Характер ряда октавных полос частот. Очистка вредных выбросов в атмосферу. Производственное освещение. Символика и расчеты частот в популяционной генетике

Характеристики шума и его воздействие

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот.

При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f2 = 2 f1 , называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых

f2 = 21/3 f1 = 1,26 f1 .

Основными параметрами, характеризующими звуковую волну, являются:

  • · звуковое давление pзв, Па;
  • · интенсивность звука I, Вт/м2.
  • · длина звуковой волны l, м;
  • · скорость распространения волны с, м/с;
  • · частота колебаний f, Гц.

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой:

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Длительное воздействие интенсивного шума (выше 80 дБА) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости, которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость), характеризуемые постоянным изменением порога слышимости.

Различают следующие степени потери слуха:

I степень (легкое снижение слуха) - потеря слуха в области речевых частот составляет 10 - 20 дБ, на частоте 4000 Гц - 20 - 60 дБ;

II степень (умеренное снижение слуха) - потеря слуха в области речевых частот составляет 21 - 30 дБ, на частоте 4000 Гц - 20 - 65 дБ;

III степень (значительное снижение слуха) - потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц - 20 - 78 дБ.

Действие шума на организм человека не ограничивается воздействием на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 - 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ(А). Установлено повышение на 10 - 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 - 70 дБ(А). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБА).

Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 - 60 дБА), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.

При импульсных и нерегулярных шумах степень воздействия шума повышается.

Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.

В настоящее время "шумовая болезнь" характеризуется комплексом симптомов:

  • -снижение слуховой чувствительности;
  • -изменение функции пищеварения, выражающейся в понижении кислотности;
  • -сердечно-сосудистая недостаточность;
  • -нейроэндокринные расстройства.

Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБА производительность труда снижается на 20%.

Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.

Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа - ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 - 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.

полоса частот, в которой верхняя граничная частота в два раза больше нижней. (Смотри: ГОСТ 23499-79. Материалы и изделия строительные звукопоглощающие и звукоизоляционные. Классификация и общие технические требования.)

Источник: "Дом: Строительная терминология", М.: Бук-пресс, 2006.

  • - синтеза́тор часто́т прибор для преобразования постоянной частоты электрических колебаний высокостабильного опорного генератора в любую другую частоту с требуемой точностью и стабильностью...

    Энциклопедия техники

  • - любая ЧАСТОТА, создаваемая МОДУЛЯЦИЕЙ, которая добавлена к НЕСУШЕЙ ВОЛНЕ...

    Научно-технический энциклопедический словарь

  • - частотный диапазон электромагнитного излучения, расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области...

    Энциклопедия Кольера

  • - устройство, ослабляющее в сигнале определенные диапазоны частот...

    Большая психологическая энциклопедия

  • - устройство для преобразования пост. частоты электрич. колебаний высокостабильного опорного генератора в любую др. частоту с требуемой высокой точностью и стабильностью...

    Большой энциклопедический политехнический словарь

  • - "...Диапазон номинальных частот - диапазон частот, установленный изготовителем для прибора, выраженный верхним и нижним пределами..." Источник: " ГОСТ 27570.0-87 ...

    Официальная терминология

  • - "...74) мгновенная ширина полосы частот - полоса частот, в которой уровень мощности выходного сигнала остается постоянным в пределах 3 дБ без подстройки основных рабочих параметров;..." Источник: Приказ ФТС России от 27...

    Официальная терминология

  • - "...103) относительная ширина полосы частот - мгновенная ширина полосы частот, деленная на среднюю частоту несущей, выраженная в процентах;..." Источник: Приказ ФТС России от 27.03...

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - ".....

    Официальная терминология

  • - техника СВЧ, область науки и техники, связанная с изучением и использованием свойств электромагнитных колебаний и волн в диапазоне частот от 300 Мгц до 300 Ггц. Эти границы условны: в некоторых случаях нижней...
  • - ы в радиотехнике, поддержание постоянства частоты электрических колебаний в автогенераторе...

    Большая Советская энциклопедия

  • - СВЕРХВЫСОКИХ ЧАСТОТ техника - область науки и техники, связанная с изучением и использованием свойств электромагнитных колебаний и волн в диапазоне СВЧ. Теория электромагнитного поля СВЧ основана на общих законах...

    Большой энциклопедический словарь

  • - О чередовании успехов и неудач в жизни. При длительных проблемах говорится, что жизнь пошла вдоль чёрных полос, нет передышки...

