Удаление кислорода из воды. Способ удаления кислорода из воды. Каталитический метод глубокого удаления кислорода на палладиевом катализаторе, напорной фильтрации - оборудование серии «MWT Pl»

Очистка воды от углекислого газа называется дегазацией, этот процесс бывает химическим и физическим. Во всякой природной воде всегда есть растворённые газы, причём некоторые из них оказывают коррозионное действие на трубы – такие как кислород, углекислый газ и сероводород. К тому же, последний придает воде неприятный запах тухлых яиц, а углекислый газ даже способен активно разрушать бетон. Поэтому одна из приоритетных задач – избавление от этих компонентов при или производства.

Химическая дегазация

В процессе химической очистки воды от углекислого и других газов применяются реагенты, химически связывающие газы, растворённые в ней. Например, очистить от кислорода воду можно, добавив в неё сернистый газ, сульфит натрия или гидразин.

Сульфит натрия окисляется кислородом до сульфата, из сернистого газа получается вначале сернистая кислота, которая окисляется до серной. Практически полностью можно очистить воду при помощи гидразина – при реакции с ним кислород полностью поглощается, а выделяется инертный азот. Использование гидразина является наиболее эффективным способом химической очистки воды, но и самым дорогим из-за высокой стоимости реагента. Поэтому он чаще всего используется для окончательной дегазации воды после использования физических методов.

При удалении сероводорода чаще всего используется хлор, который окисляет сероводород до серы или до сульфатов. Обе реакции протекают параллельно, а преобладание одной из них зависит от рН среды и концентрации хлора.

Недостатки химических способов очистки воды от углекислого и прочих газов:

  • использование реагентов удорожает и усложняет процесс очистки воды;
  • передозировка реагентов приводит к ухудшению качества очищаемой воды.

Из-за этого химическая дегазация используется реже, чем физическая.

Физическая дегазация

Физически растворённые газы можно удалить из воды двумя способами:

  1. довести почти до нуля парциальное давление удаляемого газа в атмосфере, контактирующей с водой;
  2. создать условия, когда растворимость газа в воде стремится к нулю.

Первый способ называется аэрацией воды, с помощью него осуществляется очистка воды от углекислого газа и сероводорода, имеющих очень низкое парциальное давление в атмосфере.

Кислород, составляющий значительную долю атмосферы, аэрацией удалить невозможно. Поэтому для его удаления вода доводится до кипения, при котором любой газ стремится её покинуть. Вода либо нагревается в термических деаэраторах, либо её вакуумируют до момента закипания в вакуумных дегазаторах.

Существуют несколько типов дегазаторов, различающихся конструктивно, характером движения воздуха и воды и условиями процесса дегазации:

  • плёночные дегазаторы. Это колонны, наполненные различными насадками, по которым тонкой плёнкой стекает вода. Насадки многократно увеличивают поверхность контакта воды с воздухом, который подаётся вентилятором во встречном направлении;
  • барботажные дегазаторы. В них через толщу медленно движущейся воды проходят пузырьки сжатого воздуха;
  • вакуумные дегазаторы. Здесь разрежение над водой создаётся специальными устройствами до того момента, пока она не начинает кипеть при имеющейся температуре.

В сфере чаще применяются плёночные дегазаторы, а для избавления от кислорода – термические или вакуумные. Дороговизна эксплуатации барботажных дегазаторов из-за большого расхода энергии на сжатие воздуха ограничивает их использование.

Проектирование дегазаторов должно отталкиваться от следующих параметров:

  • площадь поперечного сечения аппарата, которая зависит от допустимой плотности орошения насадки;
  • площадь поверхности насадки, необходимой для эффективной дегазации;
  • расход воздуха.

Очистка воды от углекислого газа, кислорода и сероводорода – важный этап комплексной водоочистки. Эта процедура позволяет избавиться от вредных компонентов, которые в противном случае оказывают губительное воздействие на дорогостоящее промышленное оборудование.

