Преимущества отдельных источников получения холода. Способы получения искусственного холода. Источники холода для систем кондиционирования воздуха

Геккон — это тип ящерицы из семейства Gekkonidae. Есть 1000 видов гекконов, которых можно найти во всем мире, кроме Антарктиды. Различные виды гекконов разработали различные приспособления для выживания в самых разных экосистемах, таких как: тропические леса, пустыни, джунгли, луга и горы. Гекконы часто содержатся в качестве домашних животных. Леопардовый геккон — самый популярный домашний питомец из всех гекконов. Некоторые виды гекконов находятся под угрозой полного исчезновения с лица Земли из-за утраты мест обитания и из-за введения новых хищных видов в их среду обитания.

Интересные факты об этих ящерицах:

Гекконы различаются по размеру. Наименьший вид гекконов, карликовый геккон, достигает ¾ дюйма в длину. Крупнейшие виды гекконов, токайские гекконы, достигают 14 дюймов в длину.

Гекконы обычно ярко окрашены. Окраска тела зависит от цвета окружающей среды, потому что играет важнейшую роль в маскировочном «камуфляже» животного.

Гекконы являются ночными (активными в ночное время) существами. Их глаза приспособлены к низкому уровню света.

Помимо хорошо развитого видения в ночное время, у гекконов есть превосходное чувство слуха, которое помогает им своевременно обнаруживать хищников и избегать встречи с ними.

Из-за своих небольших размеров гекконы часто становятся объектом охоты змей, птиц, млекопитающих и некоторых крупных видов пауков.

Гекконы питаются различными видами фруктов, цветковым нектаром, насекомыми и червями.

Геккон имеет толстый хвост, который используется как резервуар для хранения жировых запасов. Он также помогает геккону балансировать, пока он ходит и лазает по деревьям.

Как и другие ящерицы, геккон в опасной для выживания ситуации может отбросить свой хвост. Бесхвостый геккон будет восстанавливать недостающую часть тела через короткий промежуток времени.

Уникальной особенностью некоторых видов гекконов является способность ходить по гладким или даже горизонтальным поверхностям (таким как потолки) без падения. Это возможно, потому что у их пальцев ног есть крошечные крючки, которые действуют как присоски во время ходьбы.

Тефлон является единственным материалом, к которому геккон не может прилипать (используя его «присоски») и ходить без скольжения.

Летающий геккон — единственный вид гекконов, способный летать (скольжение по воздуху). У этого животного есть перепончатые ноги и хвост, и широкий лоскут кожи, которые действуют как парашют, когда геккон перебирается с дерева на дерево.

В отличии от других рептилий, эти существа вокальны и способны производить различные звуки, которые используются в общении. Они производят лай, щебетание или щелкающий шум во время брачных игр или при защите своей территории.

Геккон в течение года спаривается пару раз. Женская особь вырабатывает два яйца. Она откладывает яйца под листья через несколько недель после спаривания и бросает их. Она не заботится о яйцах. Некоторые яйца мягкие, но их оболочка постепенно затвердевает под воздействием воздуха.

Гекконы имеют довольно длительный срок жизни. Геккон Лекард (Lecard gecko) может прожить более 20 лет в неволе. Другие виды живут от 8 до 10 лет.

Posted in
Tagged ,

Процесс понижения температуры тела называется охлаждени­ем. Различают естественное и искусственное охлаждение.

Естественное охлаждение позволяет охладить тело до темпера­туры окружающей среды. Такое охлаждение обеспечивает холод­ная вода или воздух.

Для охлаждения до температуры более низкой, чем температу­ра окружающей среды, применяется искусственное охлаждение, которое можно осуществить с помощью любого физического про­цесса, связанного с отводом теплоты.

Искусственное охлаждение используется при проведении про­цессов абсорбции, кристаллизации, разделения газов, сублима­ционной сушки и кондиционирования воздуха.

С помощью холодильных смесей можно получать довольно низ­кие температуры. Смесь льда и СаС1 2 (до 30 %) позволяет достичь температуры -55 °С. Однако для осуществления охлаждения таким способом требуется много льда и соли, поэтому его применение ограниченно.

В современных холодильных машинах используется свойство ряда низкокипящих сжиженных газов (аммиак, хладоны, диоксид уг­лерода и др.) при испарении поглощать из окружающей среды большое количество теплоты.

