Поршень на свободе: двигатель со свободным поршнем. Генератор внутреннего сгорания Генератор внутреннего сгорания

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

ОБЗОР ГЕНЕРАТОРОВ

При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Фото — Генератор Капанадзе

Обычные электрогенераторы работают на основе:
1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, ... и
2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

Фото — Схема генератора

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор

ГЕНЕРАТОР ТЕСЛА

Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

Фото — Бестопливный генератор тесла

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

Фото — Бестопливный генератор Адамса

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

КАК СДЕЛАТЬ ГЕНЕРАТОР

Существует два варианты выполнения работы.

Как работает, рассмотрим на примере Touareg, с гибридным силовым агрегатом.

Что означает понятие «техника гибридного привода»?

Термин «гибрид» берет свое начало от латинского слова hybrida, и означает нечто скрещенное, или смешанное. В технике гибридом называют систему, в которой комбинируются друг с другом две разных технологии. В связи с концепциями привода термин технология гибридного привода применяется для обозначения двух направлений: бивалентный (или двухтопливный) силовой агрегат гибридный силовой агрегат

В случае гибридной технологии привода речь идет о комбинации из двух разных силовых агрегатов, работа которых основана на разных принципах действия. В настоящее время под технологией гибридного привода подразумевают комбинацию двигателя внутреннего сгорания и электродвигателягенератора (электромашины). Эта электромашина может использоваться как генератор для выработки электрической энергии, тяговый электродвигатель для движения автомобиля, и стартер для запуска двигателя внутреннего сгорания. В зависимости от исполнения основной конструкции различают три вида гибридного силового агрегата: т.н. «микрогибридный» силовой агрегат, т.н. «среднегибридный» силовой агрегат, т.н. «полногибридный» силовой агрегат.

"Микрогибридный" силовой агрегат

В этой концепции привода электрический компонент (стартер/генератор) служит исключительно для реализации функции Стартстоп. Часть кинетической энергии можно снова использовать в качестве электрической энергии (рекуперация). Привод только от электрической тяги не предусмотрен. Параметры 12 вольтной АКБ со стекловолоконным наполнителем адаптированы к частым запускам двигателя.

«Среднегибридный» привод

Электрический привод поддерживает работу двигателя внутреннего сгорания. Движение автомобиля только на электрической тяге невозможно. У «среднегибридного» привода большая часть кинетической энергии при торможении регенерируется, и в виде электрической энергии накапливается в высоковольтной батарее. Высоковольтная батарея, а также электрические компоненты сконструированы для более высокого электрического напряжения и, таким образом, более высокой мощности. Благодаря поддержке электродвигателягенератора режим работы теплового двигателя может быть смещен в область максимальной эффективности. Это обозначается как смещение точки нагрузки.

«Полногибридный» силовой агрегат

Мощный электродвигательгенератор комбинируется с двигателем внутреннего сгорания. Возможно движение только на электрической тяге. Электродвигательгенератор, если только позволяют условия, поддерживает работу двигателя внутреннего сгорания. Движение с малой скоростью осуществляется только на электрической тяге. Реализована функция Стартстоп для двигателя внутреннего сгорания. Рекуперация используется для зарядки высоковольтной батареи. Благодаря разделительному сцеплению между двигателем внутреннего сгорания и электродвигателемгенератором можно обеспечить разъединение обеих систем. Двигатель внутреннего сгорания подключается в работу только при необходимости.

Основы гибридной техники

Системы полного гибридных силовых агрегатов делятся на три подгруппы: параллельный гибридный силовой агрегат, раздельный силовой агрегат (с разделёнными потоками мощности), последовательный гибридный силовой агрегат.

Параллельный гибридный силовой агрегат

Параллельное исполнение гибридного силового агрегата отличается простотой. Он используется в случае, когда необходимо «гибридизировать» существующий автомобиль. Двигатель внутреннего сгорания, электромоторгенератор и коробка передач располагаются на одной оси. Обычно в системе параллельного гибридного силового агрегата используется один электродвигатель генератор. Сумма единичной мощности двигателя внутреннего сгорания и мощности электродвигателягенератора соответствует полной мощности. Эта концепция обеспечивает высокую степень заимствования узлов и деталей прежнего автомобиля. У полноприводных автомобилей со схемой параллельного гибридного силового агрегата привод всех четырех колёс реализован с помощью дифференциала Torsen и раздаточной коробки.

Раздельный гибридный привод

В системе раздельного гибридного привода помимо двигателя внутреннего сгорания имеется электродвигательгенератор. Оба двигателя располагаются под капотом. Крутящий момент двигателя внутреннего сгорания, также как и от электродвигателягенератора, через планетарную передачу подаётся на коробку передач автомобиля. В противоположность параллельному гибридному приводу, снять таким образом сумму отдельных мощностей для привода колёс невозможно. Вырабатываемая мощность частично тратится на приведение автомобиля в движение, частично, в виде электрической энергии, накапливается в высоковольтной батарее.

Последовательный гибридный силовой агрегат

Автомобиль оборудован двигателем внутреннего сгорания, генератором и электродвигателем генератором. Однако в отличие от обеих описанных ранее концепций, двигатель внутреннего сгорания не имеет возможности самостоятельно приводить автомобиль в движение валом, или через коробку передач. Мощность от двигателя внутреннего сгорания на колеса не передаётся. Основной привод автомобиля осуществляет электродвигатель генератор. Если ёмкость высоковольтной батареи слишком низкая, запускается двигатель внутреннего сгорания. Через генератор двигатель внутреннего сгорания заряжает высоковольтную батарею. Электродвигательгенератор снова может получать энергию от высоковольтной батареи.

Раздельный последовательный гибридный силовой агрегат

Раздельный последовательный гибридный силовой агрегат представляет собой смешанную форму двух описанных выше гибридных приводов. Автомобиль оборудован одним двигателем внутреннего сгорания и двумя электродвигателями генераторами. Двигатель внутреннего сгорания и первый электродвигательгенератор размещены под капотом. Второй электродвигательгенератор расположен на задней оси. Эта концепция используется для полноприводных автомобилей. Двигатель внутреннего сгорания и первый электродвигательгенератор через планетарную передачу могут приводить коробку передач автомобиля. И в этом случае действует правило, согласно которому одиночные мощности привода не могут отбираться для привода колёс в виде суммарной мощности. Второй электродвигатель генератор на задней оси активируется при необходимости. В связи с таким конструктивным исполнением привода высоковольтная батарея располагается между обеими осями автомобиля.

