Степень окисления азота в соединении с кислородом. Соединения азота

АЗОТ , N (nitrogenium) , химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом), и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого, известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO 3 – ), нитриты (NO 2 – ), цианиды (CN – ), нитриды (N 3– ) и азиды (N 3 –). Историческая справка. Опыты А.Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает «безжизненный». В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его «вредный воздух». Латинское название азота происходит от греческих слов nitron и gen, что означает «образующий селитру». Фиксация азота и азотный цикл. Термин «фиксация азота» означает процесс связывания атмосферного азота N 2 . В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл. Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12 N, 13 N, 16 N, 17 N получены искусственно. Схематически электронное строение атома азота таково: 1s 2 2s 2 2p x 1 2p y 1 2p z 1 . Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (– II I) до (V), и они известны. См. также АТОМА СТРОЕНИЕ. Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид N є N (или N 2 ). У двух атомов азота три внешних 2p - электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N – N равно 1,095 Å . Как и в случае с водородом (см . ВОДОРОД) , существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39 ° С. Модификация b плавится при –209,96 ° С и кипит при –195,78 ° C при 1 атм (см . табл. 1) . Энергия диссоциации моля (28,016 г или 6,023 Ч 10 23 молекул) молекулярного азота на атомы ( N 2 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот. Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов. Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO 2 , пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода. Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например: Очень удобен процесс окисления иона аммония нитрит-ионом: Известны и другие способы – разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной: При каталитическом разложении аммиака при высокой температуре тоже можно получить азот: Физические свойства. Некоторые физические свойства азота приведены в табл. 1.

Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА

Плотность, г/см 3 0,808 (жидк.)
Температура плавления, °С –209,96
Температура кипения, °С –195,8
Критическая температура, °С –147,1
Критическое давление, атм а 33,5
Критическая плотность, г/см 3 а 0,311
Удельная теплоемкость, Дж/(мольЧ К) 14,56 (15° С)
Электроотрицательность по Полингу 3
Ковалентный радиус, 0,74
Кристаллический радиус, 1,4 (M 3–)
Потенциал ионизации, В б
первый 14,54
второй 29,60
а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.
Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s -уровне и три наполовину заполненные 2р -орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl 5 – стабильное соединение, а NCl 5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N 2 H 4 и азиды металлов MN 3 . Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды M x N y . В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ

Степень окисления

Примеры соединений

Аммиак NH 3 , ион аммония NH 4 + , нитриды M 3 N 2
Гидразин N 2 H 4
Гидроксиламин NH 2 OH
Гипонитрит натрия Na 2 N 2 O 2 , оксид азота(I) N 2 O
Оксид азота(II) NO
Оксид азота(III) N 2 O 3 , нитрит натрия NaNO 2
Оксид азота(IV) NO 2 , димер N 2 O 4
Оксид азота(V) N 2 O 5 , азотная кислота HNO 3 и ее соли (нитраты)
Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами – нитриды – похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M–N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества. Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N . К таким нитридам относятся Li 3 N, Mg 3 N 2 , Zn 3 N 2 и Cu 3 N 2 . Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH 3 и гидроксиды металлов. Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF 3 и NCl 3 ). К ковалентным нитридам относятся, например, Si 3 N 4 , P 3 N 5 и BN – высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза. Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH 3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов – Fe 4 N, W 2 N, Mo 2 N, Mn 3 N 2 . Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью. Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ) . Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода – аммиак NH 3 и гидразин N 2 H 4 . К ним относится также азотистоводородная кислота HNNN (HN 3). Аммиак NH 3 . Аммиак – один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак). Строение молекулы. Молекула NH 3 имеет почти пирамидальное строение. Угол связи H–N–H составляет 107 ° , что близко к величине тетраэдрического угла 109 ° . Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра. Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ

Свойство

Плотность, г/см 3 0,65 (–10° С) 1,00 (4,0° С)
Температура плавления, °С –77,7 0
Температура кипения, °С –33,35 100
Критическая температура, °С 132 374
Критическое давление, атм 112 218
Энтальпия испарения, Дж/г 1368 (–33° С) 2264 (100° С)
Энтальпия плавления, Дж/г 351 (–77° С) 334 (0° С)
Удельная электропроводность 5Ч 10 –11 (–33° С) 4Ч 10 –8 (18° С)
Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной). Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме Синий цвет связывают с сольватацией и движением электронов или с подвижностью «дырок» в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация аналогично процессу, протекающему в воде: Некоторые химические свойства обеих систем сопоставлены в табл. 4.

Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl 2 и K, поскольку CaCl 2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой.

Получение аммиака. Газообразный NH 3 выделяется из солей аммония при действии сильного основания, например, NaOH: Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg 3 N 2 , водой. Цианамид кальция CaCN 2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении: Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Таблица 4. СРАВНЕНИЕ РЕАКЦИЙ В ВОДНОЙ И АММИАЧНОЙ СРЕДЕ

Водная среда

Аммиачная среда

Нейтрализация

OH – + H 3 O + ® 2H 2 O

NH 2 – + NH 4 + ® 2NH 3

Гидролиз (протолиз )

PCl 5 + 3H 2 O POCl 3 + 2H 3 O + + 2Cl –

PCl 5 + 4NH 3 PNCl 2 + 3NH 4 + + 3Cl –

Замещение

Zn + 2H 3 O + ® Zn 2+ + 2H 2 O + H 2

Zn + 2NH 4 + ® Zn 2+ + 2NH 3 + H 2

Сольватация (комплексообразование )

Al 2 Cl 6 + 12H 2 O 2 3+ + 6Cl –

Al 2 Cl 6 + 12NH 3 2 3+ + 6Cl –

Амфотерность

Zn 2+ + 2OH – Zn(OH) 2

Zn 2+ + 2NH 2 – Zn(NH 2) 2

Zn(OH) 2 + 2H 3 O + Zn 2+ + 4H 2 O

Zn(NH 2) 2 + 2NH 4 + Zn 2+ + 4NH 3

Zn(OH) 2 + 2OH – Zn(OH) 4 2–

Zn(NH 2) 2 + 2NH 2 – Zn(NH 2) 4 2–

Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH 3 Ч H 2 O, которое часто ошибочно считают гидроксидом аммония NH 4 OH; в действительности существование NH 4 OH в растворе не доказано. Водный раствор аммиака («нашатырный спирт») состоит преимущественно из NH 3 , H 2 O и и малых концентраций ионов NH 4 + и OH – , образующихся при диссоциации Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH 3 . Поэтому NH 3 – это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода: Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH 3 с образованием координационного соединения. Например: Символ M n+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu 2+ , Mn 2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH 4 NO 3 , хлорид аммония NH 4 Cl, сульфат аммония (NH 4) 2 SO 4 , фосфат аммония (NH 4) 3 PO 4 . Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH 2 CONH 2 , получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов: Аммиак реагирует с гидридами и нитридами также с образованием амидов: Амиды щелочных металлов (например, NaNH 2 ) реагируют с N 2 O при нагревании, образуя азиды: Газообразный NH 3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N 2 и H 2: Атомы водорода в молекуле NH 3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH 3 , образуя смесь веществ, содержащую N I 3 . Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH 3 c Cl 2 образуются хлорамины NCl 3 , NHCl 2 и NH 2 Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl 2 ) конечным продуктом является гидразин: Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N 2 H 4 Ч H 2 O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H 2 O 2 . Чистый безводный гидразин – бесцветная гигроскопичная жидкость, кипящая при 113,5 ° C ; хорошо растворяется в воде, образуя слабое основание В кислой среде (H + ) гидразин образует растворимые соли гидразония типа + X – . Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N 2 O, NO, N 2 O 3 , NO 2 (N 2 O 4), N 2 O 5 . Имеется скудная информация об образовании пероксидов азота (NO 3 , NO 4). Оксид азота (I) N 2 O (монооксид диазота) получается при термической диссоциации нитрата аммония: Молекула имеет линейное строение O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N 2 O, известный как «веселящий газ», используют для умеренной анестезии в медицине. Оксид азота(II) NO – бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода: NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой: NO можно получать синтезом из простых веществ (N 2 и O 2 ) при очень высоких температурах, например в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N 2 O 2 . Оксид азота (III) N 2 O 3 (триоксид азота) – ангидрид азотистой кислоты: N 2 O 3 + H 2 O 2HNO 2 . Чистый N 2 O 3 может быть получен в виде голубой жидкости при низких температурах (–20 ° С) из эквимолекулярной смеси NO и NO 2 . N 2 O 3 устойчив только в твердом состоянии при низких температурах (т.