Температура электрической искры. Искровой разряд. Опасные тепловые проявления механической энергии

Искровой разряд

Искрово́й разря́д (искра электрическая) - нестационарная форма электрического разряда , происходящая в газах . Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 . В природе искровые разряды часто возникают в виде молний . Расстояние, «пробиваемое» искрой в воздухе, зависит от напряжения и считается равным 10 кВ на 1 сантиметр.

Условия

Искровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда . В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько микросекунд до нескольких сотен микросекунд) падает ниже напряжения погасания искрового разряда, что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для этого разряда, но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового . Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то наблюдается форма самостоятельного разряда, называемая искровым разрядом.

Природа

Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок - искровых каналов. Эти каналы заполнены плазмой , в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов , интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения искрового разряда) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определенных условиях образуются стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Среди них можно выделить т. н. лидер - слабо светящийся разряд, «прокладывающий» путь для основного разряда. Он, двигаясь от одного электрода к другому, перекрывает разрядный промежуток и соединяет электроды непрерывным проводящим каналом. Затем в обратном направлении по проложенному пути проходит главный разряд, сопровождаемый резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии - гром).

Напряжение зажигания искрового разряда, как правило, достаточно велико. Напряженность электрического поля в искре понижается от нескольких десятков киловольт на сантиметр (кв/см) в момент пробоя до ~100 вольт на сантиметр (в/см) спустя несколько микросекунд. Максимальная сила тока в мощном искровом разряде может достигать значений порядка нескольких сотен тысяч ампер.

Особый вид искрового разряда - скользящий искровой разряд , возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами, при условии превышения напряженностью поля пробивной прочности воздуха. Области скользящего искрового разряда, в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика, образуя при этом так называемые фигуры Лихтенберга . Процессы, близкие к происходящим при искровом разряде, свойственны также кистевому разряду, который является переходной стадией между коронным и искровым.

Поведение искрового разряда очень хорошо можно разглядеть на замедленной съёмке разрядов (Fимп.=500 Гц,U=400 кВ) , полученных с трансформатора Тесла. Средний ток и длительность импульсов недостаточна для зажигания дуги, но для образования яркого искрового канала вполне пригодна.

Примечания

Источники

  • А. А. Воробьев, Техника высоких напряжений. - Москва-Ленинград, ГосЭнергоИздат, 1945.
  • Физическая энциклопедия, т.2 - М.:Большая Российская Энциклопедия стр.218 .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Искровой разряд" в других словарях:

    - (искра), неустановившийся электрич. разряд, возникающий в том случае, когда непосредственно после пробоя разрядного промежутка напряжение на нём падает в течение очень короткого времени (от неск. долей мкс до сотен мкс) ниже величины напряжения… … Физическая энциклопедия

    искровой разряд - Электрический импульсный разряд в форме светящейся нити, происходящий при высоком давлении газа и характеризующийся большой интенсивностью спектральных линий ионизированных атомов или молекул. [ГОСТ 13820 77] искровой разряд Полный разряд в… … Справочник технического переводчика

    - (искра электрическая) нестационарный электрический разряд в газе, возникающий в электрическом поле при давлении газа до нескольких атмосфер. Отличается извилистой разветвленной формой и быстрым развитием (ок. 10 7 с). Температура в главном канале … Большой Энциклопедический словарь

    Kibirkštinis išlydis statusas T sritis fizika atitikmenys: angl. spark discharge vok. Funkenentladung, f; Funkentladung, f rus. искровой разряд, m pranc. décharge par étincelles, f … Fizikos terminų žodynas

    Искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом «треском» искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии… … Большая советская энциклопедия

    Искра электрическая, нестационарный электрический разряд в газе, возникающий в электрич. поле при давлении газа до неск. сотен кПа. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7 с), сопровождается характерным звуковым… … Большой энциклопедический политехнический словарь

    - (искра электрическая), нестационарный электрич. разряд в газе, возникающий в электрич. поле при давлении газа до неск. атм. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7с). Темп pa в гл. канале И. р. достигает 10 000 К … Естествознание. Энциклопедический словарь


В условиях производства источники воспламенения могут быть очень разнообразными как по природе их появления, так и по своим параметрам.
Среди возможных источников воспламенения выделим открытый огонь и раскаленные продукты горения; тепловое проявление механической энергии; тепловое, проявление электрической энергии; тепловое проявление химических реакций.