Искусственное охлаждение можно разделить на умеренное (до температуры -100 °С) и глубокое (до более низкой температуры).

В промышленности глубокое охлаждение применяют для сжи­жения разделяемых парогазовых и газовых смесей. Полученные таким способом газы широко используются в химической про­мышленности: азот - для получения химических удобрений, кис­лород, метан и этилен - для производства минеральных кислот и т.п.

В установках искусственного холода осуществляют необходи­мое снижение температуры рабочего тела. По агрегатному со­стоянию рабочего тела холодильные установки подразде-


ляют на газовые, газожидкостные, парожидкостные и адсорбционные (с применением твердой фазы).

Искусственное охлаждение в большинстве случаев осуществ­ляется двумя методами:

Испарением низкокипящих жидкостей;

Расширением различных предварительно сжатых газов с по­мощью дросселирования или детандирования.

При испарении низкокипящих жидкостей последние охлажда­ются за счет уменьшения внутренней энергии.

Дросселирование представляет собой процесс расширения газа при его прохождении через сужающее устройство, в результате чего давление газа снижается. Энергия, необходимая для расши­рения газа при дросселировании, когда поступление теплоты из­вне отсутствует, может быть получена только за счет внутренней энергии самого газа. Дроссельный эффект (эффект Джоуля-Том­сона) - это изменение температуры газа при дросселировании в условиях отсутствия теплообмена с окружающей средой.

Детандирование - это расширение газа в расширительной ма­шине - детандере. По своей конструкции этот агрегат аналогичен поршневому компрессору или турбокомпрессору. При детандировании газ охлаждается вследствие снижения внутренней энергии и совершения внешней работы.

В системах КВ воздух нагревается в секциях подогрева, выполняемых в виде многоходовых калориферов из горизонтальных стальных труб, оребренных стальной лентой. Типовые секции собираются из одно- двух и трехрядных базовых теплообменников.

Для первого подогрева по ходу воздуха устанавливается обычно не менее 2-х секций. Теплоносителем может быть вода с температурой до 150 0 С и пар с давлением не более 0,6 МПа.

Если теплоноситель – вода, то для увеличения скорости ее движения в трубках теплообменников и коэффициента теплопередачи секции подогрева соединяются последовательно.

Параллельное соединение применяется только в случаях недостаточного напора в тепловой сети для преодоления увеличения гидравлических сопротивлений теплообменников, соединенных последовательно.

Если теплоноситель – пар, то секции подогрева присоединяются к пароконденсатопроводам параллельно. Максимально допустимое давление пара по условиям прочности теплообменников 0, 6 МПа.

Для секций второго подогрева местных или зональных подогревателей воздуха в качестве теплоносителя применяют воду с постоянной температурой в подающей линии (обычно 60-70 0 С). Расчетный перепад температур воды принимают 15-25 0 С.

Присоединять их к тепловым сетям непосредственно не следует, т.к. требуемая теплоотдача подогревателей, как правило, не зависит от температуры наружного воздуха, т.е. не связана с температурных графиком, по которому изменяется температура сетевой воды. Питание водой переменной температуры значительно ухудшило бы работу системы автоматического регулирования.

Теплоотдача калориферов второго подогрева регулируется автоматическим клапаном, изменяющим количество воды постоянной температуры, подаваемой в калорифер.

Для получения воды с постоянной температурой по закрытой схеме применяют смесительные установки с промежуточными теплообменниками.

33.2 Холодоснабжение кондиционеров.

Холодоносителем для СКВ, как правило, является вода, получаемая от холодильных установок, а в отдельных случаях – от естественных источников. Выбор системы холодоснабжения зависит от способа получения холодной воды, расстояния потребителей от источника холода, типа испарителя, а также от способа присоединения воздухоохладителя к холодоносителю.

33.3. Источники холода для систем кондиционирования воздуха.

При проектировании СКВ в районах с сухим и жарким климатом следует принимать прямое, косвенное или комбинированное (двухступенчатое) испарительное охлаждение воздуха, если эти способы обеспечивают заданные параметры воздуха.