пл. –102,3 ° С), в жидком и газообразном состояния он снова разлагается на NO и NO 2 . Оксид азота (IV) NO 2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам): получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе: а также по реакциям: При комнатной температуре NO 2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0 ° C молекула NO 2 димеризуется в тетраоксид диазота, причем при –9,3 ° C димеризация протекает полностью: 2NO 2 N 2 O 4 . В жидком состоянии недимеризовано только 1% NO 2 , а при 100 ° C остается в виде димера 10% N 2 O 4 . (или N 2 O 4 ) реагирует в теплой воде с образованием азотной кислоты: 3NO 2 + H 2 O = 2HNO 3 + NO. Технология NO 2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты. Оксид азота (V) N 2 O 5 (устар . ангидрид азотной кислоты) – белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P 4 O 10: N 2 O 5 легко растворяется во влаге воздуха, вновь образуя HNO 3 . Свойства N 2 O 5 определяются равновесием N 2 O 5 – хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру . При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H–O–N=N–O–H. Азотистая кислота HNO 2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария: Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO 2 (или N 2 O 3 ) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H–O–N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO , а при взаимодействии с окислителями окисляется до азотной кислоты.

Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты – нитриты – хорошо растворяются в воде, кроме нитрита серебра.

NaNO 2 применяется в производстве красителей. Азотная кислота HNO 3 – один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др. См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. ЛИТЕРАТУРА Справочник азотчика . М., 1969
Некрасов Б.В. Основы общей химии . М., 1973
Проблемы фиксации азота. Неорганическая и физическая химия . М., 1982

Кислородные соединения азота. В кислородных соединениях азот проявляет степень окисления от +1 до +5.

В кислородных соединениях азот проявляет степень окисления от +1 до +5.

N 2 O ; NO ; N 2 O 3 ; NO 2 ; N 2 O 4 ; N 2 O 5

Оксиды N 2 O и NO – несолеобразующие, остальные солеобразующие.

Оксид азота (I) и оксид азота (II) – бесцветные газы, оксид азота (III) – синяя жидкость, (IV) – бурый газ, (V) – прозрачные бесцветные кристаллы.

Кроме N 2 O, все они чрезвычайно ядовиты. Закись азота N 2 O обладает весьма своеобразным физиологическим действием, за которые ее часто называют веселящим газом. Вот как описывают действия закиси азота английский химик Хэмфри Дэви, который с помощью этого газа устраивал специальные сеансы: «Одни джентльмены прыгали по столам и стульям, у других развязывались языки, третьи обнаружили чрезвычайную склонность к потасовке». Вдыхание N 2 O вызывает потерю болевых ощущений и поэтому применяется в медицине как анестезирующее средство.

МВС предполагает в молекулеN 2 O наличие ионов N + и N –

sp-гибридизация

За счет sp-гибридизации ион N + дает 2σ связи: одну с N – и другую с атомом кислорода. Эти связи направлены под углом 180º друг к другу и молекула N 2 O линейна. Структуру молекулы определяет направленность σ связей. Оставшиеся у N + два p-электрона образуют еще по одной π-связи: одну с ионом N – и другую с атомом кислорода. Отсюда N 2 O имеет строение

: N – = N + = O :

Склонность NO 2 к димеризации – следствие нечетного числа электронов в молекуле (парамагнитна).