Другие термины и определения Здесь будут кратко разъяснены другие термины и определения, часто используемые в связи с технологией гибридного привода.

Рекуперация. В общем случае этот термин в технике означает способ возврата энергии. При рекуперации имеющаяся энергия одного вида преобразуется в другой, используемый в последующем вид энергии. Потенциальная химическая энергия топлива преобразуется в трансмиссии в кинетическую энергию. Если автомобиль затормаживается обычным тормозом, то избыточная кинетическая энергия посредством трения тормозов превращается в тепловую энергию. Возникающее тепло рассеивается в окружающем пространстве, и поэтому использовать его в дальнейшем невозможно.

Если же напротив, как при использовании технологии гибридного привода, дополнительно к классическим тормозам генератор используется в качестве моторного тормоза, то часть кинетической энергии преобразуется в электрическую энергию, и таким образом становится доступной для последующего использования. Энергетический баланс автомобиля улучшается. Этот вид регенеративного торможения называют рекуперативным тормозом.

Как только в режиме принудительного холостого хода скорость автомобиля снижается путем торможения нажатием педали тормоза или автомобиль движется накатом или автомобиль движется под уклон cистема гибридного привода включает электродвигатель - генератор, и использует его в режиме генератора.

В этом случае он заряжает высоковольтную батарею. Таким образом в режиме принудительного холостого
хода появляется возможность «заправлять» автомобили с электрическим гибридным приводом электроэнергией.
При движении автомобиля накатом электродвигатель генератор, работающий в режиме генератора,
преобразует из энергии движения в электрическую энергию только такое количество энергии, которое
требуется для работы 12 вольтной бортовой сети.

Электродвигатель-генератор (электромашина)

Термин электродвигатель-генератор, или электромашина, используется вместо терминов генератор, электродвигатель и стартер. В принципе, любой электродвигатель можно применять и в качестве генератора. Если вал электродвигателя приводится от внешнего привода, то электродвигатель, подобно генератору, вырабатывает электрическую энергию. Если к электромашине подводится электрическая энергия, то она работает как электродвигатель. Таким образом, электродвигательгенератор автомобилей с электрическим гибридным приводом заменяет обычный стартер двигателя внутреннего сгорания, а также обычный генератор (осветительный генератор).

Электрический ускоритель (E-boost)

По аналогии с функцией Kickdown двигателей внутреннего сгорания, которая делает доступной максимальную мощность двигателя, гибридный привод располагает функцией электрического ускорителя E-Boost. При использовании функции электродвигатель-генератор и двигатель внутреннего сгорания выдают свои максимальные индивидуальные мощности, которые складываются в более высокое значение суммарной мощности. Сумма индивидуальных мощностей обоих видов двигателей соответствует суммарной мощности трансмиссии.

Вследствие потерь мощности в электродвигателе-генераторе, его мощность в режиме генератора ниже, чем в режиме тягового электродвигателя. Мощность электродвигателя-генератора в режиме двигателя составляет 34 кВт. Мощность электродвигателя-генератора в режиме генератора равна 31 кВт. У Touareg с гибридным приводом двигатель внутреннего сгорания имеет мощность 245 кВт, а электродвигатель-генератор мощность 31 кВт. В режиме тягового электродвигателя электродвигатель-генератор выдаёт мощность 34 кВт. Вместе двигатель внутреннего сгорания и электродвигатель-генератор в режиме тягового электродвигателя развивают суммарную мощность 279 кВт.

Функция Старт-стоп

Технология гибридного привода позволяет реализовать в этой конструкции автомобиля функцию Стартстоп. В случае обычного автомобиля с системой Стартстоп, для отключения двигателя внутреннего сгорания автомобиль должен остановиться (пример: Passat BlueMotion).

Однако автомобиль с полным гибридным приводом может двигаться и на электрической тяге. Эта особенность позволяет системе Стартстоп отключать двигатель внутреннего сгорания на движущемся, или катящемся накатом автомобиле. Двигатель внутреннего сгорания включается в зависимости от потребности. Это может происходить в случае быстрого разгона, при движении на высокой скорости, с высокой нагрузкой, или при высокой степени разряженности высоковольтной батареи. При высокой степени разряженности высоковольтной батареи система гибридного привода может использовать двигатель внутреннего сгорания в сочетании с электродвигателем-генератором, работающим в режиме генератора, для зарядки высоковольтной батареи.

В других случаях автомобиль с полным гибридным приводом может двигаться на электрической тяге. Двигатель внутреннего сгорания при этом находится в режиме останова. Это действительно и в случае медленного движения транспортоного потока, остановки на светофоре, при движении в режиме принудительного холостого хода под уклон, или при движении автомобиля накатом.

Когда двигатель внутреннего сгорания не работает, он не расходует топливо и не выбрасывает в атмосферу вредные вещества.

Интегрированная в систему гибридного привода функция Старт-стоп повышает КПД и экологичность автомобиля.

В то время, когда двигатель внутреннего сгорания находится в режиме останова, климатическая установка может продолжать работу. Компрессор климатической установки является элементом высоковольтной системы.

Аргументы в пользу гибридной техники

Почему мы комбинируем электродвигатель-генератор с двигателем внутреннего сгорания? Для отбора крутящего момента частота вращения двигателя внутреннего сгорания должна быть не ниже частоты вращения холостого хода. При остановке двигатель не может отдавать крутящий момент. При увеличении частоты вращения двигателя внутреннего сгорания его крутящий момент увеличивается. Электромоторгенератор с первыми оборотами выдает максимальный крутящий момент. Для него не существует частоты вращения холостого хода. При увеличении частоты вращения его крутящий моментуменьшается. Благодаря работе электродвигателя-генератора у двигателя внутреннего сгорания исключен наиболее сложный режим работы: в диапазоне ниже оборотов холостого хода. Благодаря поддержке электродвигателягенератора двигатель внутреннего сгорания может эксплуатироваться в более эффективных режимах. Это смещение точки нагрузки повышает КПД силового агрегата.

Почему применяется полный гибридный силовой агрегат (привод)?

Полный гибридный агрегат, в отличие от остальных вариантов гибридного привода, объединяет функцию встроенной системы Стартстоп, систему E-Boost, функцию рекуперации и возможность движения только на электродвигателе (режим электрической тяги).

