Как работает жидкостный манометр кратко. Манометры: принцип действия. Применение жидкостного манометра

Давлением называется равномерно распределенная сила, действующая перпендикулярно на единицу площади. Оно может быть атмосферным (давление околоземной атмосферы), избыточным (превышающим атмосферное) и абсолютным (сумма атмосферного и избыточного). Абсолютное давление ниже атмосферного называется разреженным, а глубокое разряжение - вакуумным.

Единицей давления в международной системе единиц (СИ) является Паскаль (Па). Один Паскаль есть давление, создаваемое силой один Ньютон на площади один квадратный метр. Поскольку эта единица очень мала, применяют также единицы кратные ей: килопаскаль (кПа) = Па; мегапаскаль (МПа) = Па и др. Ввиду сложности задачи перехода от применявшихся ранее единиц давления к единице Паскаль, временно допущены к применению единицы: килограмм-сила на квадратный сантиметр (кгс/см) = 980665 Па; килограмм-сила на квадратный метр (кгс/м) или миллиметр водяного столба (мм вод.ст) = 9,80665 Па; миллиметр ртутного столба (мм рт.ст) = 133,332 Па.

Приборы контроля давления классифицируются в зависимости от метода измерения, используемого в них, а также по характеру измеряемой величины.

По методу измерения, определяющему принцип действия, эти приборы подразделяются на следующие группы:

Жидкостные, в которых измерение давления происходит путем уравновешивания его столбом жидкости, высота которого определяет величину давления;

Пружинные (деформационные), в которых значение давления измеряется путем определения меры деформации упругих элементов;

Грузопоршневые, основанные на уравновешивании сил создаваемых с одной стороны измеряемым давлением, а с другой стороны калиброванными грузами действующих на поршень помещенный в цилиндр.

Электрические, в которых измерение давления осуществляется путем преобразования его значения в электрическую величину, и путем замера электрических свойств материала, зависящих от величины давления.

По виду измеряемого давления приборы подразделяют на следуюшие:

Манометры, предназначенные для измерения избыточного давления;

Вакуумметры, служащие для измерения разрежения (вакуума);

Мановакууметры, измеряющие избыточное давление и вакуум;

Напоромеры, используемые для измерения малых избыточных давлений;

Тягомеры, применяемые для измерения малых разрежений;

Тягонапоромеры, предназначенные для измерения малых давлений и разрежений;

Дифференциальные манометры (дифманометры), с помощью которых измеряют разность давлений;

Барометры, используемые для измерения барометрического давления.

Наиболее часто используются пружинные или деформационные манометры. Основные виды чувствительных элементов этих приборов представлены на рис. 1.

Рис. 1. Виды чувствительных элементов деформационных манометров

а) - с одновитковой трубчатой пружиной (трубкой Бурдона)

б) - с многовитковой трубчатой пружиной

в) - с упругими мембранами

г) - сильфонные.

Приборы c трубчатыми пружинами.

Принцип действия этих приборов основан на свойстве изогнутой трубки (трубчатой пружины) некруглого сечения изменять свою кривизну при изменении давления внутри трубки.

В зависимости от формы пружины, различают пружины одновитковые (рис. 1а) и многовитковые (рис. 1б). Достоинством многовитковых трубчатых пружин является большее чем у одновитковых перемещение свободного конца при одинаковом изменении входного давления. Недостатком - существенные габариты приборов с такими пружинами.

Манометры с одновитковой трубчатой пружиной - один из наиболее распространенных видов пружинных приборов. Чувствительным элементом таких приборов является согнутая по дуге круга, запаянная с одного конца, трубка 1 (рис. 2) эллиптического или овального сечения. Открытым концом трубка через держатель 2 и ниппель 3 присоединяется к источнику измеряемого давления. Свободный (запаянный) конец трубки 4 через передаточный механизм соединен с осью стрелки перемещающейся по шкале прибора.

Трубки манометров, рассчитанных на давление до 50 кг/см изготавливаются из меди, а трубки манометров, рассчитанных на большее давление из стали.

Свойство изогнутой трубки некруглого сечения изменять величину изгиба при изменении давления в ее полости является следствием изменения формы сечения. Под действием давления внутри трубки эллиптическое или плоскоовальное сечение, деформируясь, приближается к круглому сечению (малая ось эллипса или овала увеличивается, а большая уменьшается).

Перемещение свободного конца трубки при ее деформации в определенных пределах пропорционально измеряемому давлению. При давлениях, выходящих из указанного предела, в трубке возникают остаточные деформации, которые делают ее непригодной для измерения. Поэтому максимальное рабочее давление манометра должно быть ниже предела пропорциональности с некоторым запасом прочности.

Рис. 2. Пружинный манометр

Перемещение свободного конца трубки под действием давления весьма невелико, поэтому для увеличения точности и наглядности показаний прибора вводят передаточный механизм, увеличивающий масштаб перемещения конца трубки. Он состоит (рис. 2) из зубчатого сектора 6, шестерни 7, сцепляющейся с сектором, и спиральной пружины (волоска) 8. На оси шестерни 7 закреплена указывающая стрелка манометра 9. Пружина 8 прикреплена одним концом к оси шестерни, а другим - к неподвижной точке платы механизма. Назначение пружины - исключить люфт стрелки, выбирая зазоры в зубчатом сцеплении и шарнирных соединениях механизма.

Мембранные манометры.

Чувствительным элементом мембранных манометров может быть жесткая (упругая) или вялая мембрана.

Упругие мембраны представляют собой медные или латунные диски с гофрами. Гофры увеличивают жесткость мембраны и ее способность к деформации. Из таких мембран изготавливают мембранные коробки (см. рис. 1в), а из коробок - блоки.

Вялые мембраны изготавливают из резины на тканевой основе в виде одногофровых дисков. Используются они для измерения небольших избыточных давлений и разряжений.

Мембранные манометры и могут быть с местными показаниями, с электрической или пневматической передачей показаний на вторичные приборы.

Для примера рассмотрим дифманометр мембранный типа ДМ, который представляет собой бесшкальный датчик мембранного типа (рис. 3) с дифференциально - трансформаторной системой передачи значения измеряемой величины на вторичный прибор типа КСД.