В большинстве случаев для работы СКВ необходимы естественные или искусственные источники холода. К числу естественных источников относятся холодная вода из артезианских скважин или горных рек. Использование этих источников экономически целесообразно в тех случаях, когда температура воды, служащей холодоносителем, позволяет получить необходимы параметры воздуха при нагреве воды не менее, чем на 3 0 С.

В отдельных случаях для небольших систем КВ, расходующих до 180 тыс. Вт холода, можно использовать лед, заготовленный путем намораживания воды в бунтах или получаемый из водоемов. Прямой контакт межу льдом из бунтов или водоемов и воздухом, подаваемым в помещение, не допускается по санитарно-гигиеническим соображениям. Поэтому необходимо льдом охлаждать воду, циркулирующую в поверхностном водовоздушном теплообменнике.

Наиболее распространено получение холода от искусственных источников – холодильных машин. Машинное охлаждение – это способ получения холода за счет изменения агрегатного состояния холодильного агента (кипения его при низких температурах с отводом от охлаждающей среды, необходимой для этого теплоты парообразования).

Для последующей конденсации паров холодильного агента требуется предварительно повышать их давление и температуру. По способу повышения температуры паров и давления перед их конденсацией различают такие типы холодильных машин:

    компрессионные – со сжатием паров компрессором с затратой механической энергии;

    абсорбционные – с поглощение паров соответствующим абсорбентом и выделением их выпариванием раствора с затратой тепловой энергии;

    эжекторные – в которых одновременно осуществляется два цикла: прямой – с превращением подводимой тепловой энергии в механическую и обратный – с использованием механической энергии для производства холода.

Компрессорные холодильные установки являются основными потребителями электроэнергии на предприятиях по переработке и хранению скоропортящихся пищевых продуктов, что требует изыскивать резервы для экономии энергоресурсов. Поскольку для большей части территории нашей страны характерны продолжительные зимы с низкими температурами воздуха, весьма перспективным направлением экономии энергоресурсов является широкое применение естественного холода. Отметим несколько направлений использования естественного холода.

Наиболее простым и распространенным способом является непосредственная подача холодного воздуха в камеры охлаждения или хранения продуктов, когда наружная температура воздуха равна или ниже требуемой в камерах. В наружных стенах делаются отверстия для забора воздуха с помощью вентилятора и выпуска его через лепестковый обратный клапан (рис. 94). Раздача воздуха в камере производится через воздуховод с регулируемыми окнами, которые автоматически закрываются шиберами при остановке вентилятора. Температура в камере поддерживается двухпозиционным реле температуры, включающим или отключающим вентилятор. При размещении в камере неупакованных продуктов на всасывании вентилятора необходимо установить фильтры очистки воздуха от пыли и микроорганизмов (например, ЛАИК СП-6/15 или ЛАИК СП-6/15А). Установлено, что в районах с относительной влажностью воздуха 85 % и выше в камерах с неупакованной продукцией можно применять наружный воздух без увлажнения. В других случаях предусматривается система увлажнения воздуха. Учитывая сезонность использования естественного холода, целесообразно сочетать в камерах оборудование для естественного и искусственного охлаждения. При работе с искусственным охлаждением в летний период отверстия в ограждениях закрываются теплоизолированными люками. Для основных районов массового выращивания картофеля и овощей период хранения совпадает с периодом устойчивого стояния достаточно низких температур наружного воздуха. В связи с этим получает широкое распространение способ хранения продукции насыпью в условиях активного вентилирования с использованием естественного холода. Подача наружного воздуха осуществляется вентилятором в воздуховод переменного сечения, расположенный под перфорированным полом хранилища (рис. 95). Подаваемый воздух увлажняется, проходит через продукты снизу вверх и удаляется из хранилища через дефлектор. Вентилятор и увлажнитель автоматически включаются в работу по сигналу от датчиков дифференцированных терморегуляторов при температуре наружного воздуха на 2…3°С ниже температуры, которую имеет масса продукта. Увлажнение воздуха осуществляется водяным паром или распылением воды. Оптимальные значения влажности воздуха перед поступлением к продукту 90 % и более, а удельного расхода воздуха на 1 т продукции - более 100 м 3 /ч.

