Структуры земной коры и литосферы. Тектонические движения и тектонические структуры земной коры

ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ: Наиболее крупными структурными элементами земной коры являются континенты и океаны.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга , т.е. расширения океанского дна и наращивания новообразованной океанской коры.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.

Строение Земной коры континентов и океанов: Земная кора - внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами - она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, на которой происходит резкое увеличение скоростей сейсмических волн.

Масса земной коры оценивается в 2,8·1019 тонн (из них 21 % - океаническая кора и 79 % - континентальная). Кора составляет лишь 0,473 % общей массы Земли.

Океаническ ая кора: Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции (место, где океаническая кора погружается в мантию). Поэтому океаническая кора относительно молодая. Океан. кора имеет трехслойное строение (осадочный – 1 км, базальтовый – 1-3 км, магматические породы – 3-5 км), общая ее мощность 6-7 км.

Континентальная кора: Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой - слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород - гранулитов и им подобных. Средняя мощность 35 км.

Химический состав Земли и земной коры. Минералы и горные породы: определение, принципы и классификация.

Химический состав Земли: состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе внутреннее пространство, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %)

Химический состав земной коры : земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породосоставляющие минералы земной коры практически полностью состоят из оксидов; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO2), глинозём (Al2O3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K2O) и оксид натрия (Na2O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

Минералы: - природные химические соединениявозникающие в результате определенныхфизико-химических процессов. Большинство минералов представляют собой кристаллические тела. Кристаллическая форма обусловлена строением кристаллической решеткой.

По распространённости минералы можно разделить на породообразующие - составляющие основу большинства горных пород, акцессорные - часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.

Св-ва минералов: твердость, морфология кристаллов, цвет, блеск, прозрачность, спаянность, плотность, растворимость.

Горные породы: природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре.

По происхождению горные породы делятся на три группы: магматические (эффузивные (застывшая на глубине) и интрузивные (вулканический, излившийся)), осадочные и метаморфические (горные породы, образованные в толще земной коры в результате изменения осадочных и магматических горных пород вследствие изменения физико-химических условий). Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающие 75 % площади земной поверхности.

Свидетельствуют о том, что на нашей планете уже много сотен миллионов лет назад сформировались как жесткие и малоподвижные глыбы - платформы и щиты, так и подвижные горные пояса, которые часто называют геосинклинальными. К ним относятся и огромные , обрамляющие моря и целые . В XX в. эти научные представления были дополнены новыми данными, среди которых в первую очередь следует назвать открытие срединно-океанических хребтов, и океанических котловин.

Наиболее устойчивыми участками земной коры являются платформы. Площадь их составляет многие тысячи и даже миллионы квадратных километров. Когда-то они были подвижными, но со временем превратились в жесткие массивы. Платформы, как правило, состоят из двух этажей. Нижний этаж построен из древних кристаллических пород, верхний - из более молодых. Породы нижнего этажа называют фундаментом платформы. Выступы такого фундамента можно наблюдать в , на , в и . Благодаря своей массивности и жесткости эти выступы получили название - шиты. Это самые древние участки : возраст многих достигает 3 - 4 млрд. лет. За это время в породах произошли необратимые изменения , перекристаллизация, уплотнения и другие метаморфозы.

Верхний этаж платформ образуют огромные толщи осадочных пород, накопившихся в течение сотен миллионов лет. В этих толщах наблюдаются пологие складки, разрывы, валы и купола. Следами особенно крупных поднятий и опусканий являются антеклизы и синеклизы. по своей форме напоминает гигантский холм площадью 60 - 100 тыс. км2. Высота такого холма небольшая - около 300 - 500 м.

Окраины антеклизы ступенями спускаются к окружающим их (от греч. syn - вместе и enklisis - наклонение). На окраинах синеклиз и антеклиз часто встречаются отдельные валы и купола - мелкие тектонические формы. Для платформ, прежде всего, характерны ритмические колебания, что приводило к последовательной смене поднятий и опусканий. В процессе этих движений возникали прогибы, небольшие складки, тектонические трещины.

Строение осадочного чехла на платформах осложняют тектонические структуры, появление которых объяснить непросто. Например, под северной частью дна и под Прикаспийской низменностью скрыт огромный замкнутый со всех сторон бассейн глубиной более 22 км. В поперечнике этот бассейн достигает 2000 км. Его заполняют глины, известняки, каменная соль и другие породы. Верхние 5 - 8 км осадков относят к палеозойскому возрасту. По геофизическим данным, в центре этой впадины отсутствует гранито-гнейсовый слой и толща осадочных пород залегает непосредственно на гранулито-базальтовом слое. Такое строение больше характерно для впадин с океаническим типом земной коры, поэтому Прикаспийскую впадину считают реликтом древнейших докембрийских океанов.

Полной противоположностью платформам являются орогенические пояса - горные пояса, возникшие на месте прежних геосинклиналей. Они, так же как и платформы, принадлежат к длительно развивающимся тектоническим структурам, но скорости движения земной коры в них оказались значительно большими, а силы сжатия и растяжения создали на поверхности Земли крупные горные хребты и впадины. Тектонические напряжения в орогенических поясах то усиливались, то резко уменьшались, а потому можно проследить и фазы роста горных сооружений, и фазы их разрушения.

Боковое сжатие блоков земной коры в прошлом нередко приводило к разделению блоков на тектонические пластины, каждая из которых имела толщину 5-10 км. Тектонические пластины коробились и часто надвигались одна на другую. В результате древние породы оказывались надвинутыми на более молодые породы. Крупные надвиги, измеряемые десятками километров, ученые называют шарьяжами. Их особенно много в , и , но шарьяжи встречаются и на платформах, где смещение пластин земной коры приводило к образованию складок и валов, например в Жигулевских горах.

Дно морей и океанов долго оставалось малоисследованной областью Земли. Только в первой половине XX в. были открыты срединно-океанические хребты, которые впоследствии были обнаружены во всех океанах планеты. Они имели разную структуру и возраст. Результаты глубоководного бурения тоже способствовали изучению структуры срединно-океанических хребтов. Осевые зоны срединно-океанических хребтов вместе с рифтовыми впадинами бывают смещены на сотни и тысячи километров. Эти смещения наиболее часто происходят по крупным разломам (так называемым трансформным разломам), которые образовались в разные геологические эпохи.

Земная кора составляет самую верхнюю оболочку твердой Земли и одевает планету почти сплошным слоем, изменяя свою мощность от 0 на некоторых участках средин-но-океанических хребтов и океанских разломов до 70-75 км под высокими горными сооружениями (Хаин, Ломизе, 1995). Мощность коры на континентах, определяемая по возраста­нию скорости прохождения продольных сейсмических волн до 8-8,2 км/с (граница Мохоровичича , или граница Мохо ), достигает 30-75 км, а в океанических впадинах 5-15 км. Первый тип земной коры был назван океаническим, вто­рой - континентальным.

Океанская кора занимает 56% земной поверхности и обладает небольшой мощностью – 5–6 км. В ее строении вы­деляется три слоя (Хаин, Ломизе, 1995).

Первый , или осадочный, слой мощностью не более 1 км встречается в центральной части океанов и достигает мощности 10–15 км на их периферии. Он полностью отсут­ствует в осевых зонах срединно-океанических хребтов. В со­став слоя входят глинистые, кремнистые и карбонатные глу­боководные пелагические осадки (рис. 6.1). Карбонатные осадки распространены не глубже критической глубины на­копления карбонатов. Ближе к континенту появляется при­месь обломочного материала, снесенного с суши; это так на­зываемые гемипелагические осадки. Скорость распростра­нения продольных сейсмических волн здесь составляет 2–5 км/с. Возраст осадков этого слоя не превышает 180 млн лет.