Рис. 3 Устройство мембранного дифманометра типа ДМ

Чувствительным элементом дифманометра является мембранный блок, состоящий из двух мембранных коробок 1 и 3, заполненных кремнийорганической жидкостью, находящихся в двух отдельных камерах, разделенных перегородкой 2.

К центру верхней мембраны прикреплен железный сердечник 4 дифференциально-трансформаторного преобразователя 5.

В нижнюю камеру подается большее (плюсовое) измеряемое давление, в верхнюю - меньшее (минусовое) давление. Сила измеряемого перепада давления уравновешивается за счет других сил, возникающих при деформации мембранных коробок 1 и 3.

При увеличении перепада давления мембранная коробка 3 сжимается, жидкость из нее перетекает в коробку 1, которая расширяется и перемещает сердечник 4 дифференциально-трансформаторного преобразователя. При уменьшении перепада давления сжимается мембранная коробка 1 и жидкость из нее вытесняется в коробку 3. Сердечник 4 при этом перемещается вниз. Таким образом, положение сердечника, т.е. выходное напряжение дифференциально-трансформаторной схемы однозначно зависит от значения перепада давления.

Для работы в системах контроля, регулирования и управления технологическими процессами путем непрерывного преобразования давления среды в стандартный токовый выходной сигнал с передачей его на вторичные приборы или исполнительные механизмы используются датчики-преобразователи типа "Сапфир".

Преобразователи давления этого типа служат: для измерения абсолютного давления («Сапфир-22ДА»), измерения избыточного давления («Сапфир-22ДИ»), измерения вакуума («Сапфир-22ДВ»), измерения давления - разряжения («Сапфир-22ДИВ»), гидростатического давления («Сапфир-22ДГ»).

Устройство преобразователя «САПФИР-22ДГ» показано на рис. 4. Они используются для измерения гидростатических давлений (уровня) нейтральных и агрессивных сред при температурах от -50 до 120 °С. Верхний предел измерения - 4 МПа.


Рис. 4 Устройство преобразователя «САПФИР -22ДГ»

Тензопреобразователь 4 мембранно-рычажного типа размещен внутри основания 8 в замкнутой полости 10, заполненной кремнийорганической жидкостью, и отделен от измеряемой среды металлическими гофрированными мембранами 7. Чувствительными элементами тензопреобразователя являются пленочные тензорезисторы 11 из кремния размещенные на пластине 10 из сапфира.

Мембраны 7 приварены по наружному контуру к основанию 8 и соединены между собой центральным штоком 6, который связан с концом рычага тензопреобразователя 4 с помощью тяги 5. Фланцы 9 уплотнены прокладками 3. Плюсовой фланец с открытой мембраной служит для монтажа преобразователя непосредственно на технологической емкости. Воздействие измеряемого давления вызывает прогиб мембран 7, изгиб мембраны тензопреобразователя 4 и изменение сопротивления тензорезисторов. Электрический сигнал от тензопреобразователя передается из измерительного блока по проводам через гермоввод 2 в электронное устройство 1, преобразующее изменение сопротивлений тензорезисторов в изменение токового выходного сигнала в одном из диапазонов (0-5) мA, (0-20) мA, (4-20) мА.

Измерительный блок выдерживает без разрушения воздействие односторонней перегрузки рабочим избыточным давлением. Это обеспечивается тем, что при такой перегрузке одна из мембран 7 ложится на профилированную поверхность основания 8.

Похожее устройство имеют и указанные выше модификации преобразователей «Сапфир-22».

Измерительные преобразователи гидростатических и абсолютных давлений «Сапфир-22К-ДГ» и «Сапфир-22К-ДА» имеют выходной токовый сигнал (0-5) мА или (0-20) мА или (4-20) мА, а также электрический кодовый сигнал на базе интерфейса RS-485.

Чувствительным элементом сильфонных манометров и дифманометров являются сильфоны - гармониковые мембраны (металлические гофрированные трубки). Измеряемое давление вызывает упругую деформацию сильфона. Мерой давления может быть либо перемещение свободного торца сильфона, либо сила, возникающая при деформации.

Принципиальная схема сильфонного дифманометра типа ДС приведена на рис.5. Чувствительным элементом такого прибора являются один или два сильфона. Сильфоны 1 и 2 одним концом закреплены на неподвижном основании, а другим соединены через подвижный шток 3. Внутренние полости сильфонов заполнены жидкостью (водоглицериновой смесью, кремнийорганической жидкостью) и соединены друг с другом. При изменении перепада давления один из сильфонов сжимается, перегоняя жидкость в другой сильфон и перемещая шток сильфонного блока. Перемещение штока преобразуется в перемещение пера, стрелки, лекала интегратора или сигнал дистанционной передачи, пропорциональный измеряемому перепаду давления.

Номинальный перепад давления определяет блок винтовых цилиндрических пружин 4.

При перепадах давления выше номинального стаканы 5 перекрывают канал 6, прекращая переток жидкости и предупреждая таким образом сильфоны от разрушения.


Рис. 5 Принципиальная схема сильфонного дифманометра

Для получения достоверной информации о величине какого-либо параметра необходимо точно знать погрешность измерительного устройства. Определение основной погрешности прибора в различных точках шкалы через определенные промежутки времени производят путем его поверки, т.е. сравнивают показания поверяемого прибора с показаниями более точного, образцового прибора. Как правило, поверка приборов осуществляется сначала при возрастающем значении измеряемой величины (прямой ход), а затем при убывающем значении (обратный ход).

Манометры поверяют следующими тремя способами: поверка нулевой точки, рабочей точки и полная поверка. При этом две первые поверки производятся непосредственно на рабочем месте с помощью трехходового крана (рис. 6).

Рабочая точка поверяется путем присоединения контрольного манометра к рабочему манометру и сравнение их показаний.

Полная поверка манометров осуществляется в лаборатории на поверочном прессе или поршневом манометре, после снятия манометра с рабочего места.

Принцип действия грузопоршневой установки для поверки манометров основан на уравновешивании сил, создаваемых с одной стороны измеряемым давлением, а с другой - грузами, действующими на поршень, помещенный в цилиндр.


Рис. 6. Схемы поверки нулевой и рабочей точек манометра с помощью трехходового крана.