С оксидами азота связаны серьезные экологические проблемы. Увеличение их концентрации в атмосфере приводит к образованию азотной кислоты и соответсвенно кислотных дождей.

N 2 O 3 взаимодействует с водой, образует неустойчивую азотистую кислоту HNO 2 , которая существует только в разбавленных растворах, так как легко разлагается

2HNO 2 = N 2 O 3 + H 2 O.

HNO 2 может быть более сильным восстановителем, чем HNO 3 , о чём свидетельствуют значения стандартных электродных потенциалов.

HNO 3 + 2 Н + + 2е = HNO 2 + Н 2 О Е 0 = + 0,93 В

HNO 2 + Н + + 1е = NO + H 2 O Е 0 = + 1,10 В

HNO 2 + 1e = NO + H + Е 0 = + 1,085 В

Ее соли нитриты – устойчивы. HNO 2 - кислота средней силы (К ≈ 5 · 10 –4). Наряду с кислотной диссоциацией в незначительной степени идет диссоциация с образованием NO + и OH – .

Степень окисления азота в нитритах промежуточная (+3), поэтому в реакциях он может вести себя и как окислитель, и как восстановитель, т.е. обладает окислительно-восстановительной двойственностью.

Сильные окислители переводят NO 2 – в NO 3 – .

5NaNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5NaNO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O

Сильные восстановители обычно восстанавливают HNO 2 до NO.

2NaNO 2 + 2KI + 2H 2 SO 4 = Na 2 SO 4 +2NO + I 2 + K 2 SO 4 +2H 2 O

Может происходить также процесс диспропорционирования, одновременного увеличения и уменьшения степени окисления атомов одного и того же элемента.

3HNO 2 = HNO 3 + 2NO + H 2 O

Нитриты обладают токсичностью: переводят гемоглобин в метгемоглобин, не способный переносить кислород и они служат причиной образования в продуктах питания нитрозааминов R 2 N–NO – канцерогенных веществ.

Важнейшее соединение азота – HNO 3

Азотная кислота – важнейший продукт основной химической промышленности. Идет на приготовление взрывчатых веществ, лекарственных веществ, красителей, пластических масс, искусственных волокон и др. материалов.

HNO 3 – бесцветная жидкость с резким удушливым запахом, дымящая на воздухе. В небольших количествах образуется при грозовых разрядах и присутствует в дождевой воде.

N 2 + O 2 → 2NO

2NO + O 2 → 2NO 2

4NO 2 + O 2 + 2H 2 O → 4HNO 3

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету или при нагревании процесса разложения

4HNO 3 = 4NO 2 + 2H 2 O + O 2

HNO 3 – очень опасное вещество.

Важнейшее химическое свойство HNO 3 состоит в том, что она является сильным окислителем и поэтому взаимодействует почти со всеми металлами кроме Au, Pt, Rh, Ir, Ti, Ta, металлы Al, Fe, Co, Ni и Cr она «пассивирует». Кислота же в зависимости от концентрации и активности металла может восстанавливаться до соединений:

+4 +3 +2 +1 0 -3 -3

NO 2 → HNO 2 → NO → N 2 O → N 2 → NH 3 (NH 4 NO 3)

и также образуется соль азотной кислоты.

Как правило, при взаимодействии азотной кислоты с металлами не происходит выделения водорода. При действии HNO 3 на активные металлы может получаться водород. Однако атомарный водород в момент выделения обладает сильными восстановительными свойствами, а азотная кислота – сильный окислитель. Поэтому водород окисляется до воды.

