Статья про электростанции в детской энциклопедии. Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема. Основное оборудование электростанций


Электроста нция, электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции , гидроэлектрические станции , гидроаккумулирующие электростанции , атомные электростанции , а также приливные электростанции , ветроэлектростанции , геотермические электростанции и Э. с магнитогидродинамическим генератором .

Тепловые Э. (ТЭС) являются основой электроэнергетики ; они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют котлоагрегаты , паровые турбины , турбогенераторы , а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, конденсаторы , воздухоподогреватели, электрические распределительные устройства . Паротурбинные Э. подразделяются на конденсационные электростанции и теплоэлектроцентрали (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину , внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в электрический ток . Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС .

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт ·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами . Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей . На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и энергопоезда (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (плотина , водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание напора , и энергетическое оборудование (гидротурбины , гидрогенераторы , распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации ), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит ядерный реактор , где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

Лит.: см. при статьях Атомная электростанция , Ветроэлектрическая станция , Гидроэлектрическая станция , Приливная электростанция . Тепловая паротурбинная электростанция , а также при ст. Наука (раздел Энергетическая наука и техника. Электротехника).

В. А. Прокудин.

ская тепловая электростанция имеет мощность 1,8 млн. квт, а Луганская, тоже тепловая,- 1,5 млн. квт. По сверхдальним линиям электро­передач энергия передается самым высоким в мире напряжением -500 тыс. в переменного и 800 тыс. в постоянного тока.

Лавина энергии

Потребности нашей страны в электроэнергии огромны. Но энергетики хотят точно знать, как будет расти потребление электричества, чтобы составить план строительства электростанций. Зная, сколько электроэнергии идет на произ­водство, например, одного автомобиля, спе­циалисты могут подсчитать потребность в энер­гии всех автомобильных заводов страны. А на­блюдая, как вы за завтраком режете свежий хлеб, энергетики сообщат вам любопытный факт. Оказывается, на производство килограм­ма хлеба - от возделывания пшеницы в поле до прилавка булочной - тратится 1 квт-ч электроэнергии.

Так, идя от одного вида продукции к друго­му, учитывая ежегодный рост производства, потребности домашнего хозяйства, школ, теат­ров и т. д., энергетики приходят к общей сумме потребности энергии.

В Программе партии записано: поднять вы­работку электроэнергии к 1980 г. до 2700- 3000 млрд. квт-ч. Это 340 планов ГОЭЛРО! Для производства такой массы электроэнергии нужно построить около 640 крупных электростанций всех типов. Их общая мощность должна быть примерно в пять раз больше, чем мощность всех электростанций страны в 1965 г.

Промышленность и транспорт израсходуют почти две трети всей этой энергии. Ведь только химическая промышленность потребует в 1980 г. около 300 млрд. квт-ч.

Очень резко, до нескольких сот миллиардов киловатт-часов, вырастут потребности сельского хозяйства. На фермах колхозов и совхозов электрические машины производят многие рабо­ты. Они измельчают и запаривают корма, доят коров, охлаждают молоко; электричество подает воду на поля в засушливых районах; без больших затрат электроэнергии нельзя изгото­вить минеральные удобрения.

Городское и домашнее хозяйство, культур­ные учреждения тоже потребуют немало энер­гии. Скоро каждой семье понадобится не менее 500 квт-ч в год. А Московскому университету уже сейчас нужно столько энергии, сколько

дает Волховская ГЭС. Во время интересных передач Центрального телевидения все вклю­ченные телевизоры потребляют мощность целой Днепровской ГЭС.

Энергия должна выть дешевой

Но если электрическая энергия будет обхо­диться дорого, то мы не сможем применять ее так широко, как хотим. Поэтому надо точно знать, из чего складывается цена электроэнер­гии, чтобы сокращать затраты.

На тепловой электростанции до 65% всех расходов идет на топливо. Лучшие совет­ские тепловые электростанции расходуют сегод­ня 400-500 г топлива на выработку 1 квт-ч. А к 1980 г. этот расход в результате ввода сверх­мощных и более экономичных турбин и генера­торов будет снижен почти до 300 г.