В молочной промышленности также широко распространено охлаждение хладоносителя с помощью наружных теплообменных аппаратов или в градирнях. В качестве теплообменных аппаратов можно использовать стандартные воздухоохладители с высокой степенью оребрения и мощными вентиляторами (например, ВОГ-230), устанавливаемые вне помещения (на крыше компрессорного цеха). Учитывая ограниченное время работы теплообменных аппаратов, использующих природный холод, общая схема циркуляции хладоносителя (воды, рассолов) должна быть мобильной и иметь переключения в расчете на разные режимы работы: охлаждение хладоносителя только наружными теплообменными аппаратами; совместная работа наружных аппаратов и испарителей холодильной установки; охлаждение хладоносителя только в испарителях холодильной установки. В зимнее время ледяную воду можно получать в градирнях при полном или частичном отключении холодильного оборудования. На рис. 96 показана схема подключения градирни для охлаждения хладоносителя, работающая в трех режимах: аккумулирование холода в ночное время, контур циркуляции хладоносителя (градирня - бак - насос); охлаждение технологического оборудования аккумулированным холодом и подохлаждение хладоносителя в градирне; охлаждение хладоносителя в испарителе. Параметром, по которому выбирается тот или иной способ охлаждения, является температура хладоносителя, поступающего в технологические аппараты.

Стандартные градирни типа ГПВ используются для получения воды с температурой 1…4°С при наружной температуре воздуха –5 °С и ниже. Недостатком устройства пленочных градирен является льдообразование на элементах конструкции, что приводит к резкому уменьшению количества циркулирующего воздуха и. повышению температуры охлажденной воды. Этот недостаток устранен в установке марки Я10-ОУ0 для естественного охлаждения в зимнее время циркуляционной воды. Она обеспечивает охлаждение воды от 10 до 5±1°С при температуре окружающего воздуха от –5 °С и ниже. В летний период установка выполняет функции градирни в системе оборотного водоснабжения. Для периодического удаления льда предусмотрена система оттаивания. Градирня монтируется на открытой площадке с обеспечением свободного слива из поддона в блок накопления, при этом разность отметок между сливным патрубком поддона и уровнем воды в блоке накопления не менее 1 м.
Заслуживает особого внимания способ аккумуляции зимнего холода путем намораживания ледяных буртов, позволяющий значительную часть летнего времени обходиться без машинного охлаждения, что дает экономию энергоресурсов, смазочных материалов, увеличивает срок службы оборудования.
Еще один резерв экономии электроэнергии за счет естественного холода - применение воздушных конденсаторов, которые можно использовать в качестве форконденсаторов в сочетании с кожухотрубными и испарительными конденсаторами. В зимний период воздушные форконденсаторы могут взять на себя всю тепловую нагрузку от установки, при этом температура конденсации может быть сколь угодно низкой, что приводит к экономии электроэнергии на выработку холода. Использование природного холода для охлаждения является неисчерпаемым источником эффективных технических решений, причем сочетанием двух и более видов естественного охлаждения могут быть достигнуты достаточно высокие технико-экономические показатели.

В нашем воображении само понятие «теплофизика» обычно связывается с производством тепла, эффективностью сжигания топлива, с получением энергии. Понятно, что для жителей Сибири тепло стоит на более важном месте, нежели холод. Тем не менее, производство холода – это тоже одна из актуальных задач для ученых, работающих в области теплофизики. И самое примечательное – для производства холода они предлагают привлекать всё то же тепло!

Зачем нужно производить холод, думаю, многим из нас понятно. Холод нужен для хранения продуктов, для создания благоприятного микроклимата в помещениях, для определенных производственных процессов. У каждого из нас в доме стоит холодильник, все нормальные общественные здания оборудованы кондиционерами. Представьте себе кафе, магазин, гостиницу или бизнес-центр без кондиционера, и вы поймете, что система охлаждения не менее важна, чем система отопления, даже если речь идет о Сибири. Зимой, ясное дело, мы нуждаемся в тепле. А летом? Лето в наших краях тоже иногда бьет рекорды по жаре. А уж про южные страны и говорить нечего.

Короче говоря, современные параметры комфорта и потребность в хранении продуктов так или иначе требуют производства холода. И надо сказать, что из года в год потребность в искусственном холоде увеличивается как в России, так и за рубежом.

Как производят холод? На сегодняшний день существует два основных типа холодильных машин – парокомпрессионные холодильные машины и абсорбционные бромистолитиевые машины. Первый тип нам хорошо известен – так устроены наши бытовые холодильники, работающие от электросети. Работа таких машин основана на изменении агрегатных состояний холодильного агента – хладона (фреона) – под воздействием механической энергии. Для превращения электрической энергии в механическую здесь, как мы знаем, используются компрессоры.