Электродвигатель-генератор

Электродвигатель-генератор размещён между двигателем внутреннего сгорания и АКП. Он представляет собой синхронный двигатель трехфазного тока. С помощью силового электронного модуля постоянное напряжение 288 В преобразуется в трёхфазное переменное напряжение. Три фазы напряжение создают в электродвигателегенераторе трёхфазное электромагнитное поле.

Высоковольтная батарея

Доступ к высоковольтной батарее обеспечивается через напольное покрытие багажного отсека. Она выполнена в виде модуля и включает различные компоненты высоковольтной системы Touareg. Модуль высоковольтной батареи имеет массу 85 кг и может заменятьсятолько в сборе.

Высоковольтную батарею нельзя сравнивать с обычной аккумуляторной батареей с напряжением 12 В. В нормальном режиме эксплуатации высоковольтная батарея задействуется в свободном диапазоне уровня зарядки от 20% до 85%. Переносить такие нагрузки в течение длительного времени обычная 12 вольтная АКБ неспособна. Поэтому высоковольтную батарею следует рассматривать как оперативное устройство накопления энергии для электрического привода. Подобно конденсатору она может накапливать и снова отдавать электрическую энергию. В принципе, рекуперацию, регенерацию энергии, можно рассматривать как возможность заправки автомобиля энергией во время движения. Применение высоковольтной батареи в автомобиле с гибридным приводом отличается чередование циклов зарядки (рекуперация) и разрядки (движение на электрическом приводе) высоковольтной батареи.

Пример: Если сравнить энергию высоковольтной батареи с энергией, образующейся при сжигании топлива, то количество энергии, которую может выработать батарея, будет соответствовать примерно 200 мл топлива. Этот пример демонстрирует, что на пути к созданию электромобилей, аккумуляторные батареи, с точки зрения способности накапливать энергию, должны быть существенно модернизированы.

1. Бензиновые генераторы

Основные средние характеристики бензоэлектроагрегата

Основные достоинства бензиновых электростанций

Как выбрать генератор (электростанцию)

Требуемая мощность электростанции

Активные нагрузки

Реактивные нагрузки

Высокие пусковые токи

Двигатель

Профессиональные и бытовые агрегаты

Советы по выбору моторного масла для бензогенераторов

2. Как устроены и какими бывают современные двигатели (моторы) для автомобилей?

Как всё начиналось

Двигатель (мотор) на автомобиле в наши дни

Долой половину цилиндров в двигателе (моторе)

Недалекое будущее автомобильных двигателей (моторов)

Тюнинг двигателей

BMW: эволюция двигателестроения свершилась

1. Бензиновые генераторы

Генераторы - собственный, независимый источник электроэнергии - это не только желательное дополнение к оборудованию частного дома или солидного предприятия. В нашей стране это необходимость и гарантия от возникновения ненужных финансовых и производственных проблем. Вместе с тем, для некоторых видов человеческой деятельности, таких, например, как добыча полезных ископаемых или проведение аварийно-спасательных работ, автономный источник питания просто жизненно необходим. Отличительными особенностями современных электростанций являются экономичность, компактные размеры, различные конструктивные решения шумоподавления, наличие интеллектуальных устройств мониторинга и управления процессом выработки электроэнергии, переключения нагрузки, синхронизации генераторов с сетью и между собой. Существует множество терминов для обозначения одного и того же оборудования, которое понимается под термином электростанция:

Портативная электростанция;

Переносная электростанция;

Бензиновая электростанция;

Дизельная электростанция;

Газовая электростанция;

Бензогенератор;

Дизельгенератор;

Стационарная, промышленная, передвижная и контейнерная электростанция;

Генераторная установка.

Все они объединяются общим принципом работы – преобразованием тепловой энергии топлива в электрическую. КПД таких электростанций 25-30%. Для повышения КПД (или для утилизации тепла, вырабатываемого электростанцией), созданы МИНИ-ТЭЦ, утилизирующие тепло для систем отопления. В общем, все электростанции можно разделить:

По назначению – бытовые, профессиональные (до 15кВА); -по применению – резервные, основные:

По виду топлива – бензин, дизтопливо, газ (сжиженный или магистральный);

По исполнению – открытые, в шумопоглощающем корпусе, в контейнере, в кунге и т.п.;

По виду пуска – ручной (для малогабаритных), электростартерный или автоматический;

По фирме – производителю. Основными и самыми популярными являются бензиновые и дизельные электростанции.

Бензиновая электростанция или бензогенератор

В качестве первичного двигателя используется карбюраторный двигатель внутреннего сгорания (ДВС) с внешним смесеобразованием и искровым зажиганием. Часть энергии, которая выделяется при сгорании топлива, в ДВС преобразуется в механическую работу, а оставшаяся часть в теплоту. Механическая работа на валу двигателя используется для выработки электроэнергии генератором электрического тока. Топливо для бензогенератора - высокооктановые сорта бензина. Применение антидетонационных присадок, смесей бензина со спиртами и пр. возможно только по согласованию с производителем. Конкретный состав и другие характеристики топлива, используемого для работы электростанции, определяет производитель двигателя. Необходимо заметить, что бензиновый генератор - это источник электроэнергии относительно небольшой мощности. Она подойдет в том случае, если Вы планируете осуществлять резервное, сезонное или аварийное энергообеспечение Вашего объекта. Подобные агрегаты обычно имеют меньший ресурс и мощность по сравнению с дизельгенераторами, однако более удобны в эксплуатации за счет меньшего веса, габаритов и уровня шума при работе. Варианты использования и исполнения бензиновых электростанций: в качестве резервного источника электроснабжения малой мощности в стационарном исполнении, в качестве единственно возможного источника при проведении аварийно-спасательных и ремонтных работ, работ, выполняемых в полевых условиях и на удаленных объектах, для обеспечения электроэнергией различного рода передвижных объектов в носимом или мобильном исполнении.

Проще говоря, бензиновая электростанция - идеальный выбор для собственников малых предприятий (бензоколонка, магазин), владельцев загородных домов, туристов, строительных бригад, телекомпаний и пр.

Компактная и надежная, экономичная и малошумная автономная бензостанция возьмет на себя решение проблем с энергообеспечением.

