бывают инертные - нерастворимые, не вступают в реакции и активные - сами участвуют во взаимодействии (применяются гораздо реже).

Для изготовления анодов применяют графит, углеграфитовые материалы, платину и ее сплавы, свинец и его сплавы, окислы некоторых металлов; используются титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов.

Нерастворимые аноды - это композиции на основе тантала и титана специальные сорта графита, двуокись свинца, магнетит. Для катодов обычно используется сталь.

Для процесса могут быть использованы следующие типы электролитов: водные растворы солей, кислот, оснований; неводные растворы в органических и неорганических растворителях; расплавленные соли; твердые электролиты. Электролиты бывают различной степени концентрации.

В зависимости от целей электролитических реакций, используют различные сочетания типов анодов и катодов: горизонтальные с жидким ртутным катодом, с вертикальными катодами и фильтруюшей диафрагмой, с горизонтальной диафрагмой, с проточным электролитом, с движущимися электродами, с насыпными электродами и т.д. В большинстве процессов стремятся использовать вещества образующиеся и на аноде, и на катоде, однако обычно один из продуктов менее ценен.

Электролиз находит огромное применение в промышленности, также он используется в медицине и народном хозяйстве.

Основные применения электролиза:

  • Чистка воды для использования в народном хозяйстве,
  • Очистка сточных вод использованных вод с химических производств.

Для получения веществ и металлов без примесей:

  • Металлургия, гидрометаллургия - для производства алюминия и многих других металлов - алюминия из расплава оксида алюминия в криолите, электролизом получают магний (из доломита и морской воды), натрий (из каменной соли), литий, бериллий, кальций (из хлорида кальция), щелочные и редкоземельных металлы.
  • В химической промышленности электролизом получают такие важные продукты как хлораты и перхлораты, надсерную кислоту и персульфаты, перманганат калия,
  • Электролитическое выделение металла - электроэкстракция. Руда или концентрат определенными реагентами переводится в раствор, который после очистки направляют на электролиз. Так получают цинк, медь, кадмий.
  • Электролитическое рафинирование. Из металла изготавливают растворимые аноды, примеси, содержащиеся в черновом металле анода выпадают в виде анодного шлама (медь, никель, олово, свинец, серебро, золото), при электролизе, а чистый металл выделяется на катоде.
  • В гальванотехники - гальваностегия - получение покрытий но металлах, улучшающие их эксплуатационные или декоративные свойства и гальванопластика - получение точных металлических копий любых предметов;
  • Для получения оксидных защитных пленок на металлах (анодирование); также электрохимическая обработка используется для полировки поверхности изделий и окрашивания металлов,
  • Существует электрохимическая заточка режущих инструментов, электрополирование, электрофрезирование,
  • также электролиз широко применяется в радиотехнике.

Выделяют электролиз водных растворов и расплавленных сред, а также производство самих электрохимических источников тока - батарей, гальванических элементов, аккумуляторов работоспособность которых восстанавливается пропусканием тока в направлении, противоположном тому, в котором ток протекал при разрядке.

Основные типы электролизных установок:

  • Установки для получения и рафинирования алюминия;
  • Электролизные установки ферросправного производства;
  • Электролизеры никель-кобальтового производства;
  • Установки для электролиза магния;
  • Установки электролиза (рафинирования) меди;
  • Установки для нанесения гальванических покрытий;
  • Электролизные установки получения хлора;
  • Электролизеры для обеззараживания воды.
  • Электролизеры, производящие водород для атомных станций.. и т.п.

Побочным продуктов многих окислительно-восстановительных реакций является кислород.

При электролизе регулируют силу тока, его частоту и напряжение, даже полярность, эти параметры управляют скоростью и направленностью процессов. Реакция электролиза всегда проводится при постоянном токе, так как здесь очень важно постояноство полюсов. В очень редких случаях, когда полярность не значима используется переменный ток (например, при электролизе газов).