Положения трехходового крана: 1 - рабочее; 2 - поверка нулевой точки; 3 - поверка рабочей точки; 4 - продувка импульсной линии.

Приборы для измерения избыточного давления называются манометрами, вакуума (давления ниже атмосферного) - вакуумметрами, избыточного давления и вакуума - мановакуумметрами, разности давлений (перепада) - дифференциальными манометрами.

Основные серийно выпускаемые приборы для измерения давления по принципу действия делятся на следующие группы:

Жидкостные - измеряемое давление уравновешивается давлением столба жидкости;

Пружинные - измеряемое давление уравновешивается силой упругой деформации трубчатой пружины, мембраны, сильфона и т.д.;

Поршневые - измеряемое давление уравновешивается силой, действующей на поршень определенного сечения.

В зависимости от условий применения и назначения промышленностью выпускаются следующие типы приборов для измерения давления:

Технические - приборы общего назначения для эксплуатации оборудования;

Контрольные - для поверки технических приборов на месте их установки;

Образцовые - для поверки контрольных и технических приборов и измерений, требующих повышенной точности.

Манометры пружинные

Назначение . Для измерения избыточного давления широкое применение нашли манометры, работа которых основана на использовании деформации упругого чувствительного элемента, возникающей под действием измеряемого давления. Значение этой деформации передается отсчетному устройству измерительного прибора, градуированному в единицах давления.

В качестве чувствительного элемента манометра чаще всего используется одновитковая трубчатая пружина (трубка Бурдона). Другими видами чувствительных элементов являются: многовитковая трубчатая пружина, плоская гофрированная мембрана, гармоникообразная мембрана - сильфон.

Устройство . Манометры с одновитковой трубчатой пружиной широко применяются для измерения избыточного давления в пределах 0,6 - 1600 кгс/см². Рабочим органом таких манометров является полая трубка элипсовидного или овального сечения, изогнутая по окружности на 270°.

Устройство манометра с одновитковой трубчатой пружиной показано на рисунке 2.64. Трубчатая пружина - 2 открытым концом жестко соединена с держателем - 6, укрепленным в корпусе - 1 манометра. Держатель проходит через штуцер - 7 с резьбой, служащей для соединения с газопроводом, в котором измеряется давление. Свободный конец пружины закрыт пробкой с шарнирной осью и запаян. Посредством поводка- 5 он связан с передаточным механизмом, состоящим из зубчатого сектора - 4, сцепленного с шестеренкой - 10, сидящей неподвижно на оси вместе с указательной стрелкой - 3. Рядом с шестеренкой расположена плоская спиральная пружина (волосок) - 9, один конец которой соединен с шестеренкой, а другой закреплен неподвижно на стойке. Волосок постоянно прижимает трубку к одной стороне зубцов сектора, тем самым устраняя мертвый ход (люфт) в зубчатом зацеплении и обеспечивает плавность хода стрелки.

Рис. 2.64. Показывающий манометр с одновитковой трубчатой пружиной

Манометры электроконтактные

Назначение. Манометры, вакууметры и мановакууметры электроконтактные типа ЭКМ ЭКВ, ЭКМВ и ВЭ-16рб предназначены для измерения, сигнализации или двухпозиционного регулирования давления (разряжения) нейтральных по отношению к латуни и стали газов и жидкостей. Измерительные приборы типа ВЭ-16рб выполняются во взрывозащищенном корпусе и их можно устанавливать в пожароопасных и взрывоопасных помещениях. Рабочее напряжение электроконтактных устройств до 380В или до 220В постоянного тока.

Устройство .Устройство электроконтактных манометров аналогично пружинным, с той лишь разницей, что корпус манометра имеет большие геометрические размеры за счет монтажа контактных групп. Устройство и перечень основных элементов электроконтактных манометров представлены на рис. 2.65..

Манометры образцовые.

Назначение. Манометры и вакууметры образцовые типа МО и ВО предназначены для проверки манометров, вакууметров и мановакууметров для измерений в лабораторных условиях давления и разряжения неагрессивных жидкостей и газов.

Манометры типа МКО и вакууметры типа ВКО предназначены для проверки исправности действия рабочих манометров на месте их установки и для контрольных измерений избыточного давления и разряжения.


Рис. 2.65. Электроконтактные манометры: а - типа ЭКМ; ЭКМВ; ЭКВ;

Б - типа ВЭ - 16 Рб основные части: трубчатая пружина; шкала; подвижный

Механизм; группа подвижных контактов; входной штуцер

Манометры электрические

Назначение . Электрические манометры типа МЭД предназначены для непрерывного преобразования избыточного или вакууметрического давления в унифицированный выходной сигнал переменного тока. Эти приборы применяют для работы в комплекте со вторичными дифференциально-трансформаторными приборами, машинами централизованного контроля и другими приемниками информации, способными принимать стандартный сигнал ввиде взаимной индуктивности.

Устройство и принцип действия . Принцип действия прибора, как и у манометров с одновитковой трубчатой пружиной, основан на использовании деформации упругого чувствительного элемента при воздействии на него измеряемого давления. Устройство электрического манометра типа МЭД показано на рис. 2.65.(б). Упругим чувствительным элементом прибора служит трубчатая пружина - 1, которая смонтирована в держателе - 5. К держателю привернута планка - 6, на которой закреплена катушка - 7 дифференциального трансформатора. На держателе смонтированы также постоянное и переменное сопротивления. Катушка закрыта экраном. К держателю подводится измеряемое давление. Держатель прикреплен к корпусу - 2 винтами - 4. Корпус из алюминиевого сплава закрыт крышкой, на которой укреплен штепсельный разъем - 3. Сердечник - 8 дифференциального трансформатора связан с подвижным концом трубчатой пружины специальным винтом - 9. При подаче в прибор давления, трубчатая пружина деформируется, что вызывает пропорциональное измеряемому давлению, перемещение подвижного конца пружины и связанного с ним сердечника дифференциального трансформатора.