Основные средние характеристики бензоэлектроагрегата

Удельный расход топлива, кг/кВтч – 0,3-0,45

Удельный расход масла, г/кВтч – 0,4-0,45

КПД% - 0,18-0,24

Диапазон мощности бензоэлектроагрегатов кВт – 0,5-15,00

Напряжение, В – 240/400

Диапазон рабочих режимов, % от ном. Мощности – 15-100

Требуемое давление газа, кг/см2 – 0,02-15

Ресурс до текущего ремонта (не менее), тыс. ч – 1,5-2,0 -Ресурс до капитального ремонта (не менее), тыс. ч – 6,0-8,0

Затраты на ремонт, % от стоимости –5-20

Вредные выбросы (СО),% 2,55

Уровень шума на расстоянии 1м (не более), дБ 80.

Основные достоинства бензиновых электростанций

Относительно низкая стоимость оборудования по сравнению с дизельными и газовыми электростанциями;

Компактность и хороший показатель соотношения массы оборудования к величине вырабатываемой энергии;

Легкий пуск в условиях низких температур;

Невысокий уровень шума электростанции;

Простота эксплуатации.

Как выбрать генератор (электростанцию)

Рассматривается техника с ограниченной выходной мощность до 15кВА и обычными (бензиновыми или дизельными) моторами. Основой любой мини-электростанции (или генераторной установки) является двигатель-генераторный агрегат, состоящий из дизельного или бензинового двигателя и электрического генератора.

Двигатель и генератор напрямую соединены между собой и укреплены через амортизаторы на стальном основании. Двигатель оснащен системами (запуска, стабилизации частоты вращения, топливной, смазки, охлаждения, подачи воздуха и выхлопа), обеспечивающими надежную работу электростанции. Запуск двигателя ручной или с помощью электростартера или автозапуск, работающего от стартерной 12и вольтовой аккумуляторной батареи. В двигатель-генераторном агрегате используются синхронные или асинхронные самовозбуждаемые бесщеточные генераторы. Электростанция также может иметь панель управления и устройства автоматики (или блок автоматики), с помощью которых осуществляется управление станцией, контроль за ее состоянием и защита от аварийных ситуаций. Максимально упрощенный принцип действия мини-электростанции состоит в следующем: мотор "превращает" топливо во вращение своего вала, а генератор с ротором, связанным с валом двигателя, по закону Фарадея преобразует обороты в переменный электрический ток. На самом деле не все так просто. Зачастую происходят странные, на первый взгляд, ситуации, когда, например, при подключении обыкновенного погружного насоса типа “Малыш” с заявленной потребляемой мощностью 350-400Вт к мини-электростанции 2,0кВА, насос отказывается работать. Постараемся дать краткие рекомендации, которые помогут правильно ориентироваться при выборе станции.

Требуемая мощность электростанции . Для решения этой проблемы сначала необходимо определить приборы, которые планируется подключить.

Активные нагрузки . Самые простые, вся потребляемая энергия преобразуется в тепло (освещение, электроплиты, электронагреватели и т.п.). В этом случае расчет прост: для их питания достаточно агрегата с мощностью, равной их суммарной мощности.

Реактивные нагрузки . Все остальные нагрузки. Они, в свою очередь, подразделяются на индуктивные (катушка, дрель, пила, насос, компрессор, холодильник, электродвигатель, принтер) и емкостные (конденсатор). У реактивных потребителей часть энергии расходуется на образование электромагнитных полей. Показателем меры этой части расходуемой энергии является так называемый cos. Например, если он равен 0,8, то 20% энергии преобразуется не в тепло. Мощность, деленная на cos, даст “реальное” потребление мощности. Пример: если на дрели написано 500 Вт и cos=0,6 , это означает, что на самом деле инструмент будет потреблять от генератора 500:0,6=833 Вт. Надо иметь в виду также следующее: каждая электростанция имеет собственный cos , который обязательно нужно учитывать. Например, если он равен 0,8, то для работы вышеназванной дрели от электростанции потребуется 833 Вт: 0,8 = 1041 ВА. Кстати, именно по этой причине грамотное обозначение выдаваемой электростанцией мощности ВА (вольт-амперы), а не Вт (ватты).

Высокие пусковые токи . Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. Стартовая перегрузка по времени не превышает долей секунды, поэтому главное – чтобы электростанция смогла ее выдержать, не отключаясь и, тем более, не выходя из строя. Обязательно необходимо знать, какие стартовые перегрузки способен выдержать тот или иной агрегат. Из-за высоких пусковых токов самыми “страшными” приборами являются те, у которых отсутствует холостой ход. Работа сварочного аппарата с точки зрения мини-электростанции, выглядит как банальное короткое замыкание. Поэтому для их энергоснабжения рекомендуется использовать специальные генераторные установки, либо, по крайней мере, “ варить” через сварочный трансформатор. У погружного же насоса потребление в момент пуска может подскочить в 7 – 9 раз.

Бензиновые и дизельные электрогенераторы - это устройства, преобразующие механическую энергию вращения вала двигателя внутреннего сгорания в электрическую энергию. Они используются в качестве временного или постоянного источника электропитания.

При разговоре об автономных устройствах, генерирующих электроэнергию, оперируют выражениями "электрогенератор" и "электростанция". Четкого разграничения между этими терминами нет, однако когда говорят об электростанциях, чаще подразумевают довольно мощные устройства (свыше 15-20 кВт), предназначенные для непрерывной работы. Когда же говорят об электрогенераторах, то имеют в виду сравнительно маломощные мобильные агрегаты, используемые в качестве резервного (аварийного) источника питания.

Принцип работы электрогенераторов основывается на явлении электромагнитной индукции, которое проявляется в следующем. При вращении замкнутого проводника в магнитном поле, в нем возникает электрический ток (электродвижущая сила - ЭДС). Величина ЭДС зависит от длины проводника, плотности магнитного поля, скорости его пересечения и угла, под которым пересекаются магнитные силовые линии.

Устройство бензиновых и дизельных электрогенераторов

В общем виде электрогенератор состоит из двигателя внутреннего сгорания со всеми системами, обеспечивающими его работу (топливным баком, воздушным фильтром, стартером, глушителем и пр.) и непосредственно самого генератора (альтернатора), состоящего из подвижной части (ротора, якоря) и неподвижной (статора). В генераторе ЭДС возбуждается не во вращающихся в неподвижном магнитном поле проводниках, как на рисунке выше, а наоборот - в неподвижных проводниках (в обмотке статора) за счет вращения магнитного поля создаваемого ротором.