Современные алюминиевые электролизеры по конструкции катодного устройства подразделяют на

  • Электролизеры с днищем и без днища,
  • С набивной и блочной подиной;
  • по способу токоподвода: с односторонней и двусторонней схемой ошиновки;
  • по способу улавливания газов: на электролизеры открытого типа, с колокольным газоотсосом и укрытого типа.

К неудовлетворительным свойствам всех существующих конструкций алюминиевых электролизеров следует отнести недостаточно высокий коэффициент использования электроэнергии, непродолжительный срок их службы и недостаточную эффективность улавливания отходящих газов. Дальнейшее совершенствование конструкции электролизеров должно идти по пути увеличения его единичной мощности, механизации и автоматизации всех операций обслуживания, полного улавливания всех отходящих газов с последующей регенерацией их ценных компонентов.

Промышленные электролизные установки имеют множество типов конструкции, основные это мембранные и диафрагменные. Также выделяют сухие, мокрые и проточные электролизные установки. В общем виде установка - это закрытая система, содержащая электроды, помещенные в состав электролита, к которой подводится электрический ток с определенными характеристиками. Электролизные ячейки могут быть объединены в батарею. Существуют также биполярные электролизеры - где каждый электрод, за исключением крайних работает с одной стороны как анод, с другой стороны как катод.

Данное оборудование работает при различном давлении, в зависимости от типа реакции. Для получения некоторых веществ - например, при получении газов требуется регулировка давления или особые условия. Также нужно следить за давлением газов, которые являются побочным продуктом электролитических реакций. Электролизные установки, которые используются для получения водородв и кислорода на электростанциях работают под избыточным давлением до 10 кгс/см2 (1 МПа).
Установки также отличаются своей производительностью.

В некоторых их них используются прямоходные электрические механизмы . Например, они применяются для перемещения электродов, регулирования уровня электролита, перемещения резервуаров, ванн с электролитом и т.п . Один из примеров такой конструкции приведен на чертеже.

Все электролизные установки должны быть заземлены. Для работы большого промышленного электролизера нужен выпрямительный агрегат или преобразовательная подстанция для преобразования переменного тока в постоянный. Стационарное местное освещение в цехах (корпусах, залах) электролиза обычно не требуется. Исключение - основные производственные помещения электролизных установок получения хлора.

Технологии промышленного электролиза подразделяются на несколько типов:

  • PFPB - технология электролиза с использованием обожженных анодов и точечных питателей
  • CWPB - электролиз с использованием обожженных анодов и балки продавливания по центру
  • SWPB - периферийная обработка электролизеров с обожженными анодами
  • VSS - технология Содерберга с верхним токоподводом
  • HSS - технология Содерберга с боковым токоподводом

Наибольший объем удельных выбросов из электролизеров приходится на процессы электролиза, в основе которых лежит технология Содерберга. Данная технология получила наибольшее распространение на алюминиевых заводах России и Китая. Объем удельных выбросов из таких электролизерах значительно выше относительно других технологий. Количество выбросов фторуглеродов сокращают в том числе и изучая технологические параметры анодного эффекта, снижение которого также влияет на количество выбросов.

Модели промышленных электролизеров



У углеродных анодов (а графит - это аллотоп углерода) - есть существенный недостаток - при проведении реакции они выбрасывают в атмосферу углекислый газ, тем самым загрязняя ее. В настоящее время особенно актуальна технология инертного анода, сейчас данную технологию тестирует известный производитель алюминия. Суть ее в том, что для используется не вступающий в реакции безуглеродный анод, и как побочный продукт в атмосферу выделяется не углекислый газ, а чистый кислород.

Данная технология существенно повышает экологичность производства, но пока она находится на этапе тестирования.

Несмотря на большое разнообразие электролитов, электродов, электролизеров, имеются общие проблемы технического электролиза. К ним следует отнести перенос зарядов, тепла, массы, распределение электрических полей. Для ускорения процесса переноса целесообразно увеличивать скорости всех потоков и применять принудительную конвекцию. Электродные процессы могут контролироваться путем измерения предельных токов.

Электролиз – химико-физическое явление по разложению веществ на компоненты посредством электротока, которое широко применяется в производственных целях. На основе этой реакции изготавливаются агрегаты для получения, например, хлора или цветных металлов.