Второй слой в своей основной верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелаги-

Рис. 6.1. Разрез литосферы океанов в сравнении с усреднен­ным разрезом офиолитовых аллохтонов. Внизу – модель формирования главных единиц разреза в зоне океанского спрединга (Хаин, Ломизе, 1995). Условные обозначения: 1 –

пелагические осадки; 2 – излившиеся базальты; 3 – комплекс параллельных даек (долериты); 4 – верхние (не расслоенные) габброиды и габбро-долериты; 5, 6 – расслоенный комплекс (кумуляты): 5 – габброиды, 6 – ультрабазиты; 7 – тектонизи-рованные перидотиты; 8 – базальный метаморфический оре­ол; 9 – базальтовая магма смена I–IV – последовательная смена условий кристаллизации в очаге по мере удаления от оси спрединга

ческих осадков; базальты нередко обладают характерной по­душечной (в поперечном сечении) отдельностью (пиллоу-лавы), но встречаются и покровы массивных базальтов. В нижней части второго слоя (2В) развиты параллельные дай­ки долеритов. Общая мощность 2-го слоя 1,5–2 км, а ско­рость продольных сейсмических волн 4,5–5,5 км/с.

Третий слой океанской коры состоит из полнокри­сталлических магматических пород основного и подчиненно ультраосновного состава. В его верхней части обычно разви­ты породы типа габбро, а нижнюю часть составляет «полос­чатый комплекс», состоящий из чередования габбро и ульт-рамафитов. Мощность 3-го слоя 5 км. Скорость продольных волн в этом слое достигает 6–7,5 км/с.

Считается, что породы 2-го и 3-го слоев образовались одновременно с породами 1-го слоя.

Океанская кора, вернее кора океанского типа, не ограни­чивается в своем распространении ложем океанов, а развита также в глубоководных котловинах окраинных морей, таких как Японское море, Южно-Охотская (Курильская) котловина Охотского моря, Филиппинское, Карибское и многие другие

моря. Кроме того, имеются серьезные основания подозре­вать, что в глубоких впадинах континентов и мелководных внутренних и окраинных морей типа Баренцева, где мощ­ность осадочного чехла составляет 10-12 км и более, он подстилается корой океанского типа; об этом свидетельст­вуют скорости продольных сейсмических волн порядка 6,5 км/с.

Выше говорилось, что возраст коры современных океанов (и окраинных морей) не превышает 180 млн лет. Однако в пределах складчатых поясов континентов мы на­ходим и гораздо более древнюю, вплоть до раннедокембрий-ской, кору океанского типа, представленную так называе­мыми офиолитовыми комплексами (или просто офиолита-ми). Термин этот принадлежит немецкому геологу Г. Штейнманну и был предложен им еще в начале XX в. для обозначения характерной «триады» пород, обычно встре­чающихся вместе в центральных зонах складчатых систем, а именно серпентинизированных ультрамафитов (аналог слоя 3), габбро (аналог слоя 2В), базальтов (аналог слоя 2А) и ра­диоляритов (аналог слоя 1). Сущность этого парагенеза по­род долго интерпретировалась ошибочно, в частности, габб­ро и гипербазиты считались интрузивными и более молоды­ми, чем базальты и радиоляриты. Только в 60-г годы, когда были получены первые достоверные сведения о составе оке­анской коры, стало очевидным, что офиолиты-это океан­ская кора геологического прошлого. Это открытие имело кардинальное значение для правильного понимания условий зарождения подвижных поясов Земли.

Структуры земной коры океанов

Области сплошного распространения земной коры океа­нического типа выражены в рельефе Земли океаническими впадинами . В пределах океанических впадин выделяются два крупнейших элемента: океанические платформы и океани­ческие орогенные пояса . Океанические платформы (или та-лассократоны) в рельефе дна имеют вид обширных абис­сальных плоских или холмистых равнин. К океаническим орогенным поясам относятся срединно-океанические хреб­ты, имеющие высоту над окружающей равниной до 3 км (местами поднимаются в виде островов над уровнем океана). Вдоль оси хребта часто прослеживается зона рифтов - уз­ких грабенов шириной 12-45 км при глубине до 3-5 км, указывающих на господство в этих участках растяжения земной коры. Для них характерны высокая сейсмичность, резко повышенный тепловой поток, низкая плотность верх­ней мантии. Геофизические и геологические данные свиде­тельствуют о том, что мощность осадочного покрова умень­шается по мере приближения к осевым зонам хребтов, а океаническая кора испытывает заметное поднятие.

Следующий крупный элемент земной коры - пере­ходная зона между континентом и океаном. Это область максимального расчленения земной поверхности, где нахо­дятся островные дуги , отличающиеся высокой сейсмично­стью и современным андезитовым и андезито-базальтовым вулканизмом, глубоководные желоба и глубоководные впа­дины окраинных морей. Очаги землетрясений образуют здесь сейсмофокальную зону (зону Беньофа-Заварицкого), погружающуюся под континенты. Переходная зона наиболее

ярко проявлена в западной части Тихого океана. Для нее ха­рактерен промежуточный тип строения земной коры.

Континентальная кора (Хаин, Ломизе, 1995) распро­странена не только в пределах собственно континентов, т. е. суши, за возможным исключением наиболее глубоких впа­дин, но и в пределах шельфовых зон континентальных окра­ин и отдельных участков внутри океанских бассейнов-мик­роконтинентов. Тем не менее общая площадь развития кон­тинентальной коры меньше, чем океанской, и составляет 41% земной поверхности. Средняя мощность континенталь­ной коры 35-40 км; она уменьшается к окраинам континен­тов и в пределах микроконтинентов и возрастает под горны­ми сооружениями до 70-75 км.

В общем, континентальная кора , так же как и океан­ская, имеет трехслойное строение, но состав слоев, особенно двух нижних, существенно отличается от наблюдаемых в океанской коре.

1. Осадочный слой, обычно именуемый осадочным чехлом. Его мощность изменяется от нуля на щитах и менее крупных поднятиях фундамента платформ и осевых зон складчатых сооружений до 10 и даже 20 км во впадинах платформ, передовых и межгорных прогибах горных поясов. Правда, в этих впадинах кора, подстилающая осадки и обычно называемая консолидированной, может уже быть ближе по своему характеру к океанской, чем к континен­тальной. В состав осадочного слоя входят различные оса­дочные породы преимущественно континентального или мелководного морского, реже батиального (опять-таки в пределах глубоких впадин) происхождения, а также, далеко

не повсеместно, покровы и силлы основных магматических пород, образующие трапповые поля. Скорость продольных волн в осадочном слое составляет 2,0-5,0 км/с с максиму­мом для карбонатных пород. Возрастной диапазон пород осадочного чехла-до 1,7 млрд лет, т. е. на порядок выше, чем осадочного слоя современных океанов.