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова (НИИЯФ МГУ) предлагает новый метод удаления кислорода, основанный на инициировании в воде окислительных радикально-цепных реакций. В НИИЯФ МГУ были разработаны генераторы озоно-гидроксильной смеси, позволяющие инициировать радикально-цепные реакции окисления примесей в воде. Экспериментально наблюдался процесс цепного окисления раствора фенола и фенольных сточных вод*. Предлагается использовать два процесса, приводящих к обескислороживанию воды: продув воды газом, не содержащим кислород; радикально-цепные реакции. Схема установки представлена на рис. 1.

Установка состоит из генератора радикалов, эжекторного насоса (Э), буферной емкости и трубопроводов. Поток обрабатываемой воды примем 50 м3/ч. 10% воды, т.е. 5 м3/ч, подается на эжектор, который высасывает из генератора газовую смесь. В генераторе радикалов горит вспышечный коронный электрический разряд, ток разряда — 15 мА, потребляемая мощность — 150 Вт. Все газовые полости установки перед включением разряда продуваются природным газом. Газ смешивается с жидкостью в эжекторе. Поток газоводяной смеси из эжектора поступает в буферную емкость, где он смешивается с основным потоком воды и нефтью. Нефть добавляется как основное вещество, которое будет взаимодействовать с кислородом.

Расход нефти с учетом ее растворимости (50 мг/л, или 50 г/м3) при потоке воды 50 м3/ч составит 2,5 л/ч. Природный газ циркулирует внутри установки: высасывается из генератора радикалов эжектором, смешивается с водой в эжекторе, отделяется от воды в буферной емкости и поступает обратно в генератор радикалов через возвратную трубу. Кислород, отделенный от воды и унесенный газом из буферной емкости, сжигает часть природного газа на электродах генератора радикалов. Скорость циркуляции газа равна скорости циркуляции воды через эжектор (5 м3/ч), при этом газ мало расходуется и почти весь поступает из буферной емкости обратно в генератор. Расход газа компенсируется подпиткой природным газом.

Для этого можно организовать продув газа через систему с зажиганием факела в выходном потоке после продува. Объем буферной емкости должен быть таким, чтобы время удержания воды было больше времени удаления кислорода. Это время может составить до 15 минут (с учетом неточностей, допущенных при численных оценках), т.е. объем емкости — 10-15 м3. Ориентировочные характеристики предлагаемой установки для удаления кислорода из воды следующие: поток воды — 50 м3/ч; мощность, потребляемая генератором радикалов, — 150 Вт; расход нефти — 2,5 л/ч; расход газа (на окисление и дренаж) — 500-1000 л/ч; объем буферной емкости — 10-15 м3. Точные характеристики установки зависят от потребностей заказчиков.

Константы, необходимые для расчета установок, должны быть получены в результате НИР и ОКР. НИИЯФ МГУ изготавливает генераторы радикалов мощностью от 50 до 150 Вт, предназначенные для окисления примесей в воде. Они могут быть модифицированы для генерирования органических радикалов. Эжекторные насосы также проектируются и изготавливаются в НИИЯФ.

* Следует отметить, что самый простой и дешевый способ получения воды, не содержащей кислород, - это использование вод из подземных источников, где кислорода нет. Традиционные методы удаления кислорода из воды, а также процесс цепного окисления раствора фенола и фенольных сточных вод рассматриваются в статье «Удаление кислорода из воды» на сайте http://depni.sinp.msu.ru/~piskarev/ в разделе «Проекты, требующие инвестиций».

иногда требуется связывание кислорода и углекислоты. Деаэрация может производиться различными методами. Даже при наличии деаэрирующего оборудования (деаэратора), может потребоваться дополнительно снижение концентрации растворенных кислорода и углекислого газа при помощи специальных .


Способы деаэрации питательной воды в котельных

. Использование реагентов

Для связывания кислорода в питательной и сетевой воде можно использовать комплексные , позволяющие не только снизить концентрацию кислорода и углекислого газа до нормативных значений, но стабилизировать рН воды и предотвратить образование отложений. Таким образом, может быть достигнуто требуемое качество сетевой воды без применения специального деаэрирующего оборудования.