Для создания магнитного поля ротор может быть сделан из постоянных магнитов (асинхронные генераторы) или иметь обмотку, на которую подается ток для создания магнитного поля (синхронные генераторы). А меняя количество полюсов у ротора можно получать требуемую частоту напряжения (50 Гц) при разных оборотах двигателя. Например, чтобы получить частоту напряжения 50 Гц в схеме изображенной выше, ротор должен вращаться со скоростью 3000 об/мин, а в схеме изображенной ниже - 1500 об/мин.

Схема трехфазного генератора не намного сложнее:

Таким образом, при вращении ротора двигателем внутреннего сгорания, в обмотках статора индуцируется электродвижущая сила создающая в них переменное напряжение, используемое для питания того или иного прибора - потребителя энергии.

На рисунке ниже представлен компактный бензиновый генератор мощностью 2,75 кВА.


Бензиновый генератор мощностью 2,75 кВА: 1 - рама, 2 - двигатель, 3 - генератор, 4 - воздушный фильтр, 5 - бензобак, 6 - глушитель, 7 - панель с розетками.

Трехфазные и однофазные

По количеству фаз и величине выходного напряжения электрогенераторы могут быть однофазными (220В) и трехфазными (380В). При этом нужно понимать, что от трехфазного генератора можно питать и однофазные энергопотребители - включившись между фазой и нулем.

Используя трехфазный электрогенератор, следует принимать во внимание такое явление, как перекос фаз. Необходимо соблюдать примерное равенство (отличающееся не более чем на 20-25%) суммы мощностей приборов, подключенных к разным фазам, при этом необходимо, чтобы нагрузка на одну фазу не превышала 1/3 мощности генератора.

Кроме трехфазных генераторов на 380В, существуют и трехфазные на 220В. Они используются только для освещения. Включившись между фазой и нулем можно получить напряжение 127В.

Многие модели генераторов могут выдавать напряжение 12В.

Синхронные и асинхронные

По конструктивному исполнению генераторы (альтернаторы) бывают асинхронными и синхронными. У асинхронных якорь не имеет обмоток, для возбуждения ЭДС используется только его остаточная намагниченность.

Это позволяет обеспечить конструктивную простоту и надежность устройства, закрытость его корпуса и защищенность от пыли и влаги. Однако достигается это ценой плохой способности переносить пусковые нагрузки, возникающие при запуске оборудования с реактивной мощностью, к которым относятся, в частности, электродвигатели. Поэтому асинхронные устройства лучше всего использовать для работы с активной нагрузкой.

Синхронный генератор имеет обмотки на якоре, на которые подается электрический ток.

Меняя его величину, изменяют магнитное поле и, соответственно, выходное напряжение на статорных обмотках. Регулировка выходных параметров осуществляется с помощью обратной связи по напряжению и току, реализованной в виде простой электросхемы. Благодаря этому синхронный генератор обеспечивает поддержание напряжения в сети с большей точностью чем асинхронный и легко переносит кратковременные пусковые нагрузки.

К недостаткам синхронных генераторов относится наличие щеточного узла на роторе, через который на него подается ток. Щетки в процессе эксплуатации перегреваются и выгорают, ухудшается их прилегание, повышается сопротивление, приводящее к дальнейшему перегреву узла. Кроме этого, искрение подвижного контакта создает радиопомехи.

Современные модели синхронных генераторов оснащены бесщеточными системами возбуждения на роторной обмотке. Они не имеют недостатков, связанных с наличием щеточного узла.

Синхронные альтернаторы устанавливают на большинстве генераторов.

Инверторные генераторы

Принцип работы инверторного бензогенератора заключается в следующем. Переменный ток, выходящий из генератора (альтернатора), поступает на выпрямительный блок (шаг 1, рис. ниже), где преобразуется в постоянный (шаг 2). После сглаживания пульсаций (фильтрации) емкостными фильтрами (шаг 3), сигнал поступает на транзисторный или тиристорный преобразовательный блок, где происходит обратное преобразование постоянного тока в переменный (шаг 4).

Только вот, получение даже удовлетворительной синусоиды на выходе - это дело не дешевое, производители инверторных генераторов, экономя на дорогих компонентах, создают на выходе своих генераторов, что-то лишь отдаленно напоминающее синусоиду, и чем генератор дешевле тем меньше форма напряжения на выходе будет похожа на синусоиду.

Форма напряжения изображенная голубым цветом - это не исключение, а повсеместная реальность. К инверторному генератору с таким напряжением не только компьютер нельзя подключать, но и лампочки. Перед покупкой нужно обязательно выяснить, на сколько форма напряжения на выходе близка к синусоиде, т.к. даже дороговизна и известность фирмы не являются гарантией, что изготовитель не сэкономил на деталях.

Высокое качество формы напряжения на выходе достигается не только инвертором но и использованием трехфазного генератора вместо однофазного, так как при этом уже сразу после выпрямителя (шаг 2) получается намного более ровный сигнал.

Использование правильных бензогенераторов инверторного типа способствует сохранности и долгой службе всей электроники, требующей качественного напряжения. Помимо этого данные типы бензогенераторов обладают малым весом, небольшими габаритами, сниженным уровнем шума. Вдобавок ко всем достоинствам, бензогенераторы инверторы позволяют осуществлять регулирование скорости вращения двигателя в зависимости от нагрузки, что дает возможность экономить топливо.

Ведь большинство бытовых генераторов минимум 70% времени работают с минимальной нагрузкой. Обычные бензиновые генераторы должны в любом режиме работы поддерживать 3000 об/мин (чтобы частота тока была 50 Гц). В режиме минимальной нагрузки они хотя и потребляют меньше топлива, но незначительно. Инверторный генератор лишен этого ограничения и при минимальной нагрузке может сбрасывать обороты до 1000-1200 об/мин. За счет этого потребляя в этом режиме в 2-3 раза меньше топлива чем обычный генератор. А благодаря меньшей скорости вращения двигателя генератор меньше шумит.

Минусами инверторных генераторов по сравнению с обычными являются:

  • Высокая стоимость. Если цена инверторного бензогенератора ненамного больше обычного, то скорее всего синусоиды напряжения на выходе нет.
  • Отсутствие (за редким исключением) моделей с мощностью выше 7 кВт.
  • Меньшая надежность. Как известно с усложнением оборудования снижается его надежность. Плюс электроника инверторного генератора может не выдержать пусковых токов от двигателей подключаемого оборудования, например насоса.