    Словарь народной фразеологии

"октавная полоса частот" в книгах

Символика и расчеты частот в популяционной генетике

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора Курчанов Николай Анатольевич

Символика и расчеты частот в популяционной генетике Для обозначения частот аллелей в популяционной генетике используются специальные символы: р – частота аллеля А; q – частота аллеля а; тогда p + q = 1.Для расчета частот генотипов применяют формулу квадрата двучлена: где p2

Наши пять частот

Из книги Пришельцы из Будущего: Теория и практика путешествий во времени автора Голдберг Брюс

Наши пять частот В 1957 году Хью Эверетт III доказал, что будущее состоит из неограниченного числа параллельных миров, или частот, получив степень доктора в области квантовой механики.Хотя теоретически число этих параллельных миров не ограничено, проведенные мной начиная с

Новый закон частот

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Новый закон частот В XIX веке в физике уже имелось, казалось бы, законченное учение о колебаниях. Согласно этому учению, всякое колеблющееся тело возбуждает волны той частоты, какова частота колебаний тела. Например, если струна колеблется с частотой 400 циклов, от нее идет

автора

Глава 1. Принцип затухания частот

1. Формулировка принципа затухания частот и дублирования частот. Примеры

Из книги Империя - II [с иллюстрациями] автора Носовский Глеб Владимирович

1. Формулировка принципа затухания частот и дублирования частот. Примеры 1. 1. Формулировка принципа В работах … А. Т. Фоменко сформулировал фундаментальный принцип затухания частот, позволяющий строить естественные статистические модели эволюции во времени

1.1.5. Микропередатчик с ЧМ в диапазоне частот 80-100 МГц

автора Громов В И

1.1.5. Микропередатчик с ЧМ в диапазоне частот 80-100 МГц Схема сверхмаломощного передатчика диапазона 80-100 МГц с частотной модуляцией представлена на рис. 26.gif. Его выходная мощность 0,5 мВт, потребляемый ток не превышает 2 мА. Питание осуществляется от аккумуляторного

1.2.1. Радиопередатчик с AM в диапазоне частот 27–30 МГц

Из книги Энциклопедия безопасности автора Громов В И

1.2.1. Радиопередатчик с AM в диапазоне частот 27–30 МГц Устройство, описанное ниже, работает в диапазоне 27–30 МГц с амплитудной модуляцией несущей частоты. Основное достоинство заключается в том, что оно питается от электросети. Эту же сеть оно использует для излучения

1.2.2. Радиопередатчик с ЧМ в диапазоне частот 1-30 МГц

Из книги Энциклопедия безопасности автора Громов В И

1.2.2. Радиопередатчик с ЧМ в диапазоне частот 1-30 МГц Устройство, описанное ниже, может работать в диапазоне 1-30 МГц с частотной модуляцией. Для питания радиопередатчика используется электросеть 220 В. Эта же сеть используется устройством в качестве антенны. Схема

Сверхвысоких частот техника

Из книги Большая энциклопедия техники автора Коллектив авторов

Сверхвысоких частот техника Сверхвысоких частот техника – это область науки и техники, которая связана с изучением и применением свойств электромагнитных волн и колебаний в диапазоне 300 МГц – 300 ГГц. Сокращенно техника сверхвысоких частот называется СВЧ-техникой. автора Кеоун Дж.

Фильтры низких частот В качестве небольшого вступительного обзора рассмотрим RС-фильтр низкой частоты, показанный на рис. 4.1, а. Параметры элементов: R=100 кОм, С=1 нФ и V=1?0°B. Выходной сигнал V(2) снимается с конденсатора. Входной файл для этой схемы предусматривает построение

Что дает знание естественных частот

Из книги Понимать риски. Как выбирать правильный курс автора Гигеренцер Герд

Что дает знание естественных частот Мы уже видели, что использование понятия естественной частоты события помогает нам понять, что означает положительный результат ВИЧ-тестирования и что выгоднее менять первоначальный выбор в задаче Монти Холла. Почему это так?

Рис. 2. Изменение соотношения эталонных частот

Из книги Сравнительное Богословие Книга 1 автора Академия Управления глобальными и региональными процессами социального и экономического развития

Рис. 2. Изменение соотношения эталонных частот биологического и социального времениВ верхней части рис. 2 условно показана общая продолжительность глобального исторического процесса (шкала времени - условная, неравномерная). Ниже размещены две оси времени. На них

Процесс передачи колебаний в среде называется волновым .