Свойства концентрированной и разбавленной HNO 3

1) Действие концентрированной HNO 3 на малоактивные металлы (Cu, Hg, Ag)

Cu + 4 HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

2) Действие разбавленной HNO 3 на малоактивные металлы

3Cu + 8 HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O

3) Действие концентрированной кислоты на активные металлы

4Ca + 10HNO 3 = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4) Действие разбавленной HNO 3 на активные металлы

4Ca + 10 HNO 3 = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Одна из наиболее сильных кислот, характерны все реакции кислот: реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами. Специфичное свойство – ярко выраженная окислительная. В зависимости от условий (концентрации, природы восстановителя, температуры)HNO 3 может принимать от 1 до 8 электронов.

Ряд соединений N с различными степенями окисления:

NH 3 ; N 2 H 4 ; NH 2 OH ; N 2 O ; NO ; N 2 O 3 ; NO 2 ; N 2 O 5

NO 3 – + 2H + + 1e = NO 2 + H 2 O

NO 3 – + 4H + + 3e = NO + 2H 2 O

2NO 3 – +10H + + 8e = N 2 O + 5H 2 O

2NO 3 – +12H + + 10e = N 2 + 6H 2 O

NO 3 – + 10H + + 8e = NH 4 – + 3H 2 O

Образование продуктов зависит от концентрации, чем выше концентрация, тем менее глубоко она восстанавливается. Реагирует со всеми металлами, кроме Au, Pt, W. Концентрированная HNO 3 не взаимодействует при обычных условиях с Fe, Cr, Al, которым она пассивирует, но при очень сильном нагревании реагирует с этими металлами.



Большинство неметаллов и сложных веществ восстанавливается HNO 3 до NO (реже NO 2).

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO

S + HNO 3 = H 2 SO 4 + 2NO

3C + 4HNO 3 = 3CO 2 + 4NO + 2H 2 O

ZnS + 8HNO 3 k = ZnSO 4 + 8NO 2 + 4H 2 O

6HCl + 2HNO 3 k =3Cl 2 + 2NO + 4H 2 O

Запись окислительно-восстановительной реакции с участием HNO 3 обычно условна, т.к. образуется смесь азотсодержащих соединений, а указывают тот продукт восстановления, который образовался в большем количестве.

Золото и платиновые металлы растворяются в «царской водке» – смеси 3 объемов концентрированной соляной кислоты и 1 объема концентрированной азотной кислоты, которая обладает сильнейшим окислительным свойством, растворяет «царя металлов» – золото.

Au + HNO 3 +4HCl = H + NO + 2H 2 O

HNO 3 – сильная одноосновная кислота, образует только средние соли -нитраты, которые получают действием ее на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Их растворы обладают незначительными окислительными свойствами.

При нагревании нитраты разлагаются; нитраты щелочных металлов превращаются в нитриты и выделяется кислород.

2KNO 3 = 2KNO 2 + O 2

Состав других продуктов зависит от положения металла в РСЭП.

Левее Mg = MeNO 2 + O 2 до магния

MeNO 3 = Mg – Cu = MeO + NO 2 + O 2 правее магния.

правее Cu = Me + NO 2 + O 2 менее активных металлов

1) Нитриды - соединения азота с менее электроотрицательными элементами, например, с металлами и с рядом неметаллов.

Получение нитридов

Известны несколько методов получения нитридов.

1) Метод синтеза из простых веществ. При высоких температурах азот окисляет

многие металлы и неметаллы, образуя нитриды, в которых проявляет степень

окисления-3:

3Mg + N 2 = Mg 3 N 2

3Si + N 2 = Si 3 N 2

Из ковалентных нитридов наибольшее значение имеет нитрид водорода H3N

(аммиак), получаемый в промышленности синтезом из простых веществ:

3H 2 +N 2 = 2H 3 N

Основная масса производимого аммиака используется для получения азотной кислоты.

2) Метод восстановления из оксидов в присутствии азота. В качестве восстановителя в этих процессах используют не только углерод, но и металлы или их гидриды:

TiO 2 + CH 2 +N 2 = TiN +CaO +H 2 O

3) Метод термической диссоциации. Этот метод осуществляется с применением соединений, содержащих одновременно и металл и азот, например аминохлоридов:

TiCl 4 · 4NH 3 = TiN + NH 3 + HCl

Таким способом получают нитриды AlN, VN, NbN, Ta 3 N 5 , CrN, U 3 N, Fe 2 N.