Открытый огонь и раскаленные продукты горения. Пожары и взрывы нередко возникают от постоянно действующих или внезапно появляющихся источников открытого огня и продуктов, сопровождающих процесс горения, - искр, раскаленных газов.
Открытый огонь может воспламенить почти все горючие вещества, так как температура при пламенном горении очень высокая (от 700 до 1500° С); при этом выделяется большое количество тепла и процесс горения, как правило, является продолжительным. Источники огня могут быть разнообразными - технологические нагревательные печи, реакторы огневого действия, регенераторы с выжиганием органических веществ из негорючих катализаторов, печи и установки для сжигания и утилизации отходов, факельные устройства для сжигания побочных и попутных газов, курение, использование факелов для обогрева труб и т. д. Основной мерой противопожарной защиты от стационарных источников открытого огня является их изоляция от горючих паров и газов при авариях и повреждениях. Поэтому аппараты огневого действия лучше размещать на открытых площадках с определенным противопожарным разрывом от смежных аппаратов или изолировать их, размещая обособленно в закрытых помещениях.
Наружные трубчатые огневые печи оборудуют устройством, позволяющим при авариях создать вокруг них паровую завесу, а при наличии смежных аппаратов со сжиженными газами (например, газофракционирующие установки) печи отделяют от них глухой стеной высотой 2-3 м и сверху ее прокладывают перфорированную трубу для создания паровой завесы. Для безопасного розжига печей используют электрозапальники или специальные газовые запальники. Весьма часто пожары и взрывы возникают при производстве огневых (например, сварочных) ремонтных работ из-за неподготовленности аппаратов (о чем говорилось выше) и площадок, где они расположены. Огневые ремонтные работы, кроме
наличия открытого пламени, сопровождаются разлетом
з стороны и падением на нижележащие площадки раска- пенных частичек металла, где они могут воспламенить горючие материалы. Поэтому, кроме соответствующей подготовки аппаратов, подлежащих ремонту, подготавливается и окружающая площадка. В радиусе 10 м убирают все горючие материалы и пыль, сгораемые конструкции защищают экранами, принимают меры к предупреждению попадания искр в нижележащие этажи. Подавляющее большинство огневых работ проводят, используя специально оборудованные стационарные площадки или мастерские.
На производство огневых работ в каждом отдельном случае получается специальное разрешение администрации и санкция пожарной охраны.

В необходимых случаях разрабатывают дополнительные меры обеспечения безопасности. Места производства огневых работ осматривают специалисты пожарной охраны до начала и после окончания работы. При необходимости на время производства работ устанавливают пожарный пост с соответствующей пожарной техникой.
Для курения на территории предприятия и в цехах оборудуют специальные помещения или выделяют соответствующие площадки; для отогрева замерзших труб используют горячую воду, водяной пар или индукционные грелки.
Искры - раскаленные твердые частицы, не полностью сгоревшего топлива. Температура таких искр чаще всего находится в пределах 700-900° С. При попадании в воздух искра сгорает сравнительно медленно, так как на ее поверхности частично адсорбируется двуокись углерода и другие продукты горения.
Снижение пожарной опасности от действия искр достигается устранением причин искрообразования, а при необходимости - улавливанием или гашением искр.
Улавливание и гашение искр при работе топок и двигателей внутреннего сгорания достигается использованием искроулавливателей и искрогасителей. Конструкции искроулавливателей очень разнообразны. Устройства для улавливания и гашения искр основаны на использовании силы тяжести (осадительные камеры), силы инерции (камеры с перегородками, насадками, сетками, жа- люзийные устройства), центробежной силы (циклонные

улавливатели, турбинно-вихревые), сил электрического притяжения (электрофильтры), охлаждения продуктов сгорания водой (водяные завесы, улавливание поверхностью воды), охлаждения и разбавления газов водяными парами и др. В некоторых случаях устанавливают



/ - топка; 2 - осадительная камера; 3 - циклонный искроулавливатель; 4 - дожигательная насадка
последовательно несколько систем искрогашения, как показано на рис. 3.7.
Тепловое проявление механической энергии. Опасное в пожарном отношении превращение механической энергии в теплоту имеет место при ударах твердых тел с образованием искр, трении тел при взаимном перемещении относительно друг друга, адиабатическом сжатии газов и т. д.
Искры удара и трения образуются при достаточно сильном ударе или интенсивном истирании металлов и других твердых тел. Высокая температура искр трения определяется не только качеством металла, но и окислением его кислородом воздуха. Температура искр нелегированных малоуглеродистых сталей превышает иногда

1500° С. Изменение температуры искр удара и трения в зависимости от материала соударяющихся тел и прилагаемого усилия показано на графике рис. 3.8. Несмотря на высокую температуру, искры удара и трения имеют небольшой запас тепла в связи с незначительностью их массы. Многочисленными опытами установлено, что

Рис. 3.8. Зависимость температуры искр удара и трения от давления соударяемых тел