2. Верхний слой консолидированной коры выступа­ет на дневную поверхность на щитах и массивах платформ и в осевых зонах складчатых сооружений; он вскрыт на глуби­ну 12 км в Кольской скважине и на значительно меньшую глубину в скважинах в Волго-Уральской области на Русской плите, на плите Мидконтинента США и на Балтийском щите в Швеции. Золотодобывающая шахта в Южной Индии про­шла по данному слою до 3,2 км, в Южной Африке-до 3,8 км. Поэтому состав этого слоя, по крайней мере его верхней части, в общем хорошо известен-главную роль в его сло­жении играют различные кристаллические сланцы, гнейсы, амфиболиты и граниты, в связи с чем он нередко именуется гранито-гнейсовым. Скорость продольных волн в нем со­ставляет 6,0-6,5 км/с. В фундаменте молодых платформ, имеющем рифейско-палеозойский или даже мезозойский возраст, а частично и во внутренних зонах молодых складча­тых сооружений этот же слой сложен менее сильнометамор-физованными (зеленосланцевая фация вместо амфиболито-вой) породами и содержит меньше гранитов; поэтому здесь его часто называют гранитно-метаморфическим слоем, а типичные скорости продольных воли в нем порядка 5,5-6,0 км/с. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях.

3. Нижний слой консолидированной коры. Перво­начально предполагалось, что между двумя слоями консоли­дированной коры существует четкая сейсмическая граница, получившая по имени ее первооткрывателя-немецкого геофизика-название границы Конрада. Бурение только что упоминавшихся скважин поставило под сомнение существо­вание такой четкой границы; иногда вместо нее сейсмика обнаруживает в коре не одну, а две (К 1 и К 2) границы, что дало основание выделить в нижней коре два слоя (рис. 6.2). Состав пород, слагающих нижнюю кору, как отмечалось, недостаточно известен, так как скважинами она не достигну­та, а на поверхности обнажается фрагментарно. Исходя из

Рис. 6.2. Строение и мощность континентальной коры (Хаин, Ломизе, 1995). А - главные типы разреза по сейсми­ческим данным: I-II - древние платформы (I - щиты, II

Синеклизы), III - шельфы, IV -молодые орогены. K 1 , К 2 -поверхности Конрада, М-поверхность Мохоровичича, скорости указаны для продольных волн; Б - гистограмма распределения мощностей континентальной коры; В - про­филь обобщенной прочности

общих соображений, В. В. Белоусов пришел к заключению, что в нижней коре должны преобладать, с одной стороны, породы, находящиеся на более высокой ступени метамор­физма и, с другой стороны, породы более основного состава, чем в верхней коре. Поэтому он назвал этот слой коры гра- нулит-базитовым. Предположение Белоусова в общем под­тверждается, хотя обнажения показывают, что в сложении нижней коры участвуют не только основные, но и кислые гранулиты. В настоящее время большинство геофизиков различают верхнюю и нижнюю кору по другому признаку- по их отличным реологическим свойствам: верхняя кора же­сткая и хрупкая, нижняя-пластичная. Скорость продольных волн в нижней коре 6,4-7,7 км/с; принадлежность к коре или мантии низов этого слоя со скоростями более 7,0 км/с нередко спорна.

Между двумя крайними типами земной коры-океан­ским и континентальным - существуют переходные типы. Один из них - субокеанская кора - развит вдоль континен­тальных склонов и подножий и, возможно, подстилает дно котловин некоторых не очень глубоких и широких окраин­ных и внутренних морей. Субокеанская кора представляет собой утоненную до 15-20 км и пронизанную дайками и силлами основных магматических пород континентальную

кору. Она вскрыта скважиной глубоководного бурения у входа в Мексиканский залив и обнажена на побережье Крас­ного моря. Другой тип переходной коры - субконтинен­тальный -образуется в том случае, когда океанская кора в энсима-тических вулканических дугах превращается в кон­тинентальную, но еще не достигает полной «зрелости», об­ладая пониженной, менее 25 км, мощностью и более низкой степенью консолидированности, что отражается в понижен­ных скоростях сейсмических волн - не более 5,0-5,5 км/с в низах коры.

Некоторые исследователи выделяют в качестве особых типов еще две разновидности океанской коры, о которых уже шла речь выше; это, во-первых, утолщенная до 25-30 км океанская кора внутренних поднятий океана (Исландия и др.) и, во-вторых, кора океанского типа, «надстроенная» мощным, до 15-20 км, осадочным чехлом (Прикаспийская впадина и др.).

Поверхность Мохоровичича и состав верхней ман­ тии. Граница между корой и мантией, обычно сейсмически достаточно четко выраженная скачком скоростей продоль­ных волн от 7,5-7,7 до 7,9-8,2 км/с, известна как поверх­ность Мохоровичича (или просто Мохо и даже М), по имени установившего ее хорватского геофизика. В океанах эта гра­ница отвечает переходу от полосчатого комплекса 3-го слоя с преобладанием габброидов к сплошным серпентинизиро-ванным перидотитам (гарцбургитам, лерцолитам), реже ду-нитам, местами выступающим на поверхность дна, а в ска­лах Сан-Паулу в Атлантике против берегов Бразилии и на о. Забаргад в Красном море, возвышающимся над поверхно-

стью океана. Верхи океанской мантии можно наблюдать местами на суше в составе низов офиолитовых комплексов. Их мощность в Омане достигает 8 км, а в Папуа-Новой Гви­нее, возможно, даже 12 км. Сложены они перидотитами, в основном гарцбургитами (Хаин, Ломизе, 1995).

Изучение включений в лавах и кимберлитах из трубок показывает, что и под континентами верхняя мантия в ос­новном сложена перидотитами, причем как здесь, так и под океанами в верхней части это шпинелевые перидотиты, а ниже-гранатовые. Но в континентальной мантии, по тем же данным, кроме перидотитов в подчиненном количестве при­сутствуют эклогиты, т. е. глубокометаморфизованные ос­новные породы. Эклогиты могут представлять собой мета-морфизованные реликты океанской коры, затащенные в ман­тию в процессе поддвига этой коры (субдукции).

Верхняя часть мантии вторично обеднена рядом ком­понентов: кремнеземом, щелочами, ураном, торием, редкими землями и другими некогерентными элементами благодаря выплавлению из нее базальтовых пород земной коры. Эта «истощенная» («деплетированная») мантия простирается под континентами на большую глубину (охватывая всю или почти всю ее литосферную часть), чем под океанами, сменя­ясь глубже «неистощенной» мантией. Средний первичный состав мантии должен быть близок к шпинелевому лерцоли-ту или гипотетической смеси перидотита и базальта в про­порции 3:1, названной австралийским ученым А. Е. Ринг-вудом пиролитом.

На глубине около 400 км начинается быстрое возрас­тание скорости сейсмических волн; отсюда до 670 км про-

стирается слой Голицына, названный так в честь русского сейсмолога Б.Б. Голицына. Его выделяют еще в качестве средней мантии, или мезосферы - переходной зоны между верхней и нижней мантией. Возрастание скоростей упругих колебаний в слое Голицына объясняется увеличением плот­ности вещества мантии примерно на 10% в связи с перехо­дом одних минеральных видов в другие, с более плотной упаковкой атомов: оливина в шпинель, пироксена в гранат.

Нижняя мантия (Хаин, Ломизе, 1995) начинается с глубины порядка 670 км. Нижняя мантия должна быть сло­жена в основном перовскитом (МgSiO 3) и магнезиовюсти-том (Fе, Мg)O - продуктами дальнейшего изменения мине­ралов, слагающих среднюю мантию. Ядро Земли в своей внешней части, по данным сейсмологии, является жидким, а внутреннее-снова твердым. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Состав ядра по­давляющим большинством геофизиков принимается желез­ным. Но опять же по экспериментальным данным приходит­ся допустить некоторую примесь никеля, а также серы, либо кислорода, либо кремния, чтобы объяснить пониженную плотность ядра по сравнению с определенной для чистого железа.