В стоимость 1 квт-ч входят еще расходы на зарплату работников электростанций. Но людей на электрических станциях стано­вится все меньше: их работу берут на себя ав­томаты.

Теперь дальше. На постройку самой стан­ции, еще до того как она дала первый ток, ушли большие средства. Их постепенно, с рассрочкой в 3-5 лет, прибавляют к цене выработанной энергии - надо же покрыть расходы на строи­тельство. Кроме того, в течение 30 лет отчис­ляются суммы, которые покрывают износ здания и оборудования. Эти добавки называют отчислениями на амортизацию.

В себестоимости одного киловатт-часа, про­изведенного на гидроэлектростанции, доля амор­тизации достигает 90%. Сроки окупаемости здесь составляют 3-7 лет, а сроки амортиза­ции - от 50 до 100 лет. Гидроузлы - очень дорогие сооружения. Но зато текущие расходы на выработку электроэнергии здесь незначи­тельны: топлива не надо совсем, и ГЭС уже сегодня работают автоматически. Мы строим сейчас в основном тепловые станции, потому что их сооружать быстрее и дешевле. Но и о ги­дроэлектростанциях не забываем.

Если бы к 1980 г., когда мы будем выраба­тывать до 3000 млрд. квт-ч в год, себестоимость энергии снизилась против сегодняшней всего на 1 %, мы сэкономили бы в течение года сред­ства для постройки школ на 450 тыс. человек.

Но в 1980 г. новые электростанции будут вырабатывать очень дешевую электроэнергию. 1 квт-ч обойдется в три раза дешевле, чем сей­час,- в среднем не более четверти копейки.

Удешевление энергии приведет к резкому снижению стоимости всей продукции в стране.

Электростанции страны «берутся за руки»

Включая электромотор или телевизор, мно­гие и не подозревают, что послушная им энер­гия родилась очень далеко, быть может, за сотни километров от места потребления. Действитель­но, энергетиков уже не смущают большие рас­стояния. Электропередачи тянутся по всей стране на тысячи километров, и нет у них сопер­ников ни в быстроте передачи энергии (300 тыс. км/сек!), ни в «провозоспособности» (миллиарды киловатт-часов!), ни в возможности подвести энергию вплотную к потребителям. Важно и то, что на тысячекилометровых элект­рических трассах почти не видно людей.

Но в разное время года, в разные часы суток нужны разные количества энергии. Ле­том, когда день длинный, на освещение тратится меньше электричества, чем зимой. А в сельском хозяйстве, например на орошение и другие ра­боты, максимальное количество энергии требует­ся именно летом. В дневные и вечерние часы, когда работают все предприятия и включается освещение, нужно больше энергии, чем ночью.

Если строить электростанции с учетом мак­симальной потребности (энергетики говорят - с учетом «пиков»), то часть турбин в «тихие» часы придется останавливать. Это значит, что на сооружение и содержание этих дополни­тельных турбин будут затрачены лишние сред­ства. Не лучше ли в часы «пик» добавить энер­гии с другой станции, из района, где, скажем, в это время уже наступила ночь?

Так и делают: объединяют электростанции линиями электропередач в единую систему. И передают энергию оттуда, где ее в этот мо­мент избыток, туда, где ее не хватает. Объеди­нив все станции страны, мы создадим Единую энергетическую систему (ЕЭС). Только ЕЭС способна сгладить все «пики» и одновременно забрать все излишки электроэнергии; только она может дать дешевую энергию всем отраслям народного хозяйства, культуры и быта.

ЕЭС значительно улучшает и работу самих электростанций: снижаются затраты на строи­тельство и эксплуатацию, уменьшаются и общая нагрузка, и те скачки в графике нагрузок - «пики», которые так дорого обходятся разоб­щенным электростанциям.

Перекрыть шестую часть суши земного ша­ра мощными линиями электропередач - это раньше казалось фантастикой. Но теперь мы

Волховская ГЭС им. В. И. Ленина (1926). Мощность - 56 тыс. квт .