наиболее чувствительными к искрам удара и трения являются ацетилен, этилен, сероуглерод, окись углерода, водород. Вещества, имеющие большой период индукции и требующие для воспламенения значительного количества тепла (метан, естественный газ, аммиак, аэрозоли и т. д.), искрами удара и трения не поджигаются.
Искры, упавшие на осевшую пыль и волокнистые материалы, создают очаги тления, которые могут вызвать пожар или взрыв. Большой поджигательной способностью обладают искры, получающиеся при ударах алюминиевых предметов по окисленной поверхности стальных деталей. Предупреждение взрывов и пожаров от искр удара и трения достигается применением неискрящих инструментов для повседневного использования и при аварийных работах во взрывоопасных цехах; маг-
нитных сепараторов и камнеулавливателей на линиях" подачи сырья в машины ударного действия, мельницы и т. п. аппараты; выполнением деталей машин, которые могут соударяться друг с другом, из искробезопасных металлов или путем строгой регулировки величины зазора между ними.
Неискрящими считаются инструменты, выполненные из фосфористой бронзы, меди, алюминиевых сплавов АКМ-5-2 и Д-16, легированные стали, содержащие 6- 8% кремния и 2-5% титана и т. п. He рекомендуется применять обмедненный инструмент. Во всех случаях, где это возможно, операции ударного действия следует заменять безударными*. При использовании стальных ударных инструментов во взрывоопасных средах место работы усиленно вентилируют, соударяющиеся поверхности инструмента смазывают консистентными смазками.
Разогрев тел от трения при взаимном перемещении зависит от состояния поверхностей трущихся тел, качества их смазки, давления тел друг на друга и условий отвода тепла в окружающую среду.
При нормальном состоянии и правильной эксплуатации трущихся пар избыток выделяющегося тепла своевременно отводится в окружающую среду, обеспечивая поддержание температуры на заданном уровне, т. е., если Qtp= QnoT, то /раб = Const. Нарушение этого равенства приведет к увеличению температуры трущихся тел. По этой причине опасные перегревы имеют место в подшипниках машин и аппаратов, при буксовании транспортерных лент и приводных ремней, при наматывании волокнистых материалов на вращающиеся валы, механической обработке твердых горючих веществ и т. д.
Чтобы уменьшить возможность перегрева, вместо подшипников скольжения для высокооборотных и сильно нагруженных валов применяют подшипники качения.
Большое значение имеет систематическая смазка подшипников (особенно подшипников скольжения). Для нормальной смазки подшипника используют тот сорт масла, который принят с учетом нагрузки и числа оборотов вала. Если естественное охлаждение недостаточно для отвода избыточного тепла, устраивают принудительное охлаждение подшипника проточной водой или циркулирующим маслом, обеспечивают контроль за темпе-

ратурой подшипников и применяемой жидкости для их охлаждения. За состоянием подшипников систематически наблюдают, очищают от пыли и грязи, не допускают перегрузки, вибраций, перекосов и нагрева сверх установленных температур.
He следует допускать“перегрузки транспортеров, Защемления ленты, ослабления натяжения ремня, ленты. Применяют устройства, автоматически сигнализирующие о работе с перегрузкой. Вместо плоскоременных передач применяют клиноременные, которые практически исключают буксование.
От попадания волокон в зазоры между вращающимися и неподвижными частями машины, постепенного уплотнения волокнистой массы и ее трения о стенки машины (на текстильных фабриках, льно- и пенько-джуто- вых заводах, в сушильных цехах заводов химических волокон и др.) уменьшают зазоры между цапфами валов и подшипниками, применяют втулки, кожухи, щиткЦ и другие противонамоточные устройства для защиты валов от соприкосновения с волокнистыми материалами. В некоторых случаях устанавливают противонамоточные ножи и т. п.
Разогрев горючих газов и воздуха при их сжатии в компрессорах. Повышение температуры газа при адиабатическом сжатии определяется уравнением