Эксплуатационные требования, предъявляемые к манометрам технического назначения:

· при установке манометра наклон циферблата от вертикали не должен превышать 15°;

· в нерабочем положении стрелка измерительного прибора должна находиться в нулевом положении;

· манометр прошел поверку и имеет клеймо и пломбу с указанием даты поверки;

· отсутствуют механические повреждения корпуса манометра, резьбовой части штуцера и т.д.;

· цифровая шкала хорошо видна обслуживающему персоналу;

· при измерении давления влажной газообразной среды (газ, воздух), трубка перед манометром выполняется в виде петли, в которой влага конденсируется;

· на месте отбора измеряемого давления (перед манометром) должен быть установлен кран или вентиль;

· для уплотнения места присоединения штуцера манометра должны использоваться прокладки, изготовленные из кожи, свинца, отожженной красной меди, фторопласта. Использование пакли и сурика не допускается.

Приборы для измерения давления применяются во многих отраслях промышленности и классифицируются, в зависимости от своего предназначения, следующим образом:

· Барометры – измеряют атмосферное давление.

· Вакуумметры – измеряют вакуумметрическое давление.

· Манометры – измеряют избыток давления.

· Мановакуумметры – измеряют вакуумметрическое и избыточное давление.

· Баровакуумметры – измеряют абсолютное давление.

· Дифференциальные манометры – измеряют разность давлений.

По принципу работы приборы для измерения давления могут быть следующих типов:

· Прибор жидкостный (давление уравновешивается с помощью веса столба жидкости).

· Грузопоршневые приборы (измеряемое давление уравновешивается усилием, которое создают калиброванные грузы).

· Приборы с дистанционной передачей показаний (используются изменения различных электрических характеристик вещества под воздействием измеряемого давления).

· Прибор пружинный (измеряемое давление уравновешивается силами упругости пружины, деформация которой служит мерой давления).

Для измерения давления применяют различные приборы , которые можно подразделить на две основные группы: жидкостные и механические.

Простейшим прибором является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости. Он представляет собой стеклянную трубку, открытую с одного конца (трубка на рис. 14а). Пьезометр - очень чувствительный и точный прибор, однако он удобен только при измерении небольших давлений, в противном случае трубка получается очень длинной, что осложняет его применение.

Для уменьшения длины измерительной трубки применяют приборы с жидкостью большей плотностью (например, ртутью). Ртутный манометр представляет собой У-образную трубку, изогнутое колено которого заполняется ртутью (рис. 14б). Под действием давления в сосуде уровень ртути в левом колене манометра понижается, а в правом - повышается.

Дифференциальный манометр применяют в тех случаях, когда необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или в двух точках одного сосуда (рис. 14 в).

Применение жидкостных приборов ограничивается областью сравнительно небольших давлений. Если необходимо измерять высокие давления, применяют приборы второго типа -механические.

Пружинный манометр является наиболее распространенным из механических приборов. Он состоит (рис.15а) из полой тонкостенной изогнутой латунной или стальной трубки (пружины) 1, один конец которой запаян и соединен приводным устройством 2 с зубчатым механизмом 3. На оси зубчатого механизма располагается стрелка 4. Второй конец трубки открыт и соединен с сосудом, в котором замеряется давление. Под действием давления пружина деформируется (распрямляется) и через приводное устройство приводит в действие стрелку, по отклонению которой определяют значение давления по шкале 5.

Мембранные манометры также относятся к механическим (рис. 15б). В них вместо пружины устанавливается тонкая пластина-мембрана 1 (металлическая или из прорезиненной материи). Деформация мембраны посредством приводного устройства передается стрелке, указывающей значение давления.

Механические манометры имеют по сравнению с жидкостными некоторые преимущества: портативность, универсальность, простоту устройства и эксплуатации, большой диапазон измеряемых давлений.

Для измерения давлений меньше атмосферного применяют жидкостные и механические вакуумметры, принцип работы которых тот же, что и у манометров.

Принцип сообщающихся сосудов .

Сообщающиеся сосуды

Сообщающимися называют сосуды, имеющие между собой канал, заполненный жидкостью. Наблюдения показывают, что в сообщающихся сосудах любой формы однородная жидкость всегда устанавливается на одном уровне.

Иначе ведут себя разнородные жидкости даже в одинаковых по форме и размерам сообщающихся сосудах. Возьмем два цилиндрических сообщающихся сосуда одинакового диаметра (рис. 51), на их дно нальем слой ртути (заштрихован), а поверх него в цилиндры нальем жидкости с разными плотностями, например r 2 h 1).

Мысленно выделим внутри трубки, соединяющей сообщающиеся сосуды и заполненнной ртутью, площадку площади S, перпендикулярную горизонтальной поверхности. Так как жидкости покоятся, давление на эту площадку слева и справа одинаково, т.e. p 1 =p 2 . Согласно формуле (5.2), гидростатическое давление p 1 = 1 gh 1 и p 2 = 2 gh 2 . Приравняв эти выражения, получаем r 1 h 1 = r 2 h 2 , откуда

h 1 /h 2 =r 2 /r 1 . (5.4)

Следовательно, разнородные жидкости в состоянии покоя устанавливаются в сообщающихся сосудах таким образом, что высоты их столбов оказываются обратно пропорциональными плотностям этих жидкостей.

Если r 1 =r 2 , то из формулы (5.4) следует, что h 1 =h 2 , т.е. однородные жидкости устанавливаются в сообщающихся сосудах на одинаковом уровне.

Чайник и его носик представляют собой сообщающиеся сосуды: вода стоит в них на одном уровне. Значит, носик чайника должен

Устройство водопровода.

На башне устанавливается большой бак с водой (водонапорная башня). От бака идут трубы с целым рядом ответвлений, вводимых в дома. Концы труб закрываются кранами. У крана давление воды, заполняющей трубы, равно давлению столба воды, имеющего высоту, равную разности высот между краном и свободной поверхностью воды в баке. Так как бак устанавливается на высоте десятков метров, то давление у крана может достигать нескольких атмосфер. Очевидно, что давление воды на верхних этажах меньше давления на нижних этажах.

Вода в бак водонапорной башни подается насосами

Водомерная трубка.

На принципе сообщающихся сосудов устроены водомерные трубки для баков с водой. Такие трубки, например имеются на баках в железнодорожных вагонах. В открытой стеклянной трубке, присоединенной к баку, вода всегда стоит на том же уровне, что и в самом баке. Если водомерная трубка устанавливается на паровом котле, то верхний конец трубки соединяется с верхней частью котла, наполненной паром.