Что касается холодильных машин второго типа, то их работа основана на химическом взаимодействии веществ рабочей пары – абсорбента и хладогента, и изменении агрегатного состояния хладогента под воздействием тепловой энергии. Иначе говоря, для своей работы такие машины используют тепло.

И вот здесь мы как раз и подходим к самому важному моменту, касающемуся холодильных машин второго типа. Так вот, если в первом случае нам для производства холода необходимо тратить электроэнергию, то во втором случае мы вполне можем использовать «лишнее» тепло, которое при иных обстоятельствах очень часто вылетает в трубу (в буквальном смысле). Конечно, греющими источниками для таких машин могут служить и обычные энергоресурсы – газ или мазут, но также можно вовсю использовать пар из котельных, промежуточные отборы ТЭЦ, горячую воду, дымовые газы или отходящие пары производств. Иначе говоря, тепло, выбрасываемое в атмосферу, благодаря абсорбционным машинам вполне пригодно для производства холода. То есть, в этом случае нет необходимости тратить ценные энергоресурсы - достаточно рачительно использовать «излишки» тепла, коих особенно много образуется как раз в летний период, когда имеет смысл охлаждать помещения.

Надо сказать, что экономичность – это одно из важнейших преимуществ абсорбционных бромистолитиевых холодильных машин перед парокомпрессионными. Как мы понимаем, в условиях постоянного роста тарифов на электроэнергию это становится особенно важно.

Другое немаловажное преимущество – экологичность, связанная с отсутствием хладонов (фреонов), применение которых ограничено во многих странах в соответствии с Монреальским и Киотским протоколами. На бромистолитиевые машины подобные ограничения не распространяются. Используемый здесь в качестве абсорбента водный раствор бромистого лития является нелетучим и нетоксичным, относящимся к малоопасным веществам.

Еще одно преимущество связано с низким уровнем шума при роботе. Также можно упомянуть простоту в обслуживании, длительный срок службы и пожаро- и взрывобезопасность.

Благодаря указанным преимуществам такие машины в состоянии найти широкое применение как в быту, так и в хозяйственной деятельности. Спектр их применения достаточно широк – от металлургических предприятий, атомных электростанций, нефтехимических комбинатов – до тепличных хозяйств, многоквартирных домов, торговых центров и прочих общественных зданий, где требуется создать комфортный микроклимат. И самое важное (подчеркнем еще раз), этого комфорта можно добиться при минимальных затратах электроэнергии!

Разрабатывают ли в нашей стране такие машины? Да, разрабатывают! И даже производят. Как раз такой образец, разработанный специалистами Института теплофизики СО РАН, производится в Кемеровской области. Причем важно заметить, что отечественные машины обладают некоторыми преимуществами в сравнении с иностранными. Например, они, что называется, «подстраиваются» под конкретного потребителя. Наши специалисты используют гибкую систему проектирования и осуществляют сборку на самом объекте. Причем, заказчикам они могут предложить машину очень большой мощности – до 5,3 МВт. Кроме того, учитывая сложные реалии, разработчики предусмотрели – специально для аварийных случаев – дублирование автоматической системы управления ручной системой (с помощью «кнопочек»).

Однако такой индивидуальный подход выявил и свои слабые места. Речь идет о рыночной конкуренции с зарубежными серийными образцами (поступающими, главным образом, – из Китая). Так, зарубежные производители, «штампующие» такие машины на конвейере, в состоянии прибегнуть к демпингу. А если говорить о китайцах, то те вообще могут рассчитывать на государственную поддержку, осуществляя завоевание российского рынка. Нашим производителям государство помогать не собирается (и не будет).

Так что пока еще о серийном производстве отечественных машин речь не идет. Это, конечно, только в планах. Поэтому в настоящее время (что очень важно), специалисты ИТ СО РАН доводят свое детище до совершенства, максимально подстраиваясь под запросы каждого потребителя. Возможно, в этом индивидуальном подходе есть свой плюс. Не исключено, что такая вот «ручная сборка» когда-нибудь станет показателем высокого качества и будет высоко оценена на рынке.