По данным сейсмотомографии, поверхность ядра яв­ляется неровной и образует выступы и впадины с амплиту­дой до 5-6 км. На границе мантии и ядра выделяют пере­ходный слой с индексом D" (кора обозначается индексом А, верхняя мантия-В, среднюю-С, нижнюю - D, верхнюю часть нижней мантии D"). Мощность слоя D" местами дости­гает 300 км.

Литосфера и астеносфера. В отличие от коры и ман­тии, выделяемым по геологическим данным (по веществен­ному составу) и данным сейсмологии (по скачку скоростей сейсмических волн на границе Мохоровичича), литосфера и астеносфера-понятия чисто физические, вернее реологиче­ские. Исходным основанием для выделения астеносферы- ослабленной, пластичной оболочки. подстилающей более же­сткую и хрупкую литосферу,-была необходимость объяс­нения факта изостатической уравновешенности коры, обна­руженного при измерениях силы тяжести у подножия гор­ных сооружений. Первоначально ожидалось, что такие со­оружения, особенно столь грандиозные, как Гималаи, долж­ны создавать избыточное притяжение. Однако когда в сере­дине XIX в. были произведены соответствующие измерения, оказалось, что такого притяжения не наблюдается. Следова­тельно, даже крупные неровности рельефа земной поверх­ности чем-то компенсированы, уравновешены на глубине для того, чтобы на уровне земной поверхности не проявля­лось значительных отклонений от средних значений силы тяжести. Таким образом, исследователи пришли к выводу что имеется общее стремление земной коры к уравновешен­ности за счет мантии; явление это получило название изо-стазии (Хаин, Ломизе, 1995).

Существуют два способа осуществления изостазии. Пер­вый заключается в том, что горы обладают корнями, погру­женными в мантию, т. е. изостазия обеспечивается вариа­циями мощности земной коры и нижняя поверхность по­следней обладает рельефом, обратным рельефу земной по­верхности; это гипотеза английского астронома Дж. Эри

(рис. 6.3). В региональном масштабе она обычно оправдыва­ется, так как горные сооружения действительно обладают более толстой корой и максимальная толщина коры наблю­дается у наиболее высоких из них (Гималаи, Анды, Гинду-куш, Тянь-Шань и др.). Но возможен и другой механизм реализации изостазии: участки повышенного рельефа долж­ны быть сложены менее плотными породами, а участки по­ниженного-более плотными; это гипотеза другого англий­ского ученого-Дж. Пратта. В этом случае подошва земной коры может быть даже горизонтальной. Уравновешенность континентов и океанов достигается комбинацией обоих ме­ханизмов-кора под океанами и много тоньше, и заметно плотнее, чем под континентами.

Большая часть поверхности Земли находится в состоянии, близком к изостатическому равновесию. Наибольшие откло­нения от изостазии-изостатические аномалии-обнаружи­вают островные дуги и сопряженные с ними глубоководные желоба.

Для того чтобы стремление к изостатическому равнове­сию было эффективным, т. е. под дополнительной нагрузкой происходило бы погружение коры, а при снятии нагрузки - ее подъем, надо, чтобы под корой существовал достаточно пластичный слой, способный к перетеканию из областей по­вышенного геостатического давления в области пониженно­го давления. Именно для этого слоя, первоначально выде­ленного гипотетически, американский геолог Дж. Баррелл и предложил в 1916 г. название астеносфера, что оз начает «слабая оболочка». Это предположение было подтверждено лишь много позднее, в 60-е годы, когда сейсмоло-

Рис. 6.3. Схемы изостатического равновесия земной коры:

а - по Дж. Эри, б - по Дж. Пратту (Хаин, Короновский, 1995)

логами (Б. Гутенберг) было обнаружено существование на некоторой глубине под корой зоны понижения или отсутст­вия повышения, естественного при увеличении давления, скорости сейсмических волн. В дальнейшем появился дру­гой метод установления астеносферы-метод магнитотел-лурического зондирования, при котором астеносфера прояв­ляет себя как зона понижения электрического сопротивле­ния. Кроме того, сейсмологи выявили еще один признак ас­теносферы - повышенные затухания сейсмических волн.

Астеносфере принадлежит также ведущая роль в дви­жениях литосферы. Течение астеносферного вещества увле­кает за собой литосферные пластины-плиты и вызывает их горизонтальные перемещения. Подъем поверхности астено­сферы приводит к подъему литосферы, а в предельном слу­чае- к разрыву ее сплошности, образованию раздвига и опусканию. К последнему ведет также отток астеносферы.

Таким образом, из двух оболочек, составляющих тек-тоносферу: астеносфера является активным, а литосфера- относительно пассивным элементом. Их взаимодействием оп­ределяется тектоническая и магматическая «жизнь» земной коры.

В осевых зонах срединно-океанских хребтов, особенно на Восточно-Тихоокеанском поднятии, кровля астеносферы на­ходится на глубине всего 3-4 км, т. е. литосфера ограничи­вается лишь верхней частью коры. По мере движения к пе­риферии океанов толщина литосферы увеличивается за счет

низов коры, а в основном верхов мантии и может достигать 80-100 км. В центральных частях континентов, особенно под щитами древних платформ, таких как Восточно­Европейская или Сибирская, мощность литосферы измеря­ется уже 150-200 км и более (в Южной Африке 350 км); по некоторым представлениям, она может достигать 400 км, т. е. здесь вся верхняя мантия выше слоя Голицына должна входить в состав литосферы.

Трудность обнаружения астеносферы на глубинах бо­лее 150- 200 км породила у некоторых исследователей со­мнения в ее существовании под такими областями и привела их к альтернативному представлению, что астеносферы как сплошной оболочки, т. е. именно геосферы, не существует, а имеется серия разобщенных «астенолинз». С этим выводом, который мог бы иметь важное значение для геодинамики, нельзя согласиться, так как именно указанные области де­монстрируют высокую степень изостатической уравнове­шенности, ведь к ним относятся приведенные выше примеры областей современного и древнего оледенения-Гренландия и др.

Причина того, что астеносферу не везде легко обнару­жить, состоит, очевидно, в изменении ее вязкости но латера-ли.

Основные структурные элементы земной коры континентов

На континентах выделяются два структурных элемента земной коры: платформы и подвижные пояса (Историческая геология, 1985).

Определение: платформа – стабильный жесткий уча­сток земной коры континентов, имеющий изометричную форму и двухэтажное строение (рис. 6.4). Нижний (первый) структурный этаж – кристаллический фундамент , представ­ленный сильно дислоцированными метаморфизованными породами, прорванными интрузиями. Верхний (второй) структурный этаж – полого залегающий осадочный чехол , слабодислоцированный и неметаморфизованный. Выходы на дневную поверхность нижнего структурного этажа называ­ются щитом . Участки фундамента, перекрытые осадочным чехлом называются плитой . Мощность осадочного чехла плиты составляет первые километры.

Пример : на Восточно-Европейской платформе выде­ляются два щита (Украинский и Балтийский) и Русская пли­та.

Структуры второго этажа платформы (чехла) бывают отрицательные (прогибы, синеклизы) и положительные (ан-теклизы). Синеклизы имеют форму блюдца, а антеклизы – перевернутого блюдца. Мощность отложений всегда больше на синеклизе, а на антеклизе – меньше. Размеры этих струк­тур в поперечнике могут достигать сотен или первых тысяч километров, а падение слоев на крыльях обычно - первые метры на 1 км. Существуют два определения этих структур.