Это делается для того, чтобы давления над свободной поверхностью воды в котле т в трубке были одинаковыми.

Петергоф - великолепный ансамбль парков, дворцов и фонтанов. Это единственный ансамбль в мире, фонтаны которого работают без насосов и сложных водонапорных сооружений. В этих фонтанах используется принцип сообщающихся сосудов - учтены уровни фонтанов и прудов-хранилищ.

Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м 2 .

Виды давления

  • Атмосферное.

  • Вакуумметрическое.

  • Избыточное.

  • Абсолютное.

Атмосферное давление образуется атмосферой Земли.

Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.

Избыточное давление – это величина давления, превосходящая значение атмосферного давления.

Абсолютное давление определяется от величины абсолютного нуля (вакуума).

Виды и работа

Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление. Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.

Барометры

Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.

Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.

Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.

Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.

Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.

Жидкостные манометры

В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).

Рис-1

Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.

На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера . Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.

При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.

Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.

Рис-2

Преимуществами таких приборов является дистанционная передача и их регистрация значений.

Деформационные манометры

В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления. Деформационные манометры делятся на:

  • Пружинные.
  • Сильфонные.
  • Мембранные.

Рис-3

Пружинные манометры

В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).

Мембранные манометры

В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма . Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).

Сильфонные манометры

В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.

Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров . Прибор, измеряющий избыточное давление, является напоромером , для измерения избыточного давления и вакуума служат тягонапоромеры .

Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.

Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.

Дифференциально-трансформаторный преобразователь

Рис-4

Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.

Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).

Магнитомодуляционные приборы для измерения давления

В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.

Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.

Тензометрические манометры

Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.

Рис-5

Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.

Электроконтактные манометры


Рис-6

Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.

При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).

Классы точности

Измерительные манометры разделяют на два класса:

  1. Образцовые.

  2. Рабочие.

Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.

Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.

Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.

Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.

Применение манометров

Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.

Перечислим основные места использования таких приборов:

  • В газо- и нефтедобывающей промышленности.
  • В теплотехнике для контроля давления энергоносителя в трубопроводах.
  • В авиационной отрасли промышленности, автомобилестроении, сервисном обслуживании самолетов и автомобилей.
  • В машиностроительной отрасли при применении гидромеханических и гидродинамических узлов.
  • В медицинских устройствах и приборах.
  • В железнодорожном оборудовании и транспорте.
  • В химической отрасли промышленности для определения давления веществ в технологических процессах.
  • В местах с применением пневматических механизмов и агрегатов.

Полнотекстовый поиск.

Принцип работы

Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трибко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.

Разновидности

В группу приборов измеряющих избыточное давление входят:

Манометры - приборы с измерением от 0,06 до 1000 МПа (Измеряют избыточное давление - положительную разность между абсолютным и барометрическим давлением)

Вакуумметры - приборы измеряющие разряжения (давления ниже атмосферного) (до минус 100 кПа).

Мановакуумметры - манометры измеряющие как избыточное (от 60 до 240000 кПа), так и вакуумметрическое (до минус 100 кПа) давление.

Напоромеры -манометры малых избыточных давлений до 40 КПа

Тягомеры -вакуумметры с пределом до минус 40 КПа

Тягонапоромеры -мановакуумметры с крайними пределами не превышающими ±20 кПа

Данные приведены согласно ГОСТ 2405-88

Большинство отечественных и импортных манометров изготавливаются в соответствии с общепринятыми стандартами, в связи с этим манометры различных марок заменяют друг друга. При выборе манометра нужно знать: предел измерения, диаметр корпуса, класс точности прибора. Также важны расположение и резьба штуцера. Эти данные одинаковы для всех выпускаемых в нашей стране и Европе приборов.

Также существуют манометры измеряющие абсолютное давление, то есть избыточное давление+атмосферное

Прибор, измеряющий атмосферное давление, называется барометром.

Типы манометров

В зависимости от конструкции, чувствительности элемента различают манометры жидкостные, грузопоршневые, деформационные (с трубчатой пружиной или мембраной). Манометры подразделяются по классам точности: 0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5; 4,0 (чем меньше число, тем точнее прибор).

Виды манометров

По назначениям манометры можно разделить на технические - общетехнические, электроконтактные, специальные, самопишушие, железнодорожные, виброустойчивые(глицеринозаполненые), судовые и эталонные (образцовые).

Общетехнические: предназначены для измерения не агрессивных к сплавам меди жидкостей, газов и паров.

Электроконтактные: имеют возможность регулировки измеряемой среды, благодаря наличию электроконтактного механизма. Особенно популярным прибором этой группы можно назвать ЭКМ 1У, хотя он давно снят с производства.

Специальные: кислородные- должны быть обезжирены, так как иногда даже незначительное загрязнение механизма при контакте с чистым кислородом может привести к взрыву. Часто выпускаются в корпусах голубого цвета с обозначением на циферблате О2(кислород); ацетиленовые -не допускают в изготовлении измерительного механизма сплавов меди, так как при контакте с ацетиленом существует опасность образования взрывоопасной ацетиленистой меди; аммиачные-должны быть коррозиестоикими.

Эталонные: обладая более высоким классом точности (0,15;0,25;0,4) эти приборы служат для поверки других манометров. Устанавливаются такие приборы в большинстве случаев на грузопоршневых манометрах или каких-либо других установках способных развивать нужное давление.

Судовые манометры предназначены для эксплуатации на речном и морском флоте.

Железнодорожные: предназначены для эксплуатации на Ж/Д транспорте.

Самопишушие: манометры в корпусе, с механизмом позволяющим воспроизводить на диаграмной бумаге график работы манометра.

Термопроводность

Термопроводные манометры основываются на уменьшении теплопроводности газа с давлением. В таких манометрах встроена нить накала, которая нагревается при пропускании через нее тока. Термопара или датчик определения температуры через сопротивление (ДОТС) могут быть использованы для измерения температуры нити накала. Эта температура зависит от скорости с которой нить накала отдаёт тепло окружающему газу и, таким образом, от термопроводности. Часто используется манометр Пирани, в котором используется единственная нить накала из платины одновременно как нагревательный элемент и как ДОТС. Эти манометры дают точные показания в интервале между 10 и 10−3 мм рт. ст., но они довольно чувствительны к химическому составу измеряемых газов.