Постоянный рост цен на энергетические ресурсы сделал популярными электролизные установки бытового назначения. Что представляют собой такие конструкции, и как их изготовить дома?

Общая информация об электролизере

Электролизная установка – устройство для электролиза, требующее внешний энергоисточник, конструктивно состоящее из нескольких электродов, которые помещены в заполненную электролитом емкость. Также такая установка может называться устройством для расщепления воды.

В подобных агрегатах основным техническим параметром является производительность, которая означает объем вырабатываемого водорода за час и измеряется в м³/ч. Стационарные агрегаты несут этот параметр в наименовании модели, например, мембранная установка СЭУ-40 вырабатывает за час 40 куб. м водорода.

Прочие характеристики таких устройств полностью зависят от целевого назначения и вида установок. Например, при осуществлении электролиза воды КПД агрегата зависит от нижеследующих параметров:

  1. Уровень наименьшего электродного потенциала (электронапряжения). Для нормального функционирования агрегата эта характеристика должна находиться в диапазоне 1,8-2 В на одну пластину. Если источник электропитания имеет напряжение в 14 В, то емкость электролизера с электролитным раствором имеет смысл разделить листами на 7 ячеек. Подобная установка называется сухим электролизером. Меньшее значение не запустит электролиз, а большее – сильно увеличит расход энергии;

  1. Чем меньше будет расстояние между пластиночными компонентами, тем меньше будет сопротивление, что при прохождении большого тока приведет к увеличению выработки газового вещества;
  2. Площадь поверхности пластин напрямую оказывает влияние на производительность;
  3. Тепловой баланс и степень концентрации электролита;
  4. Материал электродных элементов. Золото является дорогим, но идеальным материалом для применения в электролизерах. Из-за его дороговизны часто применяют нержавеющую сталь.

Важно! В конструкциях другого типа значения будут иметь иные параметры.

Установки для электролиза воды могут также использоваться для таких целей, как обеззараживание, очистка и оценка качества воды.

Принцип работы и виды электролизера

Самое простое устройство имеют электролизеры, которые расщепляют воду на кислород и водород. Они состоят из емкости с электролитом, в которую помещаются электроды, подключенные к энергоисточнику.

Принцип работы электролизной установки заключается в том, что электроток, который проходит через электролит, имеет напряжение, достаточное для разложения воды на молекулы. Результат процесса – анод выделяет одну часть кислорода, а катод производит две части водорода.

Виды электролизеров

Устройства для расщепления воды бывают нижеследующих видов:

  1. Сухие;
  2. Проточные;
  3. Мембранные;
  4. Диафрагменные;
  5. Щелочные.

Сухой тип

Такие электролизеры имеют самую простую конструкцию (картинка выше). Им присуща особенность, которая заключается в том, что манипуляция с числом ячеек дает возможность запитать агрегат от источника с любым напряжением.

Проточный тип

Эти установки имеют в своей конструкции полностью залитую электролитом ванну с электродными элементами и баком.

Принцип работы проточной электролизной установки нижеследующий (по картинке выше):

  • при протекании электролиза электролит вместе с газом через трубу «В» выдавливается в бак «D»;
  • в емкости «D» протекает процесс по отделению газа от электролита;
  • газ выходит через клапан «С»;
  • электролитный раствор возвращается через трубку «Е» в ванну «А».

Интересно знать. Такой принцип работы настроен в некоторых сварочных аппаратах – горение выделяемого газа позволяет сваривать элементы.

Мембранный тип

Электролизная установка мембранного типа имеет схожую конструкцию с другими электролизерами, однако в качестве электролита выступает твердое вещество на полимерной основе, которое именуется мембраной.

Мембрана в таких агрегатах имеет двойное назначение – перенос ионов и протонов, разделение электродов и продуктов электролиза.

Диафрагменный тип

Когда одно вещество не может проникать и влиять на другое, применяют пористую диафрагму, которая может изготавливаться из стекла, полимерных волокон, керамики либо асбестового материала.