Определение: синеклиза – геологическая структура, падение слоев которой направлено от периферии к центру. Антеклиза - геологическая структура, падение слоев которой направлено от центра к периферии.

Определение: синеклиза – геологическая структура, в ядре которой выходят более молодые отложения, а по краям

Рис. 6.4. Схема строения платформы. 1 - складчатый фундамент; 2 - платформенный чехол; 3 разломы (Историческая геология, 1985)

– более древние. Антеклиза – геологическая структура, в яд­ре которой выходят более древние отложения, а по краям – более молодые.

Определение: прогиб – вытянутое (удлиненное) гео­логическое тело, имеющее в поперечном сечении вогнутую форму.

Пример: на Русская плите Восточно-Европейской платформы выделяются антеклизы (Белорусская, Воронеж­ская, Волго-Уральская и др.), синеклизы (Московская, При­каспийская и др.) и прогибы (Ульяновско-Саратовский, Приднестровско-Причерноморский и др.).

Существует структура нижних горизонтов чехла - ав-лакоген.

Определение: авлакоген – узкая вытянутая впадина, протягивающаяся через платформу. Авлакогены располага­ются в нижней части верхнего структурного этажа (чехла) и могут достигать в длину до сотен километров, в ширину – десятки километров. Авлакогены формируются в условиях горизонтального растяжения. В них накапливаются мощные толщи осадков, которые могут быть смяты в складки и близ­кие по составу к формациям миогеосинклиналей. В нижней части разреза присутствуют базальты.

Пример: Пачелмский (Рязано-Саратовский) авлако-ген, Днепрово-Донецкий авлакоген Русской плиты.

История развития платформ. В истории развития мож­но выделить три этапа. Первый – геосинклинальный, на ко­тором происходит формирование нижнего (первого) струк­турного элемента (фундамента). Второй - авлакогенный, на котором в зависимости от климата происходит накопление

красноцветных, сероцветных или угленосных осадков в ав-лакогенах. Третий – плитный, на котором осадконакопление происходит на значительной площади и формируется верх­ний (второй) структурный этаж (плита).

Процесс накопления осадков, как правило, происходит циклично. Сначала накапливается трансгрессивная морская терригенная формация, затем – карбонатная формация (максимум трансгрессии, табл. 6.1). При регрессии в услови­ях аридного климата формируется соленосная красноцвет-ная формация, а в условиях гумидного климата – параличе-ская угленосная формация. В конце цикла осадконакопления формируются осадки континентальной формации. В любой момент этап может прерваться формированием трапповой формации.

Таблица 6.1. Последовательность накопления плитных

формаций и их характеристика.

Окончание таблицы 6.1.

Для подвижных поясов (складчатых областей) харак­терны:

    линейность их контуров;

    громадная мощность накопившихся отложений (до 15-25 км);

    выдержанность состава и мощности этих отложе­ний по простиранию складчатой области и резкие изменения вкрест ее простирания ;

    наличие своеобразных формаций- комплексов по­род, образовавшихся на определенных стадиях раз­вития этих районов (аспидная , флишевая , спилито- кератофировая , молассовая и другие формации);

    интенсивный эффузивный и интрузивный магма­тизм (особенно характерны крупные гранитные ин­трузии-батолиты);

    сильный региональный метаморфизм;

7) сильная складчатость, обилие разломов, в том числе

надвигов, указывающих на господство сжатия. Складчатые области (пояса) возникают на месте гео­синклинальных областей (поясов).

Определение: геосинклиналь (рис. 6.5) - подвижная область земной коры, в которой первоначально накаплива­лись мощные осадочные и вулканогенные толщи, затем про­исходило их смятие в сложные складки, сопровождающееся образованием разломов, внедрением интрузий и метамор­физмом. В развитии геосинклинали различают две стадии.

Первая стадия (собственно геосинклинальная) харак­теризуется преобладанием опускания. Большая мощность осадков в геосинклинали - это результат растяжения земной коры и ее прогибания. В первую половину первой стадии обычно накапливаются песчано-глинистые и глини­стые осадки (в результате метаморфизма они потом образу­ют черные глинистые сланцы, выделяемые в аспидную фор­мацию) и известняки. Прогибание может сопровождаться разрывами, по которым поднимается магма основного соста­ва и изливается в подводных условиях. Возникшие породы после метаморфизма вместе с сопровождающими субвулка­ническими образованиями дают спилит-кератофировую формацию. Одновременно с ней обычно образуются кремни­стые породы, яшмы.

океаническая

Рис. 6.5. Схема строения геосинк-

линали на схемати­ческом разрезе че­рез Зондскую дугу в Индонезии (Струк­турная геология и тектоника плит, 1991). Условные обозначения: 1 – осадки и осадочные породы; 2 – вулка-

нические породы; 3 – фундамент конти-метаморфические породы

Указанные формации накапливаются одновременно , но на разных площадях . Накопление спилито-кератофировой формации обычно происходит во внутрен­ней части геосинклинали - в эвгеосинклинали . Для эвгео- синклинали характерны формирование мощных вулканоген­ных толщ, обычно основного состава, и внедрение интрузии габбро, диабазов и ультраосновных пород. В краевой части геосинклинали, по ее границе с платформой, обычно распо­лагаются миогеосинклинали. Здесь накапливаются главным образом терригенные и карбонатные толщи; вулканические породы отсутствуют, интрузии не типичны.

В первую половину первой стадии большая часть геосинклинали представляет собой море со значительными глубинами . Доказательством служат тонкая зернистость осадков и редкость находок фауны (преимущественно нек­тона и планктона).

К середине первой стадии вследствие разных скоро­стей опускания в различных частях геосинклинали образу­ются участки относительного поднятия (интрагеоантик-линали ) и относительного опускания (интрагеосинклина-ли ). В это время может происходить внедрение небольших интрузий плагиогранитов.

Во вторую половину первой стадии в результате по­явления внутренних поднятий море в геосинклинали мелеет. Теперь это архипелаг , разделенный проливами. Море из-за обмеления наступает на смежные платформы. В геосинкли­нали накапливаются известняки, мощные песчано-глинистые ритмично построенные толщи, образующие флишевую фор-216

мацию; происходит излияние лав среднего состава, слагаю­щих порфиритовую формацию.

К концу первой стадии интрагеосинклинали исчеза­ют, интрагеоантиклинали сливаются в одно центральное поднятие. Это - общая инверсия; она соответствует глав­ной фазе складчатости в геосинклинали. Складчатость обычно сопровождается внедрением крупных синорогенных (одновременных со складчатостью) гранитных интрузий. Происходит смятие пород в складки, часто осложняющееся надвигами. Все это вызывает региональный метаморфизм. На месте интрагеосинклиналей возникают синклинории - сложно построенные структуры синклинального типа, а на месте интрагеоантиклиналей - антиклинории . Геосинкли­наль «закрывается», превращаясь в складчатую область.

В строении и развитии геосинклинали очень важная роль принадлежит глубинным разломам - длительно живу­щим разрывам, которые рассекают все земную кору и уходят в верхнюю мантию. Глубинные разломы определяют конту­ры геосинклиналей, их магматизм, разделение геосинклина­ли на структурно-фациальные зоны, различающиеся соста­вом осадков, их мощностью, магматизмом и характером структур. Внутри геосинклинали иногда выделяют средин­ные массивы, ограниченные глубинными разломами. Это блоки более древней складчатости, сложенные породами то­го основания, на котором заложилась геосинклиналь. По со­ставу осадков и их мощности срединные массивы близки платформам, но их отличают сильный магматизм и складча­тость пород, преимущественно по краям массива.