4) Метод осаждения нитридов из газовой фазы. Примером этого метода может служить взаимодействие хлоридов и оксихлоридов металлов с аммиаком. Эти реакции происходят обычно при температурах порядка 800oC

MeCl 4 + NH 3 →MeN + HCl

MeOCl 3 + NH3→MeN + H 2 O + HCl

Химические свойства нитридов

Свойства нитридов более или менее закономерно изменяются по периодам и группам периодической системы. Например, в малых периодах наблюдается переход от основных нитридов к кислотным:

Na 3 N Mg 3 N 2 AlN Si 3 N 4 P 3 N 5 S 3 N 4 Cl 3 N

основные амфотерный кислотные

Нитриды s-элементов первой и второй групп, например Na3N, Mn 3 N 2 , являются кристаллическими веществами. Химически они довольно активны.

Например, легко разлагаются водой, образуя щелочь и аммиак:

Na 3 N + 3H 2 O = 3NaOH + H 3 N

Кислотные нитриды, напримерCl3N, гидролизуются с образованием кислот и аммиака:

Cl 3 N + 3H 2 O = 3HClO + H 3 N

Основные нитриды взаимодействуют с кислотами:

Mg 3 N 2 + HCl = MgCl 2 +H 3 N

При этом кислотные нитриды склонны к взаимодействию со щелочами:

BN + H 2 O + NaOH→BO 2 Na + H 3 N

Амфотерные нитриды, в частности AlN, могут реагировать как с кислотами, так и со щелочами:



2ALN + H 2 SO 4 + 6H 2 O = 2Al(OH) 3 + (NH 4) 2 SO 4

AlN + 3H 2 O + KOH→Al(OH) 4 K+ H 3 N

Основные и кислотные нитриды вступают в реакции комплексообразования с образованием смешанных нитридов, например Li 5 TiN 3 , Li 5 GeN 3 и другие

5LI 3 N + Ge 3 N 4 = 3Li 5 GeN 3

осн. кисл.

Нитриды щелочных металлов – малоустойчивые соединения. При обычной температуре с кислородом воздуха они не взаимодействуют. При температурах плавления начинают разлагаться на элементы.

Все ковалентные нитриды довольно устойчивы. Особенно устойчивы нитриды алюминия, бора и кремния, которые начинают слабо разлагаться на элементы только при температурах 1000-1200оC. Они обладают высокой стойкостью против окисления, против действия расплавленных металлов, горячих кислот, различных агрессивных газов.

Металлоподобные нитриды обладают высокой химической стойкостью, особенно против действия холодных и кипящих кислот, многих расплавленных металлов, а также против окисления на воздухе. В растворах щелочей металлоподобные нитриды менее устойчивы. Они быстро разлагаются при сплавлении со щелочами и солями щелочных металлов.

Гидразин

Гидразин (NH 2 NH 2) – это сильно гигроскопическая жидкость, обладающая заметной способностью поглощать из воздуха углекислоту и кислород. Замерзает гидразин при температуре плюс 1,5°, кипит при температуре 113,5° (давление 760 мм рт. ст.). Удельный вес вещества колеблется в зависимости от его агрегатного состояния и температуры окружающей среды. При температуре минус 5° плотность твердого гидразина составляет 1,146, жидкого при температуре 0°-1,0253, а при температуре +15°-1,0114. По мере дальнейшего возрастания температуры удельный вес соединения уменьшается. Гидразин хорошо растворяется в воде, спиртах, аммиаке, аминах. Он нерастворим в углеводородах и их галоидопроизводных. Водные растворы обладают основными свойствами. Гидразин является сильным восстановителем. Благодаря этому он термодинамически неустойчив и легко разлагается под влиянием катализаторов, при нагревании до высоких температур, при действии излучений. На воздухе горит синим пламенем. При этом выделяется значительное количество энергии.