Рис. 1 Волновое движение

Основная характеристика волнового движения – длина волны, т.н. расстояние между двумя точками волны, пребывающими в одной фазе. Другая характеристика – амплитуда волны – расстояние, на которое колеблющаяся частица отклоняется от положения равновесия.

Волновое движение характеризуется также частотой f этого движения и скоростью распространения.

Частота – количество колебаний в единицу времени (обычно в секунду, с), измеряется в герцах, Гц.

Частота звуковых волн, воспринимаемых нормальным ухом человека, лежит в пределах от 16 до 16000 Гц. Колебания с частотой меньше 16 Гц называются инфразвуком, больше 16000 Гц – ультразвуком.

Рис. 2 [__] Частота в октавных интервалах

Звук как физическое явление представляет собой волновое движение упругой среды; как физическое явление он представляется ощущением, воспринимаемым органом слуха при воздействии звуковых волн в диапазоне частот 16-16000 Гц. Другими словами звуком называют механические колебания упругого тела в частотном диапазоне слышимости человека.

Процесс распределения колебательного движения в среде называется звуковой волной . Область среды, в которой распространяются звуковые волны, называют звуковым полем .

Звуковые волны подобно всякому волновому движению характеризуются длиной волны λ в м, частотой f в герцах, Гц, и периодом колебания Т в секундах, с, а также скоростью их распространения С в м/с.

Зависимость между этими величинами может быть представлена следующим образом:

λ = С / f = С · Т (1)

Если смещение частиц среды происходит в направлении распространении звуковой волны, то такие волны называют продольными. В воздухе и на жидкостях звук распространяется только в виде продольных волн. В твердых телах наряду с продольными происходит образование поперечных и изгибных волн.

С целью анализа звукового поля звуковой диапазон (16-16000 Гц) разбивают на полосы (интервалы, шаги).

Октавная полоса – диапазон частот, в котором верхняя граничная частота f 2 в два раза больше нижней f 1 .

Третьоктавная полоса частот – диапазон частот, в котором это соотношение равно 1,26 (f 2 = 1,26 f 1). Октавная и третьоктавные полосы характеризуются среднегеометрической часто-той полосы

(2)

Граничные и среднегеометрические частоты октавных и третьоктавных полос приведены в табл. П1.


Таблица П.1

Граничные и среднегеометрические

частоты октавных и третьоктавных полос, Гц

Граничные частоты для полос Среднегеометрические частоты для полос
октавных третьоктавных октавных третьоктавных
28-35,5 31,5
35,5-45
45-90 45-56
56-71
71-90
90-180 90-112
112-140
140-180
180-355 180-224
224-280
280-355
355-710 355-450
450-560
560-710
710-1400 710-900
900-1120
1120-1400
1400-2800 1400-1800
1800-2240
2240-2800
2800-5600 2800-3540
3540-4500
4500-5600
5600-11200 5600-7100
7100-9000
9000-11200

Для воздуха зависимость скорости от температуры выглядит:

С = 331,4 + 0,6t , м/с (3)

где 331,4 – скорость звука в воздухе при 0ºС;

t – температура окружающей среды, ºС.

Таблица 1

Скорость звука в различных материалах

Если принять среднюю скорость звука в воздухе 340 м/с, то можно получить зависимую от частоты длину волны.


Изменение состояния среды в звуковом поле характеризуется звуковым давлением р и колебательной скоростью частиц среды V .

Звуковое давление р – разность между мгновенным значением полного давления и средним (атмосферным) давлением, которое наблюдается в среде при отсутствии звукового поля. Единица измерения звукового давления р – Н/м 2 , 1 Н/м 2 = 1 Па (Паскаль).

Колебательной скоростью частиц среды V называется мгновенное значение скорости колебательного движения частиц среды при распространении в ней звуковой волны. Колебательная скорость частиц среды является векторной величиной, единица измерения – м/с.

Связь между этими физическими величинами в плоской бегущей волне определяется соотношением


р = V ρс, (4)

где ρ – плотность среды. Величина ρс – постоянная для данной среды – называется акустическим (волновым) сопротивлением и для воздуха при нормальных атмосферных условиях (р = 10 5 Па, t = 20°С) ρс = 408 Па·с/м.

Распространение звуковой волны сопровождается переносом энергии. Средний поток звуковой энергии, проходящий в единицу времени через единицу поверхности, нормальной к распространению звуковой волны, называется интенсивностью звука I , которая измеряется в Вт/м 2 . Связь между звуковым давлением и интенсивностью звука в бегущей волне устанавливается соотношением:

, (5)

где черта означает осреднение во времени.