. Химическая деаэрация

Суть химической деаэрации состоит в добавлении в питательную воду реагентов, которые позволяют связать содержащиеся в воде растворенные коррозионноактивный газы. Для водогрейных котлов мы рекомендуем использовать комплексный реагент - ингибитор коррозии и отложений . Для удаления из воды растворенного кислорода при водоподготовке для паровых котлов - , который часто позволяет работать без деаэрации . В случае, если имеющийся деаэратор работает некорректно, то для коррекции водно-химического режима рекомендуем использовать реагент . Для пищевых производств также рекомендуется использовать реагент Advantage 456

. Деаэраторы атмосферного типа с подводом пара

Для деаэрации воды в котельных с паровыми котлами применяются в основном термические двухступенчатые деаэраторы атмосферного типа (ДСА), работающие при давлении 0,12 МПа и температуре 104 °С. Такой деаэратор состоит из деаэрационной головки, имеющей две или более перфорированные тарелки, или другие специальные устройства, благодаря которым исходная вода, разбиваясь на капли и струи, падает в аккумуляторный бак, встречая на своем пути движущийся противотоком пар. В колонке происходит нагрев воды и первая стадия ее деаэрации. Такие деаэраторы требуют установки паровых котлов, которые усложняют тепловую схему водогрейной котельной и схему химводоподготовки.

. Вакуумная деаэрация

В котельных с водогрейными котлами, как правило, применяются вакуумные деаэраторы, которые работают при температурах воды от 40 до 90 °С.
Вакуумные деаэраторы имеют множество существенных недостатков: большая металлоемкость, большое количество дополнительного вспомогательного оборудования (вакуумные насосы или эжекторы, баки, насосы), необходимость расположения на значительной высоте для обеспечения работоспособности подпиточных насосов. Главным же недостатком является наличие существенного количества оборудования и трубопроводов, находящихся под разряжением. В результате через уплотнения валов насосов и арматуры, неплотности во фланцевых соединениях и сварных стыках в воду поступает воздух. При этом эффект деаэрации полностью пропадает и даже возможен рост концентрации кислорода в подпиточной воде по сравнению с исходной.

. Термическая деаэрация

В воде всегда содержатся растворенные агрессивные газы, прежде всего кислород и углекислота, которые вызывают коррозию оборудования и трубопроводов. Коррозионно-активные газы попадают в исходную воду в результате контакта с атмосферой и других процессов, например, ионном обмене. Основное коррозионное воздействие на металл оказывает кислород. Углекислота ускоряет действие кислорода, а также обладает самостоятельными коррозионными свойствами.

Для защиты от газовой коррозии применяется деаэрация (дегазация) воды. Наибольшее распространение нашла термическая деаэрация. При нагреве воды при постоянном давлении растворенные в ней газы постепенно выделяются. Когда температура повышается до температуры насыщения (кипения), концентрация газов снижается до нуля. Вода освобождается от газов.

Недогрев воды до температуры насыщения, соответствующей данному давлению, увеличивает остаточное содержание в ней газов. Влияние этого параметра весьма существенно. Недогрев воды даже на 1 °С не позволит достичь требований «ПУБЭ» для питательной воды паровых и водогрейных котлов.

Концентрация растворенных в воде газов очень мала (порядка мг/кг), поэтому недостаточно выделять их из воды, а важно еще удалить их из деаэратора. Для этого приходится подавать в деаэратор избыточный пар или выпар, сверх количества, необходимого для нагрева воды до кипения. При общем расходе пара 15-20 кг/т обрабатываемой воды, выпар составляет 2-3 кг/т. Снижение выпара может существенно ухудшить качество деаэрированной воды. Кроме того, бак деаэратора должен иметь значительный объем, обеспечивающий пребывание в нем воды не менее 20 ... 30 минут. Длительное время необходимо не только для удаления газов, но и для разложения карбонатов.

Для самостоятельного выбора реагентов

Получить консультацию по подбору:

Заполнить

Наличие кислорода в греющей паровой системе приводит к коррозии котлов, тепловых сетей, снижает эффективность переноса тепла с паром.
Существуют химические и физические методы удаления кислорода из питательной воды. Физические методы деаэрации осуществляются вакуумным, термическим способом, азотной пузырьковой деаэрацией.