где Tll1 Tk - температура газа до и после сжатия, °К; Pm Pk - начальное и конечное давления, кГ/см2\ k - показатель адиабаты, для воздуха?=1,41.
Температура газа в цилиндрах компрессора при нормальной степени сжатия не превышает 140-160° С. Так как конечная температура газа при сжатии зависит от степени сжатия, а также от величины начальной температуры газа, то во избежание чрезмерного перегрева при сжатии до высоких давлений газ сжимают постепенно в многоступенчатых компрессорах и охлаждают после каждой ступени сжатия в межступенчатых холодильниках. Чтобы избежать повреждений компрессора, контролируют температуру и давление газа.
Повышение температуры при сжатии воздуха нередко приводит к взрывам компрессоров. Взрывоопасные концентрации образуются в результате испарения и разложения смазочного масла в условиях повышенных температур. Источниками воспламенения являются очаги самовозгорания продуктов разложения масла, отлагающихся в нагнетательном воздуховоде и ресивере. Установлено, что на каждые IO0C повышения температуры в цилиндрах компрессора процессы окисления ускоряются в 2-3 раза. Естественно, что взрывы, как правило, происходят не в цилиндрах компрессоров, а в нагнетательных воздуховодах и сопровождаются горением масляного конденсата и продуктов разложения масла, скапливающихся на внутренней поверхности воздуховодов. Во избежание взрывов воздушных компрессоров, кроме контроля за температурой и давлением воздуха, устанавливают и строго выдерживают оптимальные нормы подачи смазочного масла, систематически очищают нагнетательные воздуховоды и ресиверы от горючих отложений.
Тепловое проявление электрической энергии. Тепловое действие электрического тока может проявиться в виде электрических искр и дуг при коротком замыкании; чрезмерного перегрева двигателей, машин, контактов и отдельных участков электрических сетей при перегрузках и переходных сопротивлениях; перегрева в результате проявления вихревых токов индукции и самоиндукции; при искровых разрядах статического электричества и разрядах атмосферного электричества.
При оценке возможности возникновения пожаров от электрооборудования необходимо учитывать наличие, состояние и соответствие имеющейся защиты от воздействия окружающей среды, коротких замыканий, перегрузок, переходных сопротивлений, разрядов статического и атмосферного электричества.
Тепловое проявление химических реакций. Химические реакции, протекающие с выделением значительного количества тепла, таят потенциальную возможность возникновения пожара, взрыва, так как при этом возможен разогрев реагирующих или рядом находящихся горючих веществ до температуры их самовоспламенения.
Химические вещества по опасности тепловых проявлений экзотермических реакций разделяют на следующие группы (подробнее об этом сказано в гл. I).
а. Вещества, воспламеняющиеся при соприкосновении с воздухом, т. е. имеющие температуру самовоспламенения ниже температуры окружающей среды (например, алюминийорганические соединения) или нагретые выше температуры их самовоспламенения.
б. Вещества, самовозгорающиеся на воздухе, - растительные масла и животные жиры, каменный и древесный уголь, сернистые соединения железа, сажа, порошкообразные алюминий, цинк, титан, магний, торф, отходы нитроглифталевых лаков и т. д.
Самовозгорание веществ предупреждают уменьшением поверхности окисления, улучшением условий отвода тепла в окружающую среду, снижением начальной температуры среды, использованием ингибиторов процессов самовозгорания, изоляцией веществ от соприкосновения с воздухом (хранение и обработка под защитой негорючих газов, защита поверхности измельченных веществ пленкой жира и т. д.).
в. Вещества, воспламеняющиеся при взаимодействии с водой, - щелочные металлы (Na, К, Li), карбид кальция, негашеная известь, порошок и стружка магния, титана, алюминийорганические соединения (триэтилалюминий, триизобутил алюминий, диэтил алюминийхлорид и т. п.). Многие из этой группы веществ при взаимодействии с водой образуют горючие газы (водород, ацетилен), которые в процессе реакции могут воспламеняться, а некоторые из них (например, алюминийорганические соединения) при контакте с водой дают взрыв. Естественно, что такие вещества хранят и используют, защищая от соприкосновения с ними производственной, атмосферной и почвенной воды.
г. Вещества, воспламеняющиеся при контакте друг с другом, - это в основном окислители, способные в определенных условиях воспламенять горючие вещества. Реакциям взаимодействия окислителей с горючими веществами способствуют измельченность веществ, повышенная температура и наличие инициаторов процесса. В некоторых случаях реакции носят характер взрыва. Окислители нельзя хранить совместно с горючими веществами, нельзя допускать какой-либо взаимоконтакт между ними, если это не обусловлено характером технологического процесса.

д. Вещества, способные разлагаться с воспламенением или взрывом при нагревании, ударе, сжатии и т. п. воздействиях. К ним относятся взрывчатые вещества, селитры, перекиси, гидроперекиси, ацетилен, порофор ЧХЗ-57 (азодинитрилизомасляной кислоты) и др. Такие вещества в процессе хранения и использования предохраняют от опасных температур и опасных механических воздействий.
Химические вещества перечисленных выше групп нельзя хранить совместно, а также вместе с другими горючими веществами и материалами.

В производственных условиях пожароопасное повышение температуры тел в результате превращения механической энергии в тепловую наблюдается при ударах твердых тел (с образованием или без образования искр); при поверхностном трении тел во время их взаимного перемещения; при механической обработке твердых материалов режущими инструментами, а также при сжатии газов и прессовании пластмасс. Степень разогрева тел и возможность появления при этом источников зажигания зависит от условий пе­рехода механической энергии в тепловую.