Днепрогэс им. В. И. Ленина (1932). Мощность - 650 тыс. квт.

Волжская ГЭС им. XXII съезда КПСС (1960). Мощность - 2350 тыс. квт.

Электроэнергия сегодня является неотъемлемой частью жизни общества. В то время, как большинство людей в развитых странах обеспокоены тем, как сэкономить деньги на счетах за электричество, многие развивающиеся страны работают над тем, как производить достаточное для граждан страны количество энергии. Мы собрали для наших читателей интересные факты об электрической энергии.

1. 20% на комфорт домохозяек


Количество энергии, которое используется обычными домохозяйствами в США для кондиционирования воздуха, составляет примерно 20% от потребления электроэнергии в стране.

2. Принес пользу - унес ноги


В Бразилии есть тюрьмы, в которых заключенным позволяют крутить педали велотренажеров, вырабатывая энергию для окрестных деревень. За это им предлагают сокращение срока тюремного заключения.

3. Деньги на мусор, мусор на утилизацию, тепловую энергию в электрическую


В Швеции так хорошо развита утилизация, что страна часто импортирует у Норвегии мусор для своих энерговырабатывающих мусороперерабатывающих заводов.

4. Гидроэлектростанция «Итайпу»


Почти четверть электроэнергии в Бразилии вырабатывается одной электростанцией.

5. В Швейцарии все чисто


Более половины всей энергии в Швейцарии вырабатывается гидроэлектростанциями, а остальная часть - атомными электростанциями. В итоге, энергетическая отрасль страны почти не производит выбросов СО2.

6. Гидроаккумулирующие электростанции


Гидроаккумулирующие электростанции позволяют сохранять "зеленую" энергию в течение длительных периодов времени. Изначально вода подается наверх сооружения, а при стекании ее вниз, она крутит лопатки турбин, вырабатывая электричество, часть которого идет на то, чтобы снова закачать воду наверх.

7. Инженеры "Титаника"


Ни один из инженеров "Титаника" не спасся. Они все пошли на дно с кораблем, потому что до последнего были заняты поддержанием выработки электричества на корабле.

8. Чайная пауза в Великобритании


Электростанция Dinorwig в Великобритании служит одной единственной цели - обеспечивать дополнительную мощность во время перерывов на рекламу в фильмах, когда все в стране включают свои электрочайники, чтобы приготовить чай.

9. Чище атомной энергии только энергия ветра и воды


В процессе производстве ядерной энергии уровень CO2 меньше, чем в процессе выработки солнечной и геотермальной энергии. Чище только энергия ветра и воды.

10. Геотермальные станции Исландии


Исландия производит всю свою энергию из возобновляемых источников. Гидроэлектростанции обеспечивают около двух третей потребности в энергии, а остальная часть вырабатывается геотермальными станциями.


Около половины ядерной энергии в Соединенных Штатах производится из старых советских ядерных боеголовок.

12. Энергия воды в Норвегии


99% энергии Норвегия получает на гидроэлектростанциях. Это больше, чем в любой другой стране на Земле.

13. Ветер,ветер ты могуч...

14. Марсоход Curiosity


Марсоход Curiosity был запитан от ядерного генератора, мощности которого едва хватало, чтобы (к примеру) крутить потолочный вентилятор.

15. Реакторы на жидком фториде тория


Реакторы на жидком фториде тория могли бы удовлетворить всю мировую годовую потребность в энергии, используя всего около 7000 тонн тория.

16. Атомная Франция


Франция производит столько электроэнергии на АЭС, что экспортирует ее.

17. Национализированная электроэнергия


В 1963 году Квебек национализировал электроэнергию. Это привело к тому, что 96% энергии Квебека сейчас вырабатывается из гидроэлектрических источников. Также в канадской провинции одни из самых дешевых тарифов на континенте.

18. Книга - знание, знание -сила, сила знания - ток в деревне


Уильям Камквамба - подросток из Малави, который прочитал в библиотечной книге, как построить ветряную мельницу. Затем он сделал ветряк и обеспечил свою деревню электроэнергией.