В промышленности гидразин получают по методу Рашига, первая стадия которого состоит в действии хлора на аммиак, в результате чего образуется непрочный хлорамин:

NH 2 Cl + NH 3 + NaOH = NH 2 -NH 2 + NaCl + H 2 O

Химические свойства гидразина определяются, во-первых, тем, что его молекула состоит из двух аминогрупп, обладающих слабо основными свойствами. В соответствии с этим гидразин как слабое основание может реагировать как с одной, так и с двумя молекулами одноосновной кислоты, например соляной:

N 2 H 4 + HCl = N 2 H 5 Cl

N 2 H 4 + 2HCl = N 2 H 6 Cl 2

Его реакция с серной кислотой приводит к гидразин-сульфату(N 2 H 6 SO 4) который, как всякая соль, является твердым веществом, хорошо растворимым в воде. Гидразин-сульфат под названием "Сигразин" нашел применение в медицине при лечении больных раком. Онкологические больные обычно испытывают сильное истощение, быструю потерю веса и аппетита. Эти явления вызываются нарушениями углеводного обмена.

Другая особенность гидразина - его сильнейшие восстановительные свойства, что вызвано как присутствием в его молекуле непрочной связи азот-азот, так и аномальной степенью окисления атомов азота (-2). В качестве примера восстановительных свойств гидразина можно привести его реакцию с перманганатом калия, которую можно использовать для аналитического определения гидразина, как и реакции с некоторыми другими окислителями:

5(NH 2 -NH 2) + 4KMnO 4 + 6H 2 SO 4 =5N 2 + 2K 2 SO 4 + 4MnSO 4 + 16H 2 O

Гидразин сгорает на воздухе, причем эта реакция сильно экзотермична и приводит к образованию газообразных продуктов:

NH 2 -NH 2 + O 2 = N 2 + 2H 2 O + 149,5 ккал/моль

Гидроксиламин

В молекуле гидроксиламина атом азота имеет непоселенную пару электронов. Поэтому, подобно аммиаку и гидразину, он способен к реакциям присоединения с образованием связен по донорно-акцепторному способу. Гидроксиламин хорошо растворяется в воде, а с кислотами дает соли, например хлорид гидроксиламмония. Степень окислениости азота в гидроксила мине равна -1. Поэтому он проявляет как восстановительные, так и окислительные свойства. Однако более характерна восстановительная способность гидроксиламина. В частности, он применяется как восстановитель (главным образом в виде солей) в лабораторной практике.

Химические свойства:

В водном растворе диссоциирует по основному типу, являясь слабым основанием:

NH 2 OH + H 2 O = + + OH -

Может также диссоциировать и по кислотному типу

NH 2 OH + H 2 O = NH 2 O - + H 3 O +

Подобно NH 3 , гидроксиламин реагирует с кислотами, образуя соли гидроксиламиния:

NH 2 OH + HCl = Cl

На воздухе соединение является нестабильным:

3NH 2 OH = N 2 + NH 3 + 3H 2 O

но при давлении в 3 кПа (2,25 мм рт.ст.) плавится при 32 °С и кипит при 57 °С без разложения.

На воздухе легко окисляется кислородом воздуха:

4NH 2 OH + O 2 = 6H 2 O + 2N 2

Гидроксиламин проявляет свойства восстановителя, при действии на него окислителей выделяются N 2 или N 2 O:

В некоторых реакциях NH 2 OH проявляются окислительные свойства, при этом он восстанавливается до NH 3 или NH 4 +

Получение

В лаборатории получают разложением в вакууме солей гидроксиламина: (NH 3 OH) 3 PO 4 или (ClO 4) 2 .

Спиртовой раствор гидроксиламина можно получить действием этанола на NH 3 OHCl.

В промышленности соли гидроксиламина получают восстановлением NO водородом в присутствии платинового катализатора или гидрированием азотной кислоты, а также действием на азотную кислоту атомарным водородом.