Рис- 5-9. Турбинно-вихревой искрогаситель: / - корпус; 2 - неподвижная турбина; 3 - траектория движения твердых частиц

Рис. 5.10. Зависимость температуры стальной искры от усилия и соударяющегося материала (по данным МИХМ): 1 - с абразивным диском; 2 - с металлическим диском. Линейная скорость соударения 5,2 м/с

Искры, образующиеся при ударах твердых тел. При достаточно» сильном соударении некоторых твердых тел высекаются искры (искры удара и трения). Искра в этом случае представляет собой раскаленную до свечения частицу металла или камня. Размеры искр удара и трения зависят от свойств материалов и энергетических характеристик удара, но обычно не превышают 0,1...0,5 мм. Температура искры, кроме того, зависит от процесса взаимодействия (химического и теплового) частицы металла с окружающей средой. Так, при ударе и истирании металлов в среде, не содержащей кислорода или другого окислителя, видимых искр не образуется. Дополнительный разогрев металлических искр удара при полете в окружающей среде происходит обычно в результате окисления их кислородом воздуха. Температура искр нелегированной малоуглеродистой стали может достигать температуры плавления металла (около 1550° С). Она будет возрастать с увеличением в стали содержания углерода, уменьшаться с увеличением легирующих добавок. Зависимость температуры искры от материала соударяющихся тел и прилагаемой удельной нагрузки показана на рис. 5.10. Согласно графикам, температура искры возрастает линейно с увеличением нагрузки, и более высокую температуру имеют искры, образующиеся при ударе стали о корунд, чем при ударе стали о сталь.

В производственных условиях от искр удара воспламеняются ацетилен, этилен, водород, окись углерода, сероуглерод. Искры удара (в определенных условиях) способны воспламенить метано-воздушные смеси. Поджигающая способность искр удара пропорциональна содержанию кислорода в смеси, которую эти искры могут поджечь. Это и понятно: чем больше в смеси кислорода, тем интенсивнее искра горит, тем выше горючесть смеси.

Воспламеняющая способность искр удара устанавливается экспериментально - в зависимости от энергии удара.

Летящая искра непосредственно не воспламеняет пылевоздушные смеси, но, попав на осевшую пыль или на волокнистые материалы, вызывает появление очагов тления. Этим, видимо, объясняется большое количество вспышек и загораний от механических искр в машинах, где имеются волокнистые материалы или отложения мелкой горючей пыли. Так, в размольных цехах мельниц и крупозаводов, в сортировочно-разрыхлительных и угарных цехах текстильных фабрик, а также на хлопкоочистительных заводах более 50% всех загораний и пожаров возникает от искр, высекаемых при ударах твердых тел.

Образуются искры при ударах алюминиевых тел о стальную окисленную поверхность. В этом случае между разогретой алюминиевой частицей и окислами железа происходит химическое взаимодействие с выделением значительного количества тепла:

2А1 + Fe 2 O 3 = А1 2 О 3 + 2Fe + Q.

За счет тепла этой реакции увеличиваются теплосодержание и температура искры.

Искры, образующиеся при работе ударными инструментами (молотками, зубилами, ломами и т. п.), часто вызывают пожаро-взрывоопасные ситуации. Известны случаи вспышек и взрывов в насосных и компрессорных станциях, а также в производственных помещениях при падении инструмента, ударах ключей в момент подтягивания гаек. Поэтому при производстве работ в местах, где возможно образование взрывоопасной смеси паров или газов с воздухом, не следует использовать ударные инструменты из искрообразующих материалов. Искробезопасными считают инструменты, выполненные из бронзы, фосфористой бронзы, латуни, бериллия, алюминиего сплава АКМ-5-2, дюралей с ограниченным (до 1,2... 1,8%) содержанием,магния..(сплав Д-16 и др.) и даже инструменты из высоколегированных сталей.. Использование омедненного инст­румента не достигает цели, ибо мягкий слой меди быстро истирается. При пользовании стальными инструментами следует оберегать их от падения и по возможности заменять ударные операции) безударными (например, рубку металла зубилом заменить распиловкой и т. п.), а для рассеивания горючих паров или газов у мест производства работ применять передвижные вентиляционные агрегаты.

Искры, образующиеся при попадании в машины металла или камней. В аппараты с мешалками для растворения или химической обработки твердых веществ в растворителях (например, целлулоидной массы в спирте, ацетилцеллюлозы в ацетоне, каучука в бензине, нитроклетчатки в спирто-эфирной смеси и т. п.), в машины ударно-центробежного действия для измельчения, разрыхления и смешивания твердых горючих веществ (молотковые и ударно-дисковые мельницы, дробилки кормов, хлопкоочистительные и трепальные машины и т. п.), в аппараты-смесители для перемешивания и составления порошковых композиций, в аппараты центробежного -действия для перемещения газов и паров (вентиляторы, газодувки, центробежные компрессоры) могут попасть вместе с обрабатываемыми продуктами куски металла или камни, в результате чего образуются искры. Поэтому обрабатываемые продукты следует просеивать, провеивать, промывать либо использовать магнитные, гравитационные или инерционные улавливатели.