Бензиновые электрогенераторы

В бензиновых генераторах в качестве привода используются бензиновые двигатели. Бензиновые генераторы - это обычно относительно легкие, компактные, портативные модели с воздушной системой охлаждения, обладающие относительно небольшой мощностью (до 10 кВт).

Работают они на топливе А-92 или А-95 и используются в основном в качестве резервного источника питания при временном отключении электроэнергии или для питания электроинструмента в местах отсутствия электросети.

Ресурс бензиновых электрогенераторов относительно невелик - 500-2500 моточасов (самый маленький ресурс у генераторов с двухтактным двигателем). Однако некоторые модели, в которых установлены четырехтактные двигатели с чугунными цилиндрами, верхним расположением клапанов и подачей масла к трущимся деталям под давлением могут достигать ресурса в 4000 и более моточасов.

Двухтактные и четырехтактные . Двигатели бензогенераторов могут быть двухтактными и четырехтактными. Их различие обусловлено общими конструктивными особенностями 2-х и 4-тактных двигателей - т.е. преимуществами вторых по отношению к первым по экономичности и сроку службы.

Электрогенераторы с двухтактными двигателями обладают меньшими размерами и весом, их используют только в качестве резервных источников питания - из-за их невысокого ресурса, составляющего около 500 часов.

Бензогенераторы с 4-тактными двигателями предназначены для гораздо более активного использования. В зависимости от конструкции их срок службы может достигать 4000 и более моточасов.


Устройство четырехтактного бензинового двигателя (Honda) с верхним расположением клапанов: 1 - топливные фильтры, 2 - коленчатый вал, 3 - воздушный фильтр, 4 - часть системы зажигания, 5 - цилиндр, 6 - клапан, 7 - подшипник коленчатого вала.

Конструктивные особенности . К особенностям конструкции двигателя внутреннего сгорания (ДВС) бензинового генератора, влияющим на его ресурс, относится марка материала, из которого изготовлен блок цилиндров, расположение клапанов, режим подачи масла к трущимся деталям.

Генераторы с алюминиевым блоком цилиндров стоят недорого, однако и ресурс их невелик - около 500 часов. Двигатели с чугунными цилиндрами и боковым расположением клапанов имеют ресурс около 1500 часов. Генераторы с ДВС, имеющим чугунные цилиндры, верхнее расположение клапанов и подачу масла к трущимся деталям под давлением, кроме большого ресурса (около 3000 часов) имеют сниженный расход топлива и низкий уровень шума. Однако и стоят они значительно дороже первых вариантов.

Преимущество верхнеклапанной компоновки обусловлено тем, что она позволяет уменьшить площадь поверхности камеры сгорания и соответственно нагрев деталей двигателя. Кроме этого, увеличивается степень сжатия, приводящая к повышению эффективности двигателя. Верхнее расположение клапанов обозначается аббревиатурой OHV (overhead-valve, см. фото выше).

Бензиновые генераторы могут быть одноцилиндровыми или двухцилиндровыми. Генераторы с четырехтактным V-образным двухцилиндровым двигателем относятся к мощным агрегатам.

Достоинства и недостатки бензиновых электрогенераторов . Помимо относительной легкости и компактности, к достоинствам бензогенераторов относится дешевизна, меньший уровень шума (чем у дизельных), способность без проблем работать на морозе.

Меньший уровень шума (электрогенератор с двухтактным бензиновым двигателем значительно шумнее, чем с четырехтактным) объясняется общими особенностями работы бензинового двигателя внутреннего сгорания. Однако бензогенератор все равно сильно шумит, и тихим его может сделать кожух со звукоизоляцией.

Но главным преимуществом бензиновых генераторов по сравнению с дизельными, является меньшая цена.

К недостаткам относят относительно невысокий ресурс и повышенный расход бензина (в сравнении с дизтопливом у дизельных генераторов).

Что касается ресурса, то его можно продлить своевременным и качественным техобслуживанием и использованием качественного топлива. Необходимо своевременно менять, масло, фильтры, свечи, контролировать затяжку болтовых соединений и т.д.

Дизельные генераторы

В дизельном генераторе в качестве привода используется дизельный двигатель. Дизель генераторы используются преимущественно при длительных отключениях электроэнергии. Именно в этих случаях они максимально реализуют свои достоинства. Однако при необходимости их можно использовать и в качестве резерва при кратковременных отключениях.

Дизельные генераторы имеют мощность широкого диапазона - от 2 до 200 кВт и более.

Впечатляющим является и ресурс их работы. Он зависит от конструкции и параметров генератора (в основном от числа оборотов и типа охлаждения) и может варьироваться в большом диапазоне - от 3000 до 30000 и более моточасов.

При эксплуатации дизельного генератора важно знать, что работа на малых нагрузках или холостом ходу вредна для дизельных двигателей. Так в инструкции по эксплуатации может встретиться требование не работать на холостом ходу более 5 мин, а с нагрузкой 20% работать не более 1 часа (цифры могут быть другими, например 40%). При этом запускается генератор на холостом ходу. Есть рекомендации, в виде профилактического мероприятия каждые 100 часов работы осуществлять стопроцентную загрузку, продолжительностью около 2-х часов. Так как воспламенение топлива в дизельном двигателе происходит за счёт высокой температуры в конце такта сжатия воздуха и подачи топлива в нужный момент, а на холостом ходу снижается средняя температура цикла, это приводит к нарушению процесса смесеобразования, сгорания в цилиндре и неполному сгоранию топлива. Что, в свою очередь, приводит к образованию стойких отложений в цилиндре, выхлопном коллекторе, закоксовыванию форсунки, разжижению масла в картере двигателя несгоревшим топливом и нарушению работы системы смазки.

Число оборотов . По числу оборотов дизельные генераторы подразделяются на низкооборотные (1500 об/мин) и высокооборотные (3000 об/мин). Первые обладают более высокими эксплуатационными достоинствами. Имеют низкие расход топлива и уровень шума, высокий ресурс. Используются обычно в качестве постоянного источника электроэнергии при отсутствии таковой. К их недостаткам относят высокую цену.

Генераторы с высокооборотными двигателями имеют больший расход топлива в сравнении с низкооборотными, повышенный уровень шума и меньший ресурс. Основным их достоинством является низкая цена.