19. Смело и глупо


В 70-е годы Россия построила ряд атомных маяков вдоль своего побережья. В настоящее время два генератора пропали.

20. "Батарейки мира" хватило бы лишь на 10 минут работы

Шведские "рудные поезда" вырабатывают в 5 больше электроэнергии, чем они фактически используют для движения. Не использованная энергия используется для питания близлежащих городов.

25. Солнце, пустыни и человечество


Всего за 6 часов пустыни Земли поглощают больше энергии Солнца, чем все человечество использует на протяжении года.

Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы - совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов - в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика - область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика - это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля - 27%, газа - 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран - в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие - малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России - примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1-3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

Виды децентрализованного отопления:

  • Малыми котельными;
  • Электрическое, которое делится на:
    • Прямое;
    • Аккумуляционное;
  • Теплонасосное;
  • Печное.

Тепловые сети

Тепловая сеть - это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

Энергетическое топливо

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65%, из которых 39% приходились на уголь, 16% на природный газ, 9% на жидкое топливо(2000г). В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%. Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%.

Газообразное

Естественным топливом является природный газ, искусственным:

  • Генераторный газ;
  • Коксовый газ;
  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;
  • Синтез-газ.

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

  • Бензин;
  • Керосин;
  • Соляровое масло;
  • Мазут.

Твёрдое

Естественным топливом являются:

Ископаемое топливо:

  • Торф;
  • Бурый уголь;
  • Каменный уголь;
  • Антрацит;
  • Горючий сланец;

Растительное топливо:

  • Дрова;
  • Древесные отходы;
  • Топливные брикеты;
  • Топливные гранулы.

Искусственным твёрдым топливом являются:

  • Древесный уголь;
  • Кокс и полукокс;
  • Углебрикеты;
  • Отходы углеобогащения.

Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (США, Канада, Россия).

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3-5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.



Кто из вас когда-нибудь видел ветер?

Но мы знаем - ветер существует. Ведь мы видим, как он качает деревья, как несет сорванные листья и ветки, как гонит волны. И мы научились запрягать этого невидимку. Ветер надувает паруса наших кораблей. Ветер крутит крылья мельниц и ветряных двигателей.

Ну, а кто видел электричество?

Его тоже никто не видел.

Но мы хорошо знаем, что оно существует. Ведь мы видим, как ярко светят электрические лампы, как быстро мчатся троллейбусы и трамваи, как жарко греют электрические печи, как хорошо работают станки и машины с электрическими двигателями.

Только не всегда было так. Двести лет назад об электричестве знали немногие ученые люди. И знали совсем не то, что знаем мы. Если бы спросили у тогдашнего ученого, что такое электричество, он ничего бы не сказал ни о ярких лампах, ни о жарких электрических печах, ни о могучих двигателях.

Электричество,- сказал бы старый ученый,- это таинственная жидкость, незримая и невесомая. Электричество появляется в янтаре, натертом кошачьей шкуркой, и в грозовых облаках. Под его действием могут плясать маленькие клочки бумаги и шарики из бузинной мякоти. Электричество заставляет вздрагивать лягушачью ножку и рождает грозную молнию. В 1753 году в России ученые Михаил Ломоносов и Георг Рихман построили «громовую машину» и улавливали электричество из воздуха на шест с железным острием. Но однажды в шест ударила молния, и Георг Рихман был убит… Бойтесь электричества: оно загадочно, капризно и очень опасно!

Но многих передовых ученых того времени не устрашила трагическая смерть Рихмана. Вслед за Ломоносовым и Рихманом принялись они исследовать электричество. Итальянец Алессандро Вольта изобрел первую электрическую батарею. Француз Андре-Мари Ампер исследовал законы электрического тока. Немец Георг Фридрих Ом разгадал тайну сопротивления проводников. Ослепительно вспыхнула электрическая дуга русского академика Василия Петрова. В неистовом пламени этой дуги англичанин Гэмфри Дэви получил новые, неизвестные металлы: натрий, калий, кальций. Датчанин Ганс Эрстед открыл магнитное действие электрического тока. Наконец, Борис Семенович Якоби, сын прусского купца, профессор архитектуры в Юрьеве, изобрел первый электродвигатель.