Рис. 5.11. Камнеуловитель: / - пневматический тру­бопровод; 2 - бункер; 3 - наклонные поверхности; 4 - разгрузочный люк

Особенно трудно очистить волокнистые материалы, так как твердые примеси запутываются в волокнах. Так, для очистки хлопка-сырца от камней перед поступлением его в машины устанавливают гравитационные или инерционные камнеуловители (рис. 5.11).

Металлические примеси в сыпучих и волокнистых материалах улавливают также магнитными уловителями (сепараторами). На рис. 5.12 изображен магнитный уловитель, наиболее широко применяемый в мукомольном и крупяном производстве, а также на комбикормовых заводах. На рис. 5.13 показан разрез электромагнитного сепаратора с вращающимся барабаном.

Следует отметить, что эффективность работы уловителей зависит от их расположения, скорости движения, равномерности и толщины слоя продукта, характера примесей. Устанавливают их, как правило, в начале технологической линии, перед машинами ударного действия. Сепараторы обычно предохраняют машины и от механических повреждений. Их установка диктуется также санитарно-гигиеническими требованиями.

Рис. 5.12. Магнитный сепаратор с постоянными магнитами: / - корпус; 2 - постоянные магниты; 3 - сыпучий материал

Рис. 5.13. Электромагнитный сепаратор с вращающимся барабаном: / - корпус; 2 -неподвижный электромагнит; 3 - поток продукта; 4 - регулировочный винт; 5 - вращающийся барабан из не

магнитного материала; 6 - труба для очищенного продукта; 7 - труба для уловленных примесей

Если есть опасность попадания в машину твердых немагнитных примесей, осуществляют, во-первых, тщательную сортировку сырья, во-вторых, внутреннюю поверхность машин, о которую эти примеси могут удариться, футеруют мягким металлом, резиной или пластмассой.

Искры, образующиеся при ударах подвижных механизмов машин об их неподвижные части . В практике нередко бывает так, что ротор центробежного вентилятора соприкасается со стенками кожуха или быстровращающиеся пильчатые и ножевые барабаны волок но отделительных и трепальных машин ударяются о неподвижные стальные решетки. В таких случаях наблюдается искрообразование. Оно возможно и при неправильной регулировке зазоров, при деформации и вибрации валов, изнашивании подшипников, перекосах, недостаточном креплении на валах режущего инструмента и т. п. В таких случаях возможно не только искрообразование, но и поломка отдельных частей машин. Поломка узла машины, в свою очередь, может быть причиной образования искр, так как частицы металла попадают при этом в продукт.

Основные пожарно-профилактические мероприятия, направленные на предотвращение образования искр удара и трения, сводятся к тщательной регулировке и балансировке валов, правильному подбору подшипников, проверке величины зазоров между вращающимися и неподвижными частями машин, их надежному креплению, исключающему возможность продольных перемещений; предотвращению перегрузки машин.

Перед пуском в работу машина, в которой возможно соударение вращающихся частей о неподвижные, должна проверяться (в неподвижном состоянии, а затем на холостом ходу) на отсутствие перекосов и вибраций, прочность крепления вращающихся частей, наличие необходимых зазоров. В процессе работы при появлении постороннего шума, ударов и сотрясений надо остановить машину для устранения неполадок.

Повышенные требования по искробезопасности предъявляются к производственным помещениям с наличием ацетилена, этилена, окиси углерода, паров сероуглерода, нитросоединений и подобных им легковоспламеняющихся или нестойких веществ, полы и площадки в которых делают из материала, не образующего искр, или выстилают резиновыми ковриками, дорожками и т. п. Пол помещений, где обрабатывается нитроклетчатка, кроме того, поддерживают в увлажненном состоянии. Тележки и вагонетки должны иметь на колесах ободы из мягкого металла или резины.

Всякое перемещение соприкасающихся друг с другом тел требует затраты энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту. При нормальном состоянии и правильной эксплуатации трущихся тел выделяющееся тепло Q т p своевременно отводится специальной системой охлаждения Q охл, а также рассеивается в окружающую среду Q OkP:

Q тр = Q охл + Q окр.

Нарушение этого равенства, то есть увеличение тепловыделе­ния или уменьшение теплоотвода и теплопотерь, ведет к повышению температуры трущихся тел. По этой причине происходят загорания горючей среды или материалов от перегрева подшипников машин, сильно затянутых сальников, барабанов и транспортерных лент, шкивов и приводных ремней, волокнистых материалов при наматывании их на вращающиеся валы инструмента и механически обрабатываемых твердых горючих материалов.