Пониженный ресурс высокооборотных генераторов объясняется просто. Интенсивность износа зависит от числа оборотов вала, чем она выше, тем выше износ.

Охлаждение . Охлаждение двигателя у дизельных электрогенераторов может быть воздушным или жидкостным. Устройства с воздушным охлаждением - это в основном генераторы малой (до 10 кВт) мощности с числом оборотов 3000. Дизельные генераторы с жидкостным охлаждением (вода или тосол) - это большие стационарные модели. По своей сути это - электростанции, обычно они являются низкооборотными (1500 об/мин), однако бывают и высокооборотными (3000 об/мин).


Дизельный генератор (15 кВт) с жидкостным охлаждением. Жидкость охлаждающая двигатель охлаждается в радиаторе обдуваемом вентилятором

Достоинства и недостатки дизельных генераторов . В числе основных достоинств дизельных генераторов - высокая мощность, стабильные параметры производимой электроэнергии, низкий расход дизельного топлива (значительно ниже, чем расход бензина у бензогенераторов) и высокий эксплуатационный ресурс. Стоит отметить и малую пожароопасность, обусловленную типом топлива. Именно эти достоинства делают их наиболее подходящими для постоянной эксплуатации в условиях отсутствия электросетей.

Среди недостатков - высокая стоимость в сравнении с бензиновыми генераторами, большая масса, высокий уровень шума, более тяжелый ручной старт, невозможность завести в мороз без предварительного нагрева, недопустимость работы с нагрузкой менее 20-40%, относительно сложный и дорогой ремонт. Хотя, что касается последнего, то этот недостаток вполне может компенсироваться надежностью и долговечностью дизель-генераторов. А высокий уровень шума имеет место главным образом при работе на холостых оборотах. При работе под нагрузкой этот недостаток проявляется в гораздо меньшей степени.

Сочетание недостатков и достоинств дизельных двигателей определяют область их применения - т.е. высокую целесообразность использования в качестве постоянных источников напряжения и гораздо меньшую - в качестве резервных при кратковременных отключениях электроэнергии.

Если дизель-генератор эксплуатируется длительное время в качестве основного источника электроэнергии, то в конечном итоге благодаря экономии топлива он способен сэкономить средства его владельцу, - невзирая на более высокую цену.

Так что дизельный генератор для дачи, в большинстве случаев - это не вариант. Так как чаще всего генератор для дачи покупается в качестве резервного источника электроэнергии и небольшой мощности, а дизельные генераторы наиболее эффективны как постоянные и/или мощные источники энергии.

Газовые генераторы

По принципу действия и внешне (у них может быть и бензобак) газовые генераторы не отличаются от бензиновых. Разница лишь в том, что в качестве топлива для двигателя внутреннего сгорания используется газ.

Существует несколько разновидностей газовых генераторов: работающие на сжиженном газе (смеси пропана и бутана, обозначаются аббревиатурой LPG - Liquefied Petroleum Gas), на метане (на сетевом газе, NG - Natural Gas), сжиженном и сетевом газе (LPG/NG), универсальные газовые бензогенераторы изначально приспособленные работать на сжиженном газе и бензине.

Достоинства и недостатки газовых генераторов . Газовые электрогенераторы имеют некоторые преимущества перед бензиновыми и дизельными.

Ресурс работы электрогенератора на газу выше, чем бензинового. Это связано с тем, что при сгорании газа образуется меньше веществ, вызывающих износ деталей двигателя, и не происходит смыва пленки масла с рабочих поверхностей цилиндров и поршней при запуске двигателя.

Работа газовых электрогенераторов легко поддается автоматизации - из-за особенностей топлива. При подключении генераторов к газовой сети исчезает необходимость его пополнения.

К недостаткам можно отнести потенциальную взрывоопасность газа и необходимость использовать баллоны (или иметь подведенный сетевой газ).

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Генератор - это устройство, которое производит продукт, вырабатывает электроэнергию либо создает электромагнитные, электрические, звуковые, световые колебания и импульсы. В зависимости от функций их можно разделить на виды, которые мы рассмотрим далее.

Генератор постоянного тока

Для того чтобы понять принцип работы генератора постоянного тока, нужно выяснить его основные характеристики, а именно зависимости главных величин, которые и определяют работу устройства в применяемой схеме возбуждения.

Основной величиной является напряжение, на которое влияет скорость вращения генератора, токовозбуждения и нагрузки.

Основной принцип работы генератора постоянного тока зависит от воздействия раздела энергии на магнитный поток основного полюса и, соответственно, от получаемого с коллектора напряжения при неизменном положении щеток на нем. У аппаратов, которые оснащены добавочными полюсами, элементы располагаются таким образом, чтобы токораздел полностью совпадал с геометрической нейтральностью. Благодаря этому, он будет смещаться по линии вращения якоря в положение оптимальной коммутации с последующим закреплением щеткодержателей в таком положении.

Генератор переменного тока

Принцип работы генератора переменного тока основан на превращении механической в электроэнергию благодаря вращению проволочной катушки в созданном магнитном поле. Это приспособление состоит из неподвижного магнита и проволочной рамки. Каждый из ее концов соединяется между собой при помощи контактного кольца, которое скользит по электропроводной угольной щетке. За счет такой схемы электрический индуцированный ток начинает переходить к внутреннему контактному кольцу в тот момент, когда половина рамки, соединяющаяся с ним, проходит мимо северного полюса магнита и, наоборот, к внешнему кольцу в тот момент, когда другая часть проходит мимо северного полюса.

Самый экономичный способ, на котором основывается принцип работы генератора переменного тока, является сильная выработка. Это явление получается за счет использования одного магнита, который вращается относительно нескольких обмоток. Если его вставить в проволочную катушку, он начнет индуцировать электрический ток, таким образом будет заставлять стрелку гальванометра отклонятся в сторону от положения «0». После того как магнит будет вынут из кольца, ток поменяет свое направление, а стрелка прибора начнет отклоняться в другую сторону.

Автомобильный генератор

Чаще всего его можно отыскать на передней части двигателя, основная часть работы заключается во вращении коленчатого вала. Новые машины могут похвастаться гибридным типом, который также выполняет и роль стартера.

Принцип работы автомобильного генератора заключается во включении зажигания, при котором ток движется по контактным кольцам и направляется к щелочному узлу, а после переходит на перемотку возбуждения. В результате такого действия будет образовано магнитное поле.