Так электричество перестало быть таинственной жидкостью и сделалось новым видом энергии. Из тихих лабораторий ученых эта новая энергия начала все смелее проникать в жизнь.

Сейчас электрическая энергия - наш неизменный друг и помощник в любом деле. Механическая энергия не зажжет лампу. Тепловая энергия не побежит по проводам телефона и телеграфа. А электрическая энергия может делать все. И чем больше ее у нас, тем мы богаче, сильнее, тем быстрее движемся вперед.

Но где же взять много электрической энергии? Откуда она вообще берется?

Оказывается, энергия может переходить из одного вида в другой. В тепловом двигателе тепловая энергия переходит в механическую. А если тепловой двигатель будет вращать генератор электроэнергии, механическая энергия перейдет в электрическую. Генератор можно вращать и водяным двигателем, водяной турбиной. Тогда электрическая энергия получится за счет механической энергии текущей воды.

В нашей стране работает много тепловых электростанций. Они используют тепловую энергию 4 каменного угля, торфа, сланца, природного газа. Много и гидроэлектростанций. Они используют энергию рек. С каждым годом электростанций становится все больше. Но запасы топлива в недрах земли не бесконечны. Да и не везде они есть. Запасы энергии рек тоже не бесконечны. И не везде есть подходящие реки для строительства электростанций. Что же будет с нами дальше? Может быть, человечеству угрожает нехватка энергии, энергетический голод?

Нет, этого опасаться не приходится. В природе есть еще много могучих источников энергии. Мы до сих пор не используем внутреннее тепло Земли, тепло морей. Очень мало используется огромная энергия солнечных лучей, энергия приливов и отливов. Все эти виды энергии мы еще плохо умеем преобразовывать.

А энергия атома? Она впервые вырвалась на свободу с огромной, разрушительной силой. Но гораздо труднее оказалось использовать ее в мирных целях. В нашей стране была построена первая в мире атомная электростанция. Это огромное достижение советской науки и техники. Как работает эта станция? В ее реакторе атомная энергия превращается в тепловую. Тепло кипятит воду в котле и превращается в энергию пара. Пар дает механическую энергию. Он вращает турбину. И, наконец, турбина вращает генератор электрического тока. Механическая энергия превращается в электрическую.

Путь превращений получается очень длинным. Хорошо ли это?

Есть сказка о незадачливом старике, который пошел продавать лошадь. По дороге он сменял лошадь на корову, корову - на барана, барана- на утку, утку - на курицу, курицу - на яйцо, яйцо - на иголку. При каждом обмене старик что-то терял.

Примерно то же самое получается и при переходе энергии из одного вида в другой. В атомной электростанции не все тепло реактора переходит в энергию пара. Часть теряется на нагрев реактора, труб, стенок котла, воздуха, здания электростанции.

Не вся энергия пара превращается в механическую энергию. Часть теряется на нагрев турбины, часть уходит с отработанным паром.

Не вся механическая энергия турбины превращается в электрическую. Часть теряется на нагрев генератора. При каждом обмене - потери. Так недолго и до иголки доменяться.

Около 200 лет назад в Лондоне была построена первая паровая мельница. Тогда еще не успели изобрести паровую машину. Был только паровой насос. Он накачивал воду из реки в бассейн, устроенный на холме. А из бассейна вода лилась… на колесо обыкновенной водяной мельницы.

Конечно, потери энергии получались огромные. Но преобразовать энергию пара прямо во вращение тогда еще не умели.

Пока что и атомные электростанции- только первые шаги в завоевании нового вида энергии.

Ведутся опыты по прямому превращению атомной энергии в электрическую. Созданы атомные батареи. Правда, пока что потери энергии в них получаются больше, чем на атомной электростанции. Но ведь и это - первые шаги.

Пройдут годы - мы до конца овладеем могучей энергией атома. И тогда могуществу человека не будет границ!