[править]Две нити накаливания

Одна проволочная катушка используется в качестве нагревателя, другая же используется для измерения температуры через конвекцию.

Манометр Пирани (oдна нить)

Манометр Пирани состоит из металлической проволоки, открытой к измеряемому давлению. Проволока нагревается протекающим через нее током и охлаждается окружающим газом. При уменьшении давления газа, охлаждающий эффект тоже уменьшается и равновесная температура проволоки увеличивается. Сопротивление проволоки является функцией температуры: измеряя напряжение через проволоку и текущий через неё ток, сопротивление (и таким образом давление газа) может быть определено. Этот тип манометра был впервые сконструирован Марчелло Пирани.

Термопарный и термисторный манометры работают похожим образом. Отличие же в том, что термопара и термистор используются для измерения температуры нити накаливания.

Измерительный диапазон: 10−3 - 10 мм рт. ст. (грубо 10−1 - 1000 Па)

Ионизационный манометр

Ионизационные манометры - наиболее чувствительные измерительные приборы для очень низких давлений. Они измеряют давление косвенно через измерение ионов образующихся при бомбардировке газа электронами. Чем меньше плотность газа, тем меньше ионов будет образовано. Калибрирование ионного манометра - нестабильно и зависит от природы измеряемых газов, которая не всегда известна. Они могут быть откалибрированы через сравнение с показаниями манометра Мак Леода, которые значительно более стабильны и независимы от химии.

Термоэлектроны соударяются с атомами газа и генерируют ионы. Ионы притягиваются к электроду под подходящим напряжением, известным как коллектор. Ток в коллекторе пропорционален скорости ионизации, которая является функцией давления в системе. Таким образом, измерение тока коллектора позволяет определить давление газа. Имеется несколько подтипов ионизационных манометров.

Измерительный диапазон: 10−10 - 10−3 мм рт. ст. (грубо 10−8 - 10−1 Па)

Большинство ионных манометров делятся на два вида: горячий катод и холодный катод. Третий вид - это манометр с вращающимся ротором более чувствителен и дорог, чем первые два и здесь не обсуждается. В случае горячего катода электрически нагреваемая нить накала создаёт электронный луч. Электроны проходят через манометр и ионизуют молекулы газа вокруг себя. Образующиеся ионы собираются на отрицательно заряженном электроде. Ток зависит от числа ионов, которое, в свою очередь, зависит от давления газа. Манометры с горячим катодом аккуратно измеряют давление в диапазоне 10−3 мм рт. ст. до 10−10 мм рт. ст. Принцип манометра с холодным катодом тот же, исключая, что электроны образуются в разряде созданным высоковольтным электрическим разрядом. Манометры с холодным катодом аккуратно измеряют давление в диапазоне 10−2 мм рт. ст. до 10−9 мм рт. ст. Калибрирование ионизационных манометров очень чувствительно к конструкционной геометрии, химическому составу измеряемых газов, коррозии и поверхностным напылениям. Их калибровка может стать непригодной при включении при атмосферном и очень низком давлении. Состав вакуума при низких давлениях обычно непредсказуем, поэтому масс-спектрометр должен быть использован одновременно с ионизационным манометром для точных измерений.

Горячий катод

Ионизационный манометр с горячим катодом Баярда-Алперта обычно состоит из трёх электродов работающих в режиме триода, где катодом является нить накала. Три электрода - это коллектор, нить накала и сетка. Ток коллектора измеряется в пикоамперах электрометром. Разность потенциалов между нитью накала и землёй обычно составляет 30 В, в то время как напряжение сетки под постоянным напражением - 180-210 вольт, если нет опционоальной электронной бомбардировки, через нагрев сетки, которая может иметь высокий потенциал приблизительно 565 Вольт. Наиболее распространенный ионный манометр - это горячим катодом Баярда-Алперта с маленьким ионным коллектором внутри сетки. Стеклянный кожух с отверстием к вакууму может окружать электроды, но обычно он не используется и манометр встраивается в вакуумный прибор напрямую и контакты выводятся через керамическую плату в стене ваккумного устройства. Ионизационные манометры с горячим катодом могут быть повреждены или потерять калибровку если они включаются при атмосферном давлении или даже при низком вакууме. Измерения ионизационных манометров с горячим катодом всегда логарифмичны.

Электроны испущенные нитью накала движутся несколько раз в прямом и обратном направлении вокруг сетки пока не попадут на неё. При этих движениях, часть электронов сталкивается с молекулами газа и формирует электрон-ионные пары (электронная ионизация). Число таких ионов пропорционально плотности молекул газа умноженной на термоэлектронный ток, и эти ионы летят на коллектор, формируя ионный ток. Так как плотность молекул газа пропорциональна давлению, давление оценивается через измерение ионного тока.

Чувствительность к низкому давлению манометров с горячим катодом ограничена фотоэлектрическим эффектом. Электроны, ударяющие в сетку, производят рентгеновские лучи, которые производят фотоэлектрический шум в ионном коллекторе. Это ограничивает диапазон старых манометров с горячим катодом до 10−8 мм рт. ст. и Баярда-Алперта приблизительно к 10−10 мм рт. ст. Дополнительные провода под потенциалом катода в луче обзора между ионным коллектором и сеткой предотвращают этот эффект. В типе извлечения ионы притягиваются не проводом, а открытым конусом. Поскольку ионы не могут решить, какую часть конуса ударить, они проходят через отверстие и формируют ионный луч. Этот луч иона может быть передан нa кружку Фарадея.