Щелочной тип

Протекать электролиз в дистиллированной воде не может. В таких случаях необходимо использовать катализаторы, которыми выступают щелочные растворы высокой концентрации. Соответственно, основную часть электролизных устройств можно назвать щелочными.

Важно! Стоит отметить, что использование соли в качестве катализатора вредно, так как при протекании реакции выделяется газообразный хлор. Идеальным катализатором может выступать гидроксид натрия, который не разъедает железные электроды и не способствует выделению вредных веществ.

Самостоятельное изготовление электролизера

Изготовить электролизер своими руками может каждый человек. Для процесса сборки самой простой конструкции потребуются нижеследующие материалы:

  • лист нержавейки (идеальные варианты – зарубежная AISI 316L или отечественная 03Х16Н15М3);
  • болты М6х150;
  • шайбы и гайки;
  • прозрачная трубка – можно применять водяной уровень, который используется в строительных целях;
  • несколько штуцеров типа «елочка» с внешним диаметром 8 мм;
  • контейнер из пластика объемом 1,5 л;
  • небольшой фильтрующий проточную воду фильтр, например, фильтр для стиральных машин;
  • обратный водный клапан.

Процесс сборки

Собирать электролизер своими руками следует по следующей инструкции:

  1. Первым делом необходимо осуществить разметку и дальнейшую распилку листа нержавейки на равные квадраты. Распилка может осуществляться угловой шлифовальной машинкой (болгаркой). Один из уголков в таких квадратах должен быть спилен под углом для верного скрепления пластин;
  2. Далее потребуется просверлить отверстие для болта на противоположной от углового спила стороне пластины;
  3. Соединение пластин необходимо производить поочередно: одна пластина на «+», следующая на «-» и так далее;
  4. Между разно заряженными пластинами должен находиться изолятор, которым выступает трубка от водяного уровня. Ее необходимо разрезать на кольца, какие следует разрезать вдоль для получения полосок толщиной 1 мм. Такого расстояния между пластин достаточно для эффективного выделения газа при электролизе;
  5. Скрепление пластин вместе осуществляется посредством шайб следующим образом: на болт насаживается шайба, потом – пластина, далее – три шайбы, после – пластина и так далее. Пластины, положительно заряженные, располагаются зеркально отрицательно заряженных листов. Это позволяет не допустить задевание электродов спиленными краями;

  1. Собирая пластины, следует сразу выполнять их изоляцию и затяжку гаек;
  2. Также каждую пластину нужно прозвонить для того, чтобы убедиться в отсутствии короткого замыкания;
  3. Далее всю сборку требуется поместить в бокс из пластика;
  4. После этого надо отметить места касания болтов о стенки контейнера, где и просверлить два отверстия. Если болты не влезают в емкость, то их необходимо подрезать ножовкой;
  5. Далее болты затягиваются гайками и шайбами для герметичности конструкции;

  1. После проделанных манипуляций потребуется сделать отверстия в крышке контейнера и вставить в них штуцера. Герметичность в данном случае можно обеспечить посредством промазки швов герметиками на основе силикона;
  2. Защитный клапан и фильтр в конструкции располагаются на выходе газа и служат средством контроля чрезмерного его скопления, которое может привести к плачевным последствиям;
  3. Электролизная установка собрана.

Заключительный этап – тестирование, которое осуществляется таким образом:

  • заполнение водой емкости до уровня крепежных болтов;
  • подключение питания к прибору;
  • подключение к штуцеру трубки, противоположный конец которой опускается в воду.

Если будет подан на установку слабый ток, то выпускание газа через трубку будет почти незаметно, однако внутри электролизера его можно будет наблюдать. Повышая электрический ток, добавляя щелочной катализатор в воду, можно существенно увеличить выход газового вещества.

Изготовленный электролизер может выступать составной частью многих устройств, например, водородной горелки.

Зная типы, основные характеристики, устройство и принцип работы электролизных установок, можно осуществить правильную сборку самодельной конструкции, которые будет являться незаменимым помощником в различных бытовых ситуациях: от сварки и экономии расхода топлива автотранспорта до работы систем отопления.

Видео