Рис. 5.14. Схема подшипни­ка скольжения: / - шип вала; 2 - корпус подшипника; 3 - станина

Загорание от перегрева подшипников машин и аппаратов. Наиболее пожароопасны подшипники скольжения сильно нагруженныхи высокооборотистых валов. Плохое качество смазки рабочих поверхностей, их загрязнение, перекосы валов, перегрузка машины и чрезмерная затяжка подшипников - все это может явиться причиной перегрева подшипников. Очень часто корпус подшипника загрязняется отложениями горючей пыли (древесной, мучной, хлопковой). Это также создает условия для их перегрева Примерную величину температуры подшипника скольжения (см. рис. 5.14) можно определить расчетным путем. Температура поверхности подшипника при нарушении режима его работы изменяется во времени. Для отрезка времени dx можно написать следующее уравнение теплового баланса:

d Q t р = dQ нагр+ dQ oxл+ dQ 0 K p, (5.7)

где dQ T p - количество тепла, выделяющегося при работе подшипника;

dQ нагр - количество тепла, идущего на нагревание подшипника; dQoxл - количество тепла, отводимого принудительной системой охлаждения; d Q 0 K p - потери тепла поверхностью подшипника в окружающую среду.

Количество тепла, выделяющегося при трении поверхностей, определяется по формуле

Q тр =f тр Nl ,

где f тр - коэффициент трения; N - нагрузка; / - относительное перемещение поверхностей.

Тогда применительно к подшипнику (для вращательного движения) работа сил трения определяется выражением

dQ т p =f Tp Nd III /2πndτ = πf ТР Nd III ndτ, (5.8)

где п - частота вращения вала (1/с); d - диаметр шипа вала. Предполагая коэффициент трения величиной постоянной и обозначив произведение постоянных величин а, будем иметь:

dQ Tp = adτ. (5.9)

Количество тепла, затрачиваемого на нагревание подшипника dQ нагр при повышении температуры на dT, будет равно:

dQ narp = mcdT, (5.10)

где т - масса нагреваемых деталей подшипника; с - средняя удельная теплоемкость материала подшипника.

Количество тепла dQ 0 XJI , отводимого принудительной системой охлаждения, можно принять равным нулю, что соответствует наиболее опасному режиму работы подшипника.

Количество тепла dQoup, теряемого поверхностью подшипника в окружающую среду, будет равно:

dQ окр = α(T п-T B)Fdτ, (5.11)

где α - коэффициент теплоотдачи поверхностью подшипника и средой; Т п и Т в - температура поверхности подшипника и воздуха; F - поверхность теплообмена (поверхность подшипника, омываемая окружающим воздухом).

Подставляя найденные значения dQ Tp , dQ narv и dQ 0 Kp в уравнение.(5.7), получим уравнение

adτ = mcdT+a(T n -T B)Fdτ, (5.12)

решение которого при начальных условиях аварии (Т П = Т В) дает:

Коэффициент а определяют из условий теплоотдачи от поверхности цилиндра в окружающую среду при свободной конвекции воздуха.

Полученное уравнение (5.13) дает возможность определить температуру подшипника в любой момент времени аварийного режима его работы или определить продолжительность аварийного режима, в течение которого температура поверхности подшипника достигает опасной величины.

Максимальную температуру подшипника (при τ = ∞) можно определить по формуле

Чтобы избежать пожаровзрывоопасной ситуации, в данном случае вместо подшипников скольжения применяют подшипники качения, систематически их смазывают, контролируют температуру.

В сложных машинах (турбинах, центрифугах, компрессорах) контроль температуры подшипников осуществляют с помощью систем КИПиА.

Визуальный контроль температуры подшипников осуществляют нанесением термочувствительных красок, изменяющих свой цвет при нагревании, на корпуса подшипников. Предотвратить перегрев подшипников позволяют системы принудительной смазки, устройство которых должно обеспечивать контроль наличия масла, замену отработанного масла свежим (с заданными рабочими характеристиками), быстрое и легкое удаление подтеков масла с частей машины.

В качестве примера можно привести модернизацию системы смазки подшипников сушильных цилиндров и сукноведущих валиков бумаго- и картоноделательных машин на целлюлозно-бумаж ном комбинате в Архангельской области. В результате этой модернизации пожары и загорания в соответствующих системах практически прекратились.

Первоначально для визуального контроля за поступлением масла в подшипники были предусмотрены капельницы. Помещены они были под кожухами машин, в зоне высоких температур, что практически исключало возможность систематического контроля. По (предложению объектовой пожарной части и пожарно-технической комиссии предприятия капельницы заменили ротаметрами, вынесенными за пределы машины. Это позволило визуально контролировать поступление масла, уменьшить количество разъемных соединений в маслосистеме, тем самым сократив масляные подтеки на станинах и узлах подшипников.