Глава 2. ЖИДКОСТНЫЕ МАНОМЕТРЫ

Вопросы водоснабжения для человечества всегда были очень важными, а особую актуальность приобрели с развитием городов и появлением в них различного вида производств. При этом все более актуальной становилась проблема измерения давления воды, т. е. напора, необходимого не только для обеспечения подачи воды через систему водоснабжения, но и для приведения в действие различных механизмов. Честь первооткрывателя принадлежит крупнейшему итальянскому художнику и ученому Леонардо да Винчи (1452-1519 гг.), который впервые применил пьезометрическую трубку для измерения давления воды в трубопроводах. К сожалению, его труд „О движении и измерении воды” был опубликован лишь в XIX веке. Поэтому принято считать, что впервые жидкостный манометр был создан в 1643 г. итальянскими учеными Торричелли и Вивиаии, учениками Галилео Галилея, которые при исследовании свойств ртути, помещенной в трубку обнаружили существование атмосферного давления. Так появился ртутный барометр. В течение последующих 10-15 лет во Франции (Б. Паскаль и Р. Декарт) и Германии (О. Герике) были созданы различные разновидности жидкостных барометров, в том числе и с водяным заполнением. В 1652 г. О. Герике продемонстрировал весомость атмосферы эффектным опытом с откачанными полушариями, которые не могли разъединить две упряжки лошадей (знаменитые „магдебургские полушария”).



Дальнейшее развитие науки и техники привело к появлению большого количества жидкостных манометров различных типов, применяемы;: до настоящего времени во многих отраслях: метеорологии, авиационной и электровакуумной технике, геодезии и геологоразведке, физике и метрологии и пр. Однако, в силу ряда специфических особенностей принципа действия жидкостных манометров их удельный вес по сравнению с манометрами других типов относительно невелик и, вероятно, будет уменьшаться и в дальнейшем. Тем не менее при измерениях особо высокой точности в области давлений, близких к атмосферному давлению, они пока незаменимы. Не потеряли своего значения жидкостные манометры и в ряде других областей (микроманометрии, барометрии, метеорологии, при физико-технических исследованиях).

2.1. Основные типы жидкостных манометров и принципы их действия

Принцип действия жидкостных манометров можно проиллюстрировать на примере U-образного жидкостного манометра (рис. 4, а ), состоящего из двух соединенных между собой вертикальных трубок 1 и 2,

наполовину заполненных жидкостью. В соответствии с законами гидростатики при равенстве давлений р i и р 2 свободные поверхности жидкости (мениски) в обеих трубках установятся на уровне I-I. Если одно из давлений превышает другое (р\ > р 2), то разность давлений вызовет опускание уровня жидкости в трубке 1 и, соответственно, подъем в трубке 2, вплоть до достижения состояния равновесия. При этом на уровне

II-П уравнение равновесия примет вид

Ap=pi -р 2 =Н Р " g, (2.1)



т. е. разность давлений определяется давлением столба жидкости высотой Н с плотностью р.

Уравнение (1.6) с точки зрения измерения давления является фундаментальным, так как давление, в конечном итоге, определяется основными физическими величинами - массой, длиной и временем. Это уравнение справедливо для всех без исключения типов жидкостных манометров. Отсюда следует определение, что жидкостный манометр - манометр, в котором измеряемое давление уравновешивается давлением столба жидкости, образующегося под действием этого давления. Важно подчеркнуть, что мерой давления в жидкостных манометрах является

высота стол а жидкости, менно это обстоятельство привело к появлению единиц измерений давления мм вод. ст., мм рт. ст. и других которые естественным образом вытекают из принципа действия жидкостных манометров.

Чашечный жидкостный манометр (рис. 4, б) состоит из соединенных между собой чашки 1 и вертикальной трубки 2, причем площадь поперечного сечения чашки существенно больше, чем трубки. Поэтому под воздействием разности давлений Ар изменение уровня жидкости в чашке гораздо меньше, чем подъем уровня жидкости в трубке: Н\ = Н г f/F, где Н ! - изменение уровня жидкости в чашке; Н 2 - изменение уровня жидкости в трубке; / - площадь сечения трубки; F - площадь сечения чашки.

Отсюда высота столба жидкости, уравновешивающей измеряемое давление Н - Н х + Н 2 = # 2 (1 + f/F), а измеряемая разность давлений

Pi - Рг = Н 2 р ?-(1 + f/F ). (2.2)

Поэтому при известном коэффициенте к= 1 + f/F разность давлений может быть определена по изменению уровня жидкости в одной трубке, что упрощает процесс измерений.

Двухчашечный манометр (рис. 4, в) состоит из двух соединенных при помощи гибкого шланга чашек 1 и 2, одна из которых жестко закреплена, а вторая может перемещаться в вертикальном направлении. При равенстве давлений Р\ и р 2 чашки, а следовательно, свободные поверхности жидкости находятся на одном уровне I-I. Если Р\ > р 2 , то чашка 2 поднимается вплоть до достижения равновесия в соответствии с уравнением (2.1).

Единство принципа действия жидкостных манометров всех типов обусловливает их универсальность с точки зрения возможности измерения давления любого вида - абсолютного и избыточного и разности давлений.

Абсолютное давление будет измерено, если р 2 = 0, т. е. когда пространство над уровнем жидкости в трубке 2 откачано. Тогда столб жидкости в манометре будет уравновешивать абсолютное давление в трубке

i,T.e.p a6c =tf р g.

При измерении избыточного давления одна из трубок сообщается с атмосферным давлением, например, р 2 = р тш. Если при этом абсолютное давление в трубке 1 больше чем атмосферное давление i >р аТ м)> то в соответствии с (1.6) столб жидкости в трубке 2 уравновесит избыточное давление в трубке 1 } т. е. р и = Н р g: Если, наоборот, р х < р атм, то столб жидкости в трубке 1 будет мерой отрицательного избыточного давления р и = р g.

При измерении разности двух давлений, каждое из которых не равно атмосферному давлению, уравнение измерений имеет вид Ар=р\ - р 2 - = Н - р " g. Так же, как и в предыдущем случае, разность может принимать как положительные, так и отрицательные значения.

К важной метрологической характеристике средств измерения давления относится чувствительность измерительной системы, которая во многом определяет точность отсчета при измерениях и инерционность. Для манометрических приборов под чувствительностью понимается отношение изменения показаний прибора к вызвавшему его изменению давления (и = АН/Ар) . В общем случае, когда чувствительность непостоянна в диапазоне измерений

п = lim при Ар -*¦ 0, (2.3)

где АН - изменение показаний жидкостного манометра; Ар - соответствующее изменение давления.

Принимая во внимание уравнения измерений, получим: чувствительность U- образного или двухчашечного манометра (см. рис. 4, а и 4, в)

п = (2A ’ a ~>

чувствительность чашечного манометра (см. рис. 4, б)

Р-гй\llF) ¦ (2 " 4 ’ 6)

Как правило, для чащечных манометров F »/, поэтому уменьшение их чувствительности по сравнению с U- образными манометрами незначительно.