Вторая стадия развития геосинклинали называется орогенной и характеризуется преобладанием поднятий. Осадконакопление происходит на ограниченных площадях по периферии центрального поднятия - в краевых прогибах, возникающих по границе геосинклинали и платформы и час­тично накладывающихся на платформу, а также в межгор­ных прогибах, образующихся иногда внутри центрального поднятия. Источник осадков - разрушение постоянно воз­дымающегося центрального поднятия. В первую половину второй стадии это поднятие, вероятно, имеет холмистый рельеф; при его разрушении накапливаются морские, иногда лагунные осадки, образующие нижнюю молассовую форма­цию. В зависимости от климатических условий это могут быть угленосные паралические или соленосные толщи. В это же время обычно происходит внедрение крупных гранитных интрузий - батолитов.

Во вторую половину стадии резко возрастает ско­рость воздымания центрального поднятия, что сопровожда­ется его расколами и обрушением отдельных участков. Это явление объясняется тем, что вследствие складчатости, ме­таморфизма, внедрения интрузий складчатая область (уже не геосинклиналь!) становится жесткой и на продолжающееся поднятие реагирует расколами. Море покидает эту террито­рию. В результате разрушения центрального поднятия, кото­рое в это время представляло собой горную страну, накапли­ваются континентальные грубообломочные толщи, обра­зующие верхнюю молассовую формацию. Раскалывание сво­довой части поднятия сопровождается наземным вулканиз­мом; обычно это лавы кислого состава, которые вместе с

субвулканическими образованиями дают порфировую фор­мацию. С ней бывают связаны трещинные щелочные и ма­лые кислые интрузий. Таким образом, в результате развития геосинклинали возрастает мощность континентальной коры.

К концу второй стадии складчатая горная область, возникшая на месте геосинклинали, разрушается, территория постепенно выравнивается и становится платформой. Гео­синклиналь из области накопления осадков превращается в область разрушения, из подвижной территории - в мало­подвижную жесткую выровненную территорию. Поэтому амплитуды движений на платформе невелики. Обычно море, даже мелкое, покрывает здесь обширные площади. Эта тер­ритория уже не испытывает столь сильного прогибания, как раньше, поэтому и мощность осадков значительно меньше (в среднем 2-3 км). Опускание неоднократно прерывается, поэтому наблюдаются частые перерывы в осадконакопле-нии; тогда могут образовываться коры выветривания. Не происходит и энергичных поднятий, сопровождаемых складчатостью. Поэтому вновь образованные маломощные, обычно мелководные осадки на платформе не метамор-физованы и залегают горизонтально или слабо наклонно. Из­верженные породы редки и представлены обычно наземны­ми излияниями лав базальтового состава.

Кроме геосинклинальной модели существует модель тектоники литосферных плит.

Модель тектоники литосферных плит

Тектоника плит (Структурная геология и тектоника плит, 1991) – модель, которая создана с целью объяснения наблю­даемой картины распределения деформаций и сейсмичности во внешней оболочке Земли. Она основывается на обширных геофизических данных, полученных в 1950-е и 1960-е годы. Теоретические основы тектоники плит базируются на двух предпосылках.

    Самая внешняя оболочка Земли, называемая литосфе­рой, непосредственно залегает на слое, называемом ас­ теносферой, которая является менее прочной, чем лито­сфера.

    Литосфера разбита на ряд жестких сегментов, или плит (рис. 6.6), которые постоянно движутся относительно друг друга и площадь поверхности которых также не­прерывно меняется. Большая часть тектонических про­цессов с интенсивным обменом энергией действует на границах между плитами.

Хотя мощность литосферы нельзя измерить с большой точ­ностью, исследователи согласны в том, что внутри плит она меняется от 70-80 км под океанами до максимальной вели­чины более 200 км под некоторыми частями континентов при среднем значении около 100 км. Подстилающая лито­сферу астеносфера распространяется вниз до глубины около 700 км (предельная глубина распространения очагов глубо­кофокусных землетрясений). Ее прочность растет с глуби­ной, и некоторые сейсмологи считают, что ее нижняя грани-

Рис. 6.6. Литосфер-ные плиты Земли и их активные гра­ницы. Двойными линиями показаны дивергентные гра­ницы (оси спредин-га); линиями с зуб­цами - конвергент­ные гпянины П.ПИТ

одинарными линиями - трансформные разломы (сдвиги); крапом покрыты участки континентальной ко­ры, подвергающиеся активному разломообразованию (Структурная геология и тектоника плит, 1991)

ца расположена на глубине 400 км и совпадает с небольшим изменением физических параметров.

Границы между плитами делятся на три типа:

    дивергентные;

    конвергентные;

    трансформные (со смещениями по простиранию).

На дивергентных границах плит, представленных пре­имущественно рифтами, происходит новообразование лито­сферы, что приводит к раздвиганию океанического дна (спредингу). На конвергентных границах плит литосфера по­гружается в астеносферу, т. е. поглощается. На трансформ­ных границах две литосферные плиты скользят относитель­но друг друга, и вещество литосферы на них не создается и не разрушается.

Все литосферные плиты непрерывно перемещают­ся относительно друг друга . Предполагается, что общая площадь всех плит остается неизменной в течение значи­тельного периода времени. При достаточном удалении от окраин плит горизонтальные деформации внутри них незна­чительны, что позволяет считать плиты жесткими. Посколь­ку смещения по трансформным разломам происходят вдоль их простирания, движение плит должно быть параллельным современным трансформным разломам. Так как все это про­исходит на поверхности сферы, то в соответствии с теоремой Эйлера, каждый участок плиты описывает траекторию, экви­валентную вращению на сферической поверхности Земли. Для относительного перемещения каждой пары плит в лю­бой момент времени можно определить ось, или полюс вра­щения. По мере удаления от этого полюса (вплоть до угло-

вого расстояния в 90°) скорости спрединга, естественно, воз­растают, но угловая скорость для любой данной пары плит относительно их полюса вращения постоянна. Отметим так­же, что в геометрическом отношении полюсы вращения единственны для любой пары плит и никак не связаны с по­люсом вращения Земли как планеты.

Тектоника плит является эффективной моделью про­исходящих в коре процессов, так как она хорошо согласует­ся с известными данными наблюдений, дает изящное объяс­нение ранее несвязанным явлениям и открывает возможно­сти для прогноза.

Цикл Уилсона (Структурная геология и тектоника плит, 1991). В 1966 г. профессор Уилсон из Университета Торонто опубликовал статью, в которой он доказывал, что континентальный дрейф происходил не только после ранне-мезозойского раскола Пангеи, но и в допангейские времена. Цикл раскрытия и закрытия океанов относительно смежных континентальных окраин называется теперь циклом Уилсона.

На рис. 6.7 приведено схематическое пояснение ос­новной концепции цикла Уилсона в рамках представлений об эволюции литосферных плит.