Совместно с коленчатым валом начинает свою работу ротор, который и создает волны, пронизывающие обмотку статора. Переменный ток начинает появляться на выходе перемотки. При работе генератора в режиме самовозбуждения частота вращения увеличивается до определенного значения, затем в выпрямительном блоке начинает меняться переменное напряжение на постоянное. В конечном итоге устройство будет обеспечивать потребителей необходимым электричеством, а аккумулятор - током.

Принцип работы автомобильного генератора состоит в изменении скорости коленчатого вала либо смены нагрузки, при которой включается регулятор напряжения, он управляет временем при включении перемотки возбуждения. В момент уменьшения внешних нагрузок либо увеличения вращения ротора период включения обмотки возбуждения значительно сокращается. В тот момент, когда ток увеличивается настолько, что генератор прекращает справляться, приступает к работе АКБ.

У современных автомобилей на панели приборов находится контрольная лампочка, которая и оповещает водителя про возможные отклонения в генераторе.

Электрический генератор

Принцип работы электрического генератора заключается в переработке энергии механической на электрическое поле. Основными источниками такой силы могут быть вода, пар, ветер, двигатель внутреннего сгорания. Принцип работы генератора основывается на совместном взаимодействии магнитного поля и проводника, а именно в момент вращения рамки ее начинают пересекать линии магнитной индукции, и в это время появляется электродвижущая сила. Она заставляет ток протекать по рамке при помощи контактных колец и вливаться во внешнюю цепь.

Инвентарные генераторы

На сегодняшний день становится очень популярным инверторный генератор, принцип работы которого заключается в создании автономного источника питания, производящего высококачественную электроэнергию. Такие приборы применяют как временные, а также постоянные источники питания. Чаще всего они используются в больницах, школах и иных учреждениях, где не должны присутствовать даже малейшие скачки напряжения. Всего этого можно добиться, используя инверторный генератор, принцип работы которого основан на постоянстве и проходит по такой схеме:

  1. Выработка высокочастотного переменного тока.
  2. Благодаря выпрямителю преобразуется полученный ток в постоянный.
  3. Затем образуется накопление тока в аккумуляторах и стабилизируется колебания электроволн.
  4. При помощи инвертора постоянная энергия меняется на переменный ток нужного напряжения и частоты, а затем поступает к пользователю.

Дизельный генератор

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Синхронный генератор

Принцип работы синхронного генератора основан на одинаковой чистоте вращения магнитного поля статора и ротора, который и создает вместе с полюсами магнитное поле, и оно пересекает обмотку статора. В этом агрегате ротор - постоянный электромагнит, число полюсов которого может начинаться от 2-х и выше, но кратным они должны быть 2-м.

При запуске генератора ротор создает слабое поле, но после увеличения оборотов начинает появляться большая сила в обмотке возбуждения. Получаемое напряжение через автоматический блок регулировки поступает на устройство и контролирует выходное напряжение за счет изменений в магнитном поле. Основной принцип работы генератора заключается в высокой стабильности исходящего напряжения, а недостатком является существенная возможность перегрузок по току. Еще к негативным качествам можно добавить присутствие щеточного узла, который все равно в определенное время придется обслуживать, а это само собой влечет дополнительные финансовые затраты.

Асинхронный генератор

Принцип работы генератора заключается в постоянном нахождении в режиме торможения с ротором, который вращается с опережением, но все-таки в той же ориентации, что и магнитное поле у статора.

В зависимости от используемого типа обмотки ротор может быть фазным или короткозамкнутым. Созданное при помощи вспомогательной обмотки вращающееся магнитное поле начинает индуцировать его на роторе, которое и вращается вместе с ним. Частота и напряжение на выходе напрямую зависит от количества оборотов, так как магнитное поле не регулируется и остается неизменным.

Электрохимический генератор

Также существует электрохимический генератор, устройство и принцип работы которого заключаются в выработке из водорода электрической энергии в автомобиле для его движения и питания всех электроприборов. Этот аппарат является химическим так как он производит энергию за счет прохождения реакции кислорода и водорода, который для выработки топлива используется в газообразном состоянии.

Генератор акустических помех

Принцип работы генератора акустических помех заключается в защите организаций и физических лиц от прослушивания переговоров и различного рода мероприятий. За ними можно проследить через оконные стекла, стены, системы вентиляции, отопительные трубы, радиомикрофоны, проводные микрофоны и устройства лазерного съема полученной акустической информации с окон.

Поэтому фирмы очень часто для защиты своей конфиденциальной информации используют генератор, устройство и принцип работы которого заключается в настройке аппарата на заданную частоту, если она известна, либо на определенный диапазон. Затем создается универсальная помеха в виде шумового сигнала. Для этого в самом аппарате находится генератор шума нужной мощности.

Также существуют и генераторы, которые находятся в шумовом диапазоне, благодаря которым можно замаскировать полезный звуковой сигнал. В этот комплект входит блок, который и формирует шум, а также его усиления и акустические излучатели. Основным недостатком использования таких устройств являются помехи, которые появляются при проведении переговоров. Для того чтобы аппарат справлялся полностью со своей работой, переговоры стоит проводить всего лишь в течение 15 минут.

Регулятор напряжения

Основной принцип работы регулятора напряжения основывается на поддерживании энергии бортовой сети во всех режимах работы при разнообразном изменении частоты поворотов ротора генератора, температуры внешней среды и электрической нагрузки. Этот прибор также может выполнять и второстепенные функции, а именно защищать части генераторной установки от возможного аварийного режима установки и перегрузки, автоматически подключать в бортовую систему цепь обмотки возбуждения либо сигнализацию аварийной работы устройства.

Все такие приборы работают по одному принципу. Напряжение в генераторе определяется несколькими факторами - силой тока, частотой вращения ротора и величиной магнитного потока. Чем меньше нагрузка на генератор и выше частота вращения, тем будет больше напряжение устройства. Благодаря большему току в обмотке возбуждения начинает увеличиваться магнитный поток, а с ним и напряжение в генераторе, а после того, как уменьшается ток, становится меньшим и напряжение.

Независимо от производителя таких генераторов, все они нормализуют напряжение изменением тока возбуждения одинаково. При возрастании либо уменьшении напряжения начинает увеличиваться либо уменьшаться ток возбуждения и проводить напряжение в необходимые пределы.

В повседневной жизни использование генераторов очень помогает человеку в решении множества возникающих вопросов.