Другой энергетической характеристикой звукового поля является плотность звуковой энергии ω в Дж/м 3 , равная количеству звуковой энергии, содержащейся в единице объема.

Для плоских звуковых волн определяется соотношением

Интенсивность звука является векторной, а плотность звуковой энергии скалярной величинами.

Человек воспринимает звук лишь в определенных интервалах. Минимальное значение звукового давления, которое человек воспринимает как звук, называется порогом слышимости (р 0 = 2·10 -5 Па). Максимальное значение звукового давления, которое воспринимает человек без риска повреждения слуха, называется болевым порогом (р = 2·10 2 Па). Порогу слышимости соответствуют звуки интенсивностью I 0 = 10 -12 Вт/м 2 , а болевому порогу – I = 10 2 Вт/м 2 .

Вводится понятие так называемого уровня, в котором абсолютные величины берутся в отношении к определенным величинам (на пороге слышимости), и это отношение логарифмируется. Единицей измерения является децибел (дБ). Таким образом, децибел – это число, выражающее в логарифмическом масштабе отношение двух величин .

Уровень интенсивности звука, дБ,

Уровень звукового давления, дБ,

Рис. 3 Область слухового восприятия звука человеком


Так как децибел – логарифмическая величина, то арифметические действия с ним имеют свои особенности, например:

L 1 + L 2 = 70 дБ + 70 дБ = 10lg (10 0,1·70 + 10 0,1·70) =

10lg (10 7 + 10 7) = 10lg (2·10 7) = 10 · 7,3 = 73 дБ

Формула сложения децибел имеет вид:

L 1 + L 2 = 10lg (10 0,1· L 1 + 10 0,1· L 2)

В общем виде при наличии нескольких источников звука суммарные уровни звукового давления определяются по формуле

, (9)

где L i – слагаемые уровни звукового давления, дБ;

n – общее число слагаемых.

L 1 – L 2 , дБ
ΔL(L 1 > L 2), дБ 2,5 1,8 1,5 1,2 0,8 0,5 0,5 0,4 0,2

L = L 1 + ΔL (L 1 > L 2) (10)

Пример. Требуется найти суммарный для трех слагаемых уровней:L 1 = 86 дБ; L 2 = 80 дБ; L 3 = 88 дБ. Разность ΔL 3,1 =2 дБ; поправка ΔL 1 =2 дБ; L 3,1 = 90 дБ; L 3,1 – L 2 = 10 дБ, поправка ΔL 2 = 0,4 дБ; L 3,1,2 = 90,4 дБ.

Приборы для измерения шума называются шумомерами. Эти приборы состоят из микрофона, усилителя и измерительного прибора со шкалами А, В, С и D . Полную характеристику шума может дать измерение уровня звукового давления по шкале С и его частотная характеристика (распределение компонентов шума по частоте и уровню звукового давления). Для того, чтобы приблизить результаты измерений к субъективному восприятию человека введено понятие корректированного уровня звукового давления. Наиболее употребительная коррекция шумомера А .

Рис. 4 А шумомера

Стандартное значение коррекции ΔL А приведено ниже

Частота, Гц 31,5
Коррекция ΔL А, дБ 26,2 16,1 8,6 3,2 -1,2 -1 -1,1

Коррективный уровень звукового давления

L А = L – ΔL А (11)

называется уровнем звука в дБА.

Таким образом, определение уровней звука в дБА следующее – это энергетическая сумма октавных уровней звукового давления в нормируемом диапазоне частот, откорректированных по частотной характеристике А шумомера.

Пример определения уровня звука в дБА

Характеристики Уровни звукового давления, дБ, и поправки в октавных полосах со среднегеометрическими частотами, Гц
31,5
Измеренная характеристика источника звука, L
Стандартная частотная характеристика А шумомера ΔL А -40 -26 -16 -9 -3 +1 +1
Спектр прибора с поправкой на фильтр А
Результаты сложения
Уровень звука, L А, дБА

Основные понятия и определения. Слуховое восприятие как средство получения информации является для человека вторым по значению (после зрительного) психофизиологическим процессом.

Шум – всякий нежелательный для человека звук. Звуковые волны возбуждают колебания частиц звуковой среды, в результате чего изменяется атмосферное давление.

Звуковое давление – разность между мгновенным значением давления в точке среды и статическим давлением в той же точке, т.е. давление в невозмущённой среде: Р = Р мг – Р ст .