Химические методы удаления кислорода - дозирующее оборудование серии «MWT R»

  1. На котлах низкого давления до 7,0 Мпа, с применением сульфита натрия, метабисульфита натрия;
  2. На котлах высокого, сверхвысокого, сверхкритичного давления, с применением гидразин гидрата (при окислении образуется азот и вода), диэтилгидроксиламин, изоаскорбиновую кислоту, карбогидразин, гидрохинон, пленкообразующий амин - хеламин.

Степень извлечения свободного кислорода для предотвращения котловой коррозии, коррозии сетей, зависит от температуры теплоносителя, объема воды. Содержание кислорода в системах питательной воды при одноступенчатой аэрации достигает значения не более 0,2 мл/л, а при условии содержания кислорода менее 0,07 мл\л, применяется дополнительная обработка воды дозированием химических препаратов.

Каталитический метод глубокого удаления кислорода на палладиевом катализаторе, напорной фильтрации - оборудование серии «MWT Pl»

Глубокое удаление растворенного кислорода из воды от 20 мкг\л, расчетной скоростью фильтрации от 5 – 80 м\ч. Извлечение растворенного кислорода входящей воды, основывается на принципе взаимодействия палладированного ионитного материала с восстановлением кислорода водородом. Фильтрующий каталитический материал химически стойкий к кислотам, щелочам – нерастворим в органических растворителях, воде, не ядовитый, негорючий, не взрывоопасный. Промывка фильтра производится обратным током при наличии не растворенных соединений, либо без промывки в условиях чистой воды до 10 мкм.

Технические характеристики фильтрующего материала:

Показатели

Описание

Соответствие

Состав гранулометрический:
размер зерен, мм
объемная доля рабочей фракции, %, не менее
коэффициент однородности, не более

0,45 – 1,05
97,0
0,6
1,7

соотв.
99,0
гарант.
гарант.

Массовая доля воды, %

Окисляемость фильтрата в пересчете на кислород, мг/г, не более

Осмотическая стабильность, %, не менее

Насыпная масса, кг/м3

Мембранная дегазация для глубокого удаления кислорода - оборудование серии «MWT MD»

Применение технологии глубокого удаления кислорода для паровых и водогрейных систем, с использованием гидрофобных мембран в мембранных контакторах, позволяет достигать глубокой степени очистки воды до 1 мкг\л, а при необходимости удаления кислорода менее 1 мкг/л двухступенчатой дегазацией, с физической сдувкой газом и вакуумированием, при предварительном снижением до 100 мкг/л.

Преимущества применения мембранной дегазации «MWT MD»:

  1. Блочное наращивание для увеличения производительности;
  2. Регулирование степени извлечения растворенного кислорода;
  3. Стабильные показатели высокого качества дегазации;
  4. Незначительные эксплуатационные затраты;
  5. Безреагентная дегазация.

§ 132. Удаление из воды растворенных газов

Чаще всего в процессе водоподготовки требуется удаление углекислоты, кислорода п сероводорода. Все три газа относятся к коррозийно-агрессивным газам, обусловливающим или усиливающим процессы коррозии металлов. Углекислота, кроме того, агрессивна по отношению к бетону. Свойство этих газов обусловливать и усиливать коррозийные процессы, а также неприятный запах, который сообщает воде сероводород, во многих случаях вызывают необходимость наиболее полного удаления их из воды.

Комплекс мероприятий, связанных с удалением из воды растворенных в ней газов, называется дегазацией воды.

Применяются химические и физические методы дегазаций воды.

Сущность первых заключается в использовании определенных реагентов, которые связывают растворенные в воде газы. Например, обескислороживание воды может быть достигнуто путем введения в нее сульфита натрия, сернистого газа или гидразина. Сульфит натрия при введении его в воду окисляется растворенным в воде кислородом до сульфата натрия:

2Na2SO3 + О2 -> 2Na2SO4.

В случае применения сернистого газа образуется сернистая кислота:

SO2 -f Н2О -»- H2SO3,

которая кислородом, растворенным в воде, окисляется до серной кислоты:

2H2SO3-f O2-*-2H2SO4.

Химическим реагентом, при помощи которого удается достичь

практически полного обескислороживания воды, является гидразин.

При введении его в воду происходит связывание кислорода и выделение инертного азота:

N2H4 + O2->-2H2O-f-N2.