Рис. 6.7, а представляет начало цикла Уилсона на­чальную стадию раскола континента и формирования аккреционной окраины плиты. Известно, что жесткая

Рис. 6.7. Схема цикла Уилсона развития океанов в рамках эволюции литосферных плит (Структурная геология и тек­тоника плит, 1991)

литосфера покрывает более слабую, частично расплавлен­ную зону астеносферы – так называемый слой низких скоро­стей (рис 6.7, б). При продолжении разделения континентов развиваются рифтовая долина (рис. 6.7, 6) и небольшой оке­ан (рис. 6.7, в). Это – стадии раннего раскрытия океана в цикле Уилсона . Подходящими примерами служат Афри­канский рифт и Красное море. С продолжением дрейфа ра­зобщенных континентов, сопровождающегося симметрич­ной аккрецией новой литосферы на окраинах плит, на грани­це континента с океаном за счет размыва континента накап­ливаются шельфовые осадки. Полностью сформировав­шийся океан (рис. 6.7, г) со срединным хребтом на границе плит и развитым континентальным шельфом называется океаном атлантического типа.

Из наблюдений океанических желобов, их связи с сейсмичностью и реконструкцией по рисунку океанических магнитных аномалий вокруг желобов известно, что океани­ческая литосфера расчленяется и погружается в мезосферу. На рис. 6.7, д показан океан с плитой , имеющей простые окраины приращения и поглощения литосферы, – это на­чальная стадия закрытия океана в цикле Уилсона . Расчле­нение литосферы по соседству с континентальной окраиной ведет к превращению последней в ороген андского типа в результате тектонических и вулканических процессов, про­исходящих на поглощающей границе плит. Если это расчле­нение происходит на значительном расстоянии от континен­тальной окраины в сторону океана, то образуется островная дуга типа Японских островов. Поглощение океанической литосферы приводит к изменению геометрии плит и в конце

концов к полному исчезновению аккрециопной окраины плиты (рис. 6.7, е). В течение этого времени противополож­ный континентальный шельф может продолжать разрастать­ся, превращаясь в полуокеан атлантического типа. По мере сокращения океана противоположная континентальная ок­раина в конечном счете вовлекается в режим поглощения плиты и участвует в развитии аккреционного орогена анд-ского типа . Это – ранняя стадия столкновения двух кон­тинентов (коллизии ) . На следующей стадии благодаря пла­вучести континентальной литосферы, поглощение плиты прекращается. Литосферная пластина отрывается внизу, под растущим орогеном гималайского типа, и наступает завер­шающая орогенная стадия цикла Уилсона с зрелым гор­ным поясом , представляющим собой шов между вновь со­единившимися континентами. Антиподом аккреционного орогена андского типа является коллизионный ороген гима­лайского типа .

Внутреннее строение Земли

В настоящее время преобладающим большинством геологов, геохимиков, геофизиков и планетологов принимается, что Земля имеет условно сферическое строение с нечёткими границами раздела (или перехода), а сферы – условно мозаично-блоковое. Основные сферы – земная кора, трёхслойная мантия и двухслойное ядро Земли.

Земная кора

Земная кора составляет самую верхнюю оболочку твёрдой Земли. Мощность её колеблется от 0 на некоторых участках срединно-океанических хребтов и океанских разломов до 70-75 км под горными сооружениями Анд, Гималаев и Тибета. Земная кора обладает латеральной неоднородностью , т.е. состав и строение земной коры различны под океанами и континентами. На основании этого выделяются два главных типа коры – океаническая и континентальная и один тип промежуточной коры.

Океаническая кора занимает на Земле около 56% земной поверхности. Мощность её обычно не превышает 5-6 км и максимальна у подножия континентов. В её строении выделяются три слоя.

Первый слой представлен осадочными породами. В основном это глинистые, кремнистые и карбонатные глубоководные пелагические осадки, причём карбонаты с определённой глубины исчезают вследствие растворения. Ближе к континенту появляется примесь обломочного материала, снесённого с суши (континента). Мощность осадков колеблется от ноля в зонах спрединга до 10-15 км вблизи континентальных подножий (в периокеанических прогибах).

Второй слой океанической коры в верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелагических осадков. Базальты нередко обладают подушечной отдельностью (пиллоу-лавы), но отмечаются и покровы массивных базальтов. В нижней части второго слоя (2В) в базальтах развиты параллельные дайки долеритов. Общая мощность второго слоя около 1,5-2 км. Строение первого и второго слоя океанской коры хорошо изучено с помощью подводных аппаратов, драгированием и бурением.

Третий слой океанической коры состоит из полнокристаллических магматических пород основного и ультраосновного состава. В верхней части развиты породы типа габбро, а нижняя часть сложена «полосчатым комплексом», состоящем из чередования габбро и ультрамафитов. Мощность 3-го слоя около 5 км. Он изучен по данным драгирования и наблюдений с подводных аппаратов.

Возраст океанической коры не превышает 180 млн. лет.

При изучении складчатых поясов континентов были выявлены в них фрагменты ассоциаций пород, подобных океанским. Г Штейманом было предложено в начале XX века называть их офиолитовыми комплексами (или офиолитами ) и рассматривать «триаду» пород, состоящую из серпентенизированных ультрамафитов, габбро, базальтов и радиоляритов, как реликты океанической коры. Подтверждения этому были получены только в 60-ые годы XX столетия, после публикаций статьи на эту тему А.В. Пейве.

Континентальная кора распространена не только в пределах континентов, но и в пределах шельфовых зон континентальных окраин и микроконтинентов, расположенных внутри океанских бассейнов. Общая площадь её составляет около 41% земной поверхности. Средняя мощность 35-40 км. На щитах и платформах континентов она варьирует от 25 до 65 км, а под горными сооружениями достигает 70-75 км.

Континентальная кора имеет трёхслойное строение:

Первый слой – осадочный, обычно называется осадочным чехлом. Мощность его колеблется от нуля на щитах, поднятиях фундамента и в осевых зонах складчатых сооружений до 10-20 км в экзогональных впадинах плит платформ, передовых и межгорных прогибах. Он сложен, в основном, осадочными породами континентального или мелководного морского, реже батиального (в глубоководных впадинах) происхождения. В этом осадочном слое возможны покровы и силы магматических пород, образующих трапповые поля (трапповые формации). Возрастной диапазон пород осадочного чехла от кайнозоя до 1,7 млрд. лет. Скорость продольных волн составляет 2,0-5,0 км/с.

Второй слой континентальной коры или верхний слой консолидированной коры выходит на дневную поверхность на щитах, массивах или выступах платформ и в осевых частях складчатых сооружений. Он вскрыт на Балтийском (Фенноскандинавском) щите на глубину более 12 км Кольской сверхглубокой скважиной и на меньшую глубину в Швеции, на Русской плите в Саатлинской уральской скважине, на плите в США, в шахтах Индии и Южной Африки. Он сложен кристаллическими сланцами, гнейсами, амфиболитами, гранитами и гранитогнейсами, и называется гранитогнейсовым или гранитно-метаморфическим слоем. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях. Скорость продольных волн составляет 5,5-6,5 км/с.

Третий слой или нижний слой консолидированной коры был выделен как гранулито-базитовый слой. Ранее предполагалось, что между вторым и третьим слоем существует чёткая сейсмическая граница, названная по имени её первооткрывателя границей Конрада (К) . Позднее при сейсмических исследованиях стали выделять даже до 2-3 границ К . Кроме того, данные бурения Кольской СГ-3 не подтвердили различие в составе пород при переходе границы Конрада. Поэтому в настоящее время большинство геологов и геофизиков различают верхнюю и нижнюю кору по их отличным реологическим свойствам: верхняя кора более жёсткая, и хрупкая, а нижняя – более пластичная. Тем не менее, на основании состава ксенолитов из трубок взрыва можно полагать, что «гранулито-базитовый» слой содержит гранулиты кислого и основного состава и базиты. На многих сейсмических профилях нижняя кора характеризуется наличием многочисленных отражающих площадок, что также может, вероятно, рассматриваться как наличие пластовых внедрений магматических пород (что-то похожее на трапповые поля). Скорость продольных волн в нижней коре 6,4-7,7 км/с.