Кроме того, по первоначальному проекту масло в подшипниках заменяли только при планово-предупредительных ремонтах или планово-техническом обслуживании. Контролировать наличие смазки при эксплуатации машины было трудно. Исправность под­шипников проверяли «на слух». При реконструкции машин была смонтирована централизованная система смазки: из емкости (10 м 3), установленной в отдельном помещении, шестеренчатым насосом отфильтрованное масло стали подавать в напорные трубопроводы и через ответвления - к ротаметрам, от ротаметров - к подшипникам. Пройдя через подшипник, масло попадало в отстойник и фильтр, где очищалось от механических примесей, охлаждалось и снова поступало в рабочую емкость. Давление, температура и уровень масла в баке контролировались автоматически. При остановке маслонасосов и падении давления в напорной линии срабатывала звуковая и световая сигнализация, включались резервные насосы.

Для очистки машин от подтеков масла и оседающей на них пыли оказалось эффективным применение 2%-ного раствора тех­нического моющего средства ТМС-31 (при 50...70° С). По всей длине машины устроена стационарная система для мойки агрегатов и механизмов. Внедрение системы очистки позволило ежесменно, не останавливая машины, смывать подтеки масла и пыль. Кроме того, из производства изъято 10 т керосина, значительно улучшены условия труда работающих.

Перегревы и воспламенения транспортерных лент и приводных ремней наступают в основном в результате длительного проскальзывания ремня или ленты относительно шкива. Такое проскальзывание, называемое буксованием, возникает в силу несоответствия между передаваемым усилием и натяжением ветвей ремня (ленты). При буксовании вся энергия расходуется на трение ремня о шкив, в результате чего выделяется значительное количество тепла. Наиболее часто буксование транспортерных лент, лент элеваторов и ременных передач возникает из-за перегрузки или слабого натя­жения ремня. У элеваторов причиной буксования чаще всего является завал башмака, то есть такое состояние, когда ковш элеватора не может пройти сквозь толщу транспортируемого вещества. К перегрузке и буксованию могут привести защемление ленты, перекосы и т. п.

Максимальную температуру барабана или шкива при длительной пробуксовке ленты или ремня можно определить по формуле (5.14).

Во избежание перегревов и загораний транспортерных лент и приводных ремней нельзя допускать работу с перегрузкой; следует контролировать степень натяжения ленты, ремня, их состояние Нельзя допускать завалов башмаков элеваторов продукцией, перекосов лент и трения их о кожухи и другие рядом находящиеся предметы. В некоторых случаях (при использовании мощных высокопроизводительных транспортеров и элеваторов) применяют устройства и приспособления, автоматически сигнализирующие о работе передачи с перегрузкой и останавливающие движение ленты при завале башмака элеватора.

Иногда для уменьшения буксования ремень трансмиссии посыпают канифолью, но это дает лишь кратковременный эффект. Обработка же ремня канифолью способствует образованию зарядов статического электричества, что представляет определенную пожарную опасность. Лучше в этом случае использовать клиноременную передачу.

Загорание волокнистых материалов при наматывании их на валы наблюдается на прядильных фабриках, льнозаводах, а также в комбайнах при уборке зерновых культур. Волокнистые материалы и соломистые продукты наматываются на валы около подшипников. Наматывание сопровождается постепенным уплотнением массы, а затем сильным нагреванием ее при трении о стенки машины, обугливанием и, наконец, воспламенением. Иногда загорание происходит в результате наматывания волокнистых материалов на валы транспортеров, перемещающих отходы и готовую продукцию. На прядильных фабриках загорания часто возникают в результате обрыва шнура или тесьмы, с помощью которых приводятся во вращение веретена прядильных машин.

Наматыванию волокнистых материалов на вращающиеся валы машин способствует наличие увеличенного зазора между валом иподшипником (попадая в этот зазор, волокно заклинивается, защемляется, начинается процесс наматывания его на вал со все более сильным уплотнением слоев), наличие оголенных участков вала, с которыми соприкасаются волокнистые материалы, а также использование влажного и загрязненного сырья.

Для предотвращения наматывания волокнистых материалов на вращающиеся валы машин необходимо защитить валы от непосредственного соприкосновения с обрабатываемыми волокнистыми материалами путем использования втулок (рис. 5.15), цилиндрических и конических кожухов, кондукторов, направляющих планок, противонамоточных щитов и т. п. Кроме того, следует установить минимальные зазоры между цапфами вала и подшипниками, не допуская их увеличения; вести систематическое наблюдение за ва­лами, где может быть наматывание, своевременно очищая их от волокон, защитить их специальными противонамоточными острыми ножами, разрезающими наматываемое волокно. Такую защиту имеют, например, трепальные машины на льнозаводах.

Рис. 5.15. Защита вала от наматывания волокнистых материа­лов: а - свободно насаженной прямой втулкой; б - неподвижной конусной втулкой; 1 - подшипник; 2 - вал; 3 - защитная втулка

Тепловое проявление механической энергии в условиях производства наблюдается при работе прессов и компрессорных установок. Пожарная опасность этих механизмов рассмотрена в главах 10 и 11 данного учебника.

§ 5.4. Тепловое проявление химических реакций -

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.