Последний химический способ обескислороживания воды является наиболее совершенным, но вместе с тем и наиболее дорогим ввиду высокой стоимости гидразина. Поэтому этот способ применения в основном для окончательного удаления кислорода из воды после физических методов ее обескислороживания.

Примером химического метода удаления из воды сероводорода может служить обработка воды хлором:

а) с окислением до серы:

HJS + C12-»-S + 2HC1;

б) с окислением до сульфатов:

H2S + 4С12 + 4Н2О -> H2SO4 + 8HC1

Эти реакции (так же как промежуточные реакции образования тиосуль-фатов и сульфитов) протекают параллельно в определенных соотношениях, зависящих в первую очередь от дозы хлора и рН воды. Химическим методам газоудаления свойственны следующие недостатки: а) необходимость применения реагентов, усложняющих и удорожающих процесс обработки воды; б) возможность ухудшения качества воды при нарушении дозировки реагентов. Вследствие этого химические методы газоудаления применяются значительно реже физических.

Физические методы удаления из воды растворенных газов могут осуществляться двумя способами: 1) вода, содержащая удаляемый газ, приводится в соприкосновение с воздухом, если парциальное давление удаляемого газа в воздухе близко к нулю; 2) создаются условия, прл которых растворимость газа в воде становится близкой к нулю.

При помощи первого способа, т. е. при помощи аэрации воды, обычно удаляются свободная углекислота и сероводород, поскольку парциальное давление этих газов в атмосферном воздухе близко к нулю.

Ко второму способу обычно приходится прибегать при обескислороживании воды, так как при значительном парциальном давлении кислорода в атмосферном воздухе аэрацией воды кислород из нее удалить нельзя. Для удаления из воды кислорода ее доводят до кипения, при котором растворимость всех газов в воде падает до нуля. Вода доводится до кипения либо ее нагреванием (термические деаэраторы), либо путем понижения давления до такого значения, при котором вода кипит при данной ее температуре (вакуумные дегазаторы).


Удаление из воды растворенных газов в процессе водоподготовкп осуществляется на дегазаторах различных типов, которые по их конструктивному устройству, характеру движения воды и воздуха и по обстановке, в которой осуществляется процесс дегазации, можно классифицировать следующим образом:

1) пленочные дегазаторы, представляющие собой колонны, загру

женные той или иной насадкой (деревянной, кольцами Рашига и др.),

по которой вода стекает тонкой пленкой. Насадка служит для создания

развитой поверхности соприкосновения воды и воздуха, нагнетаемого

вентилятором навстречу потоку воды;

2) барботажные дегазаторы, в которых через слой медленно движу

щейся воды продувается сжатый воздух;

3) вакуумные дегазаторы, где при помощи специальных устройств

(вакуум-насосов или водоструйных эжекторов) создается такое давле

ние, при котором вода кипит при данной температуре.

В технике водообработки в основном применяется пленочные дегазаторы и для обескислороживания воды вакуумные (или термические). Барботажные дегазаторы применяются в виде исключения из-за сравнительно высокой эксплуатационной стоимости (расхода электроэнергии на компрессию воздуха).

При проектировании дегазаторов должны быть определены следующие величины: площадь поперечного сечения дегазатора, необходимый расход воздуха, площадь поверхности насадки, требуемая для достижения заданного эффекта дегазации.

Площадь поперечного сечения дегазаторов должна определяться по допустимой плотности орошения насадки, т. е. по расходу воды, приходящемуся на 1 м2 площади поперечного сечения дегазатора. При глубоком удалении из воды углекислоты (до 2-3 мг/л) на дегазаторах, загруженных кольцами Рашига (25X25X3 мм), допустимая плотность орошения насадки 60 м3/(м2«ч), удельный расход воздуха 15 м3/м3; на дегазаторах, загруженных деревянной насадкой из досок, соответственно 40 м3/(м2«ч) и 20 м3/м3; при обескислороживании воды на вакуумных дегазаторах допустимая плотность орошения насадки 5 м3/(м2«ч).

Требуемая площадь поверхности насадок, загружаемых в дегазатор, определяется по формуле, приведенной в § 131. Там же указаны методы определения остальных величин, входящих в эту формулу. Значения К находятся для каждого типа дегазаторов по соответствующим графикам1.