Из уравнений (2.4, а ) и (2.4, б) следует, что чувствительность целиком определяется плотностью жидкости р, заполняющей измерительную систему прибора. Но, с другой стороны, значение плотности жидкости согласно (1.6) определяет диапазон измерений манометра: чем она больше, тем больше верхний предел измерений. Таким образом, относительное значение погрешности отсчета от значения плотности не зависит. Поэтому для увеличения чувствительности, а следовательно, и точности, разработано большое количество отсчетных устройств, основанных на различных принципах действия, начиная от фиксации положения уровня жидкости относительно шкалы манометра на глаз (погрешность отсчета около 1 мм) и кончая применением точнейших интерференционных методов (погрешность отсчета 0,1-0,2 мкм). С некоторыми из этих методов можно познакомиться ниже.

Диапазоны измерений жидкостных манометров в соответствии с (1.6) определяются высотой столба жидкости, т. е. размерами манометра и плотностью жидкости. Наиболее тяжелой жидкостью в настоящее время является ртуть, плотность--которой р = 1,35951 10 4 кг/м 3 . Столб ртути высотой 1 м развивает давление около 136 кПа, т. е. давление, не на много превышающее атмосферное давление. Поэтому при измерении давлений порядка 1 МПа размеры манометра по высоте соизмеримы с высотой трехэтажного дома, что представляет существенные эксплуатационные неудобства, не говоря о чрезмерной громоздкости конструкции. Тем не менее, попытки создания сверхвысоких ртутных манометров предпринимались. Мировой рекорд был установлен в Париже, где на базе конструкций знаменитой Эйфелевой башни был смонтирован манометр высотой ртутного столба около 250 м, что соответствует 34 МПа. В настоящее время этот манометр разобран в связи с его бесперспективностью. Однако в строю действующих продолжает оставаться уникальный по своим метрологическим характеристикам ртутный манометр Физико-технического института ФРГ. Этот манометр, смонтированный в iO-этажной башне, имеет верхний предел измерений 10 МПа с погрешностью менее 0,005 %. Подавляющее большинство ртутных манометров имеют верхние пределы порядка 120 кПа и лишь изредка до 350 кПа. При измерении относительно небольших давлений (до 10-20 кПа) измерительная система жидкостных манометров заполняется водой, спиртом и другими легкими жидкостями. При этом диапазоны измерений обычно составляют до 1-2,5 кПа (микроманометры). Для еще более низких давлений разработаны способы увеличения чувствительности без применения сложных отсчетных устройств.

Микроманометр (рис. 5), состоит из чашки I, которая соединена с трубкой 2, установленной под углом а к горизонтальному уровню

I-I. Если при равенстве давлений pi и р 2 поверхности жидкости в чашке и трубке находились на уровне I-I, то увеличение давления в чашке 1 > Рг) вызовет опускание уровня жидкости в чашке и ее подъем в трубке. При этом высота столба жидкости Н 2 и его длина по оси трубки L 2 будут связаны соотношением Н 2 =L 2 sin а.

Учитывая уравнение неразрывности жидкости Н, F = Ь 2 /, нетрудно получить уравнение измерений микроманометра

p t -р 2 =Н р "g = L 2 р ч (sina + -), (2.5)

где Ь 2 - перемещение уровня жидкости в трубке вдоль ее оси; а - угол наклона трубки к горизонтали; остальные обозначения прежние.

Из уравнения (2.5) следует, что при sin а « 1 и f/F « 1 перемещение уровня жидкости в трубке во много раз превысит высоту столба жидкости, необходимую для уравновешивания измеряемого давления.

Чувствительность микроманометра с наклонной трубкой в соответствии с (2.5)

Как видно из (2.6), максимальная чувствительность микроманометра при горизонтальном расположении трубки (а = О)

т. е. в отношении площадей чашки и трубки больше, чем у U- образного манометра.

Второй способ увеличения чувствительности состоит в уравновешивании давления столбом двух несмешивающихся жидкостей. Двухчашечный манометр (рис. 6) заполняется жидкостями так, чтобы граница их

Рис. 6. Двухчашечный микроманометр с двумя жидкостями (р, > р 2)

раздела находилась в пределах вертикального участка трубки, примыкающей к чашке 2. При pi = р 2 давление на уровне I-I

Hi Pi 2 Р 2 (Pi >Р2)

Тогда при повышении давления в чашке 1 уравнение равновесия будет иметь вид

Ap=pt -р 2 =Д#[(Р1 -р 2) +f/F(Pi + Рг)] g, (2.7)

где рх - плотность жидкости в чашке 7; р 2 - плотность жидкости в чашке 2.

Кажущаяся плотность столба двух жидкостей

Рк = (Pi - Р2) + f/F (Pi + Рг) (2.8)

Если плотности Pi и р 2 имеют близкие друг другу значения, a f/F«. 1, то кажущаяся или эффективная плотность может быть снижена до величины p min = f/F i + р 2) = 2р х f/F.

ьр р к * %

где р к - кажущаяся плотность в соответствии с (2.8).

Так же, как и ранее, увеличение чувствительности указанными способами автоматически уменьшает диапазоны измерений жидкостного манометра, что ограничивает их применение областью микроманометр™. Учитывая также большую чувствительность рассматриваемых способов к влиянию температуры при точных измерениях, как правило, находят применение способы, основанные на точных измерениях высоты столба жидкости, хотя это и усложняет конструкции жидкостных манометров.

2.2. Поправки к показаниям и погрешности жидкостных манометров

В уравнения измерений жидкостных манометров в зависимости от их точности необходимо вводить поправки, учитывающие отклонения условий эксплуатации от условий градуировки, вид измеряемого давления и особенности принципиальной схемы конкретных манометров.

Условия эксплуатации определяются температурой и ускорением свободного падения в месте измерений. Под влиянием температуры изменяются как плотность жидкости, применяемой при уравновешивании давления, так и длина шкалы. Ускорение свободного падения в месте измерений, как правило, не соответствует его нормальному значению, принятому при градуировке. Поэтому давление

Р=Рп }