Звуковое давление – величина знакопеременная. В моменты сгущения (сжатия или уплотнения) частиц среды она положительна; в моменты разрежения – отрицательна.

Органы слуха воспринимают не мгновенное, а среднеквадратичное звуковое давление:

Время усреднения давления: Т о = 30 – 100 мс.

При распространении звуковой волны происходит перенос энергии .

Средний поток энергии в точке среды в единицу времени, отнесённый к единице поверхности, нормальной направлению распространения волны, называется интенсивностью звука (силой звука) в данной точке.

Интенсивность, Вт/м 2 , связана со звуковым давлением зависимостью

где ρ×с – удельное акустическое сопротивление.

Величины звукового давления и интенсивности звука, с которыми приходится иметь дело в практике борьбы с шумом, могут меняться в широких пределах: по давлению – до 10 8 раз, по интенсивности – до 10 16 раз. Оперировать такими цифрами несколько неудобно.

Кроме того, слуховой анализатор подчиняется основному психофизическому закону (Вебера-Фехнера):

где Е – интенсивность ощущений; I – интенсивность раздражителя; С и К – некоторые постоянные величины.

Поэтому были введены логарифмические величины уровня звукового давления и интенсивности звука.

Уровень звукового давления, дБ:

где Р о = 2×10 -5 Па – пороговое звуковое давление; Р – среднеквадратичная величина звукового давления.

Уровень интенсивности звука, дБ:

где I – действующая интенсивность звука; I о = 10 -12 Вт/м 2 – интенсивность звука, соответствующая порогу слышимости (на частоте 1000 Гц).

Величину уровня интенсивности применяют при получении формул акустических расчётов, а уровня звукового давления – для измерения шума и оценки его воздействия на человека, поскольку орган слуха чувствителен не к интенсивности, а к среднеквадратичному давлению.

Интенсивность I max и величина звукового давления P max , соответствующие болевому порогу: I max = 10 2 Вт/м, P max = 2×10 2 Па.

Частотный спектр шума – зависимость уровня интенсивности (уровня звукового давления) от частоты: L = L(ƒ). Весь слышимый диапазон частот разбит на 9 октавных полос. Октавная полоса, или октава – это частотный диапазон, для которого выполняется условие


Различают следующие виды спектров:

- дискретный (линейчатый) – спектр, синусоидальные составляющие которого отделены друг от друга по частоте (рис. 6.1);

Октавная полоса – полоса частот, в которой верхняя граничная частота fв равна удвоенной нижней частоте fн, т.е. fв/fн = 2.

Октавная полоса характеризуется среднегеометрической частотой fСГ:

fв=2* fн=357*2=714 Гц

Ответ: верхняя граничная частота равна 714 Гц, нижняя граничная частота равна 357 Гц.

2.4 Электромагнитные поля и излучения

Считается, что наиболее вредными для человеческого организма являются электромагнитные излучения с длиной волны 20-30 см. Какова частота этих волн? Какие параметры нормируются для этого диапазона?

Частота волны определяется по следующей формуле:

с – скорость света в вакууме ;

– длина волны,

Определим частоты волн для крайних точек диапазона длин волн :

Таким образом получаем, что для диапазона длин волн соответствует следующий диапазон частот .

Действующее значение напряженности электрического поля, измеренное на расстоянии 1 м от экрана телевизора, оказалось равным Е В/м. Эффективным способом защиты от электромагнитных излучений является защита расстоянием. Считая, что напряженность Е убывает с расстоянием

пропорционально кубу, определить, на каком расстоянии будет измерено принимаемое рядом исследователей за безопасное значение Едоп.= 0,5 В/м? Чему равно Е на расстоянии х=2 м и на рекомендуемом гигиенистами расстоянии 4 м?

Так как напряженность Е убывает с расстоянием пропорционально кубу, определим на каком расстоянии будет измерено принимаемое рядом исследователей за безопасное значение Едоп.= 0,5 В/м:

Так же определим напряженность Е на различных расстояниях от экрана телевизора:

И в заключении определим напряженность Е на рекомендуемом расстоянии просмотра телевизора :

Таким образом, получим, что напряженность убывает с увеличением расстояния от источника излучения, в данном случае – телевизора. Наиболее рекомендуемое расстояние r = 4 м предпочтительнее, так как является оптимальным вариантом, при котором обеспечивается наиболее комфортный просмотр ТВ, а так же происходит не значительное значение действующего напряжения.