Кора переходного типа является разновидностью коры между двумя крайними типами земной коры (океанской и континентальной) и может быть двух типов – субокеанской и субконтинентальной. Субокеанская кора развита вдоль континентальных склонов и подножий и, вероятно, подстилает дно котловин не очень глубоких и широких окраинных и внутренних морей. Мощность её не превышает 15-20 км. Она пронизана дайками и силами основных магматических пород. Субокеанская кора вскрыта скважиной у входа в Мексиканский залив и обнажена на побережье Красного моря. Субконтинентальная кора образуется в том случае, когда океанская кора в энсиматических вулканических дугах превращается в континентальную, но ещё не достигает «зрелости». Она обладает пониженной (менее 25 км) мощностью и более низкой степенью консолидированности. Скорость продольных волн в коре переходного типа не более 5,0-5,5 км/с.

Поверхность Мохоровичича и состав мантии. Граница между корой и мантией достаточно чётко определяется по резкому скачку скоростей продольных волн от 7,5-7,7 до 7,9-8,2 км/сек и она известна как поверхность Мохоровичича (Мохо или М) по имени выделившего её хорватского геофизика.

В океанах она отвечает границе между полосчатым комплексом 3-го слоя и серпентинизированными базит-гипербазитами. На континентах она расположена на глубине 25-65 км и до 75 км в складчатых областях. В ряде структур выделяется до трёх поверхностей Мохо, расстояния между которыми могут достигать нескольких км.

По результатам изучения ксенолитов из лав и кимберлитов из трубок взрыва предполагается, что под континентами в верхней мантии присутствую кроме перидотитов эклогиты (как реликты океанской коры, оказавшиеся в мантии в процессе субдукции?).

Верхняя часть мантии – это «истощённая» («деплетированная») мантия. Она обеднена кремнезёмом, щелочами, ураном, торем, редкими землями и другими некогерентными элементами благодаря выплавлению из неё базальтовых пород земной коры. Она охватывает почти всю её литосферную часть. Глубже она сменяется «неистощенной» мантией. Средний первичный состав мантии близок к шпинелевому лерцолиту или гипотетической смеси перидотита и базальта в пропоции 3:1, которая была названа А.Е. Рингвудом пиролитом .

Слой Голицина или средняя мантия (мезосфера) – переходная зона между верхней и нижней мантией. Простирается он с глубины 410 км, где отмечается резкое возрастание скоростей продольных волн, до глубины 670 км. Возрастание скоростей объясняется увеличением плотности вещества мантии примерно на 10%, в связи с переходом минеральных видов в другие виды с более плотной упаковкой: например, оливина в вадслеит, а затем вадслеита в рингвудит со структурой шпинели; пироксена в гранат.

Нижняя мантия начинается с глубины около 670 км и простирается до глубины 2900 км со слоем D в основании (2650-2900 км), т. е. до ядра Земли. На основании экспериментальных данных предполагается, что она должна быть сложена в основном перовскитом (MgSiO 3) и магнезиовюститом (Fe,Mg)O – продуктами дальнейшего изменения вещества нижней мантии при общем увеличении отношения Fe/Mg.

По последним сейсмотомографическим данным выявлена значительная негомогенность мантии, а также наличие большего количества сейсмических границ (глобальные уровни – 410, 520, 670, 900, 1700, 2200 км и промежуточные – 100, 300, 1000, 2000 км), обусловленных рубежами минеральных преобразований в мантии (Павленкова, 2002; Пущаровский, 1999, 2001, 2005; и др.).

По Д.Ю. Пущаровскому (2005) строение мантии представляется несколько иначе, чем вышеприведённые данные согласно традиционной модели (Хаин, Ломизе, 1995):

Верхняя мантия состоит из двух частей: верхняя часть до 410 км, нижняя часть 410-850 км. Между верхней и средней мантией выделен раздел I – 850-900 км.

Средняя мантия : 900-1700 км. Раздел II – 1700-2200 км.

Нижняя мантия : 2200-2900 км.

Ядро Земли по данным сейсмологии состоит из внешней жидкой части (2900-5146 км) и внутренней твёрдой (5146-6371 км). Состав ядра большинством принимается железным с примесью никеля, серы либо кислорода или кремния. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Предполагается, что на границе ядра и нижней мантии зарождаются плюмы , которые затем в виде потока энергии или высокоэнергетического вещества поднимаются вверх, формируя в земной коре или на её поверхности магматические породы.

Плюм мантийный узкий, поднимающийся вверх поток твёрдофазного вещества мантии диаметром около100 км, который зарождается в горячем, низкоплотностном пограничном слое, расположенном либо выше сейсмической границы на глубине 660 км, либо рядом с границей ядро-мантия на глубине 2900 км (A.W. Hofmann, 1997). По А.Ф. Грачёву (2000) плюм мантийный – это проявление внутриплитной магматической активности, обусловленное процессами в нижней мантии, источник которой может находиться на любой глубине в нижней мантии, вплоть до границы ядро-мантия (слой «Д»). (В отличие от горячей точки, где проявление внутриплитной магматической активности обусловлено процессами в верхней мантии.) Мантийные плюмы характерны для дивергентных геодинамических режимов. По Дж. Моргану (1971) плюмовые процессы зарождаются ещё под континентами на начальной стадии рифтогенеза (рифтинга). С проявлением мантийного плюма связывается формирование крупных сводовых поднятий (диаметром до 2000 км), в которых происходят интенсивные трещинные излияния базальтов Fe-Ti-типа с коматиитовой тенденцией, умеренно обогащённых лёгкими РЗЭ, с кислыми дифференциатами, составляющими не более 5% от общего объёма лав. Отношения изотопов 3 He/ 4 He(10 -6)>20; 143 Nd/ 144 Nd – 0.5126-0/5128; 87 Sr/ 86 Sr – 0.7042-0.7052. С мантийным плюмом связывается формирование мощных (от 3-5 км до 15-18 км) лавовых толщ архейских зеленокаменных поясов и более поздних рифтогенных структур.

В северо-восточной части Балтийского щита, и на Кольском п-ове в частности, предполагается, что мантийные плюмы обусловили формирование позднеархейских толеитбазальтовых и коматиитовых вулканитов зеленокаменных поясов, позднеархейского щелочногранитного и анортозитового магматизма, комплекса раннепротерозойских расслоенных интрузий и палеозойских щелочно-ультраосновных интрузий (Митрофанов, 2003).

Плюм-тектоника тектоника мантийных струй, связанная с тектоникой плит. Эта связь выражается в том, что субдуцируемая холодная литосфера погружается до границы верхней и нижней мантии (670 км), накапливается там, частично продавливаясь вниз, а затем через 300-400 млн. лет проникает в нижнюю мантию, достигая её границы с ядром (2900 км). Это вызывает изменение характера конвекции во внешнем ядре и его взаимодействия с внутренним ядром (граница между ними на глубине около 4200 км) и, в порядке компенсации притока материала сверху, образование на границе ядро/мантия восходящих суперплюмов. Последние поднимаются до подошвы литосферы, частично испытывая задержку на границе нижней и верхней мантии, а в тектоносфере расщепляются на более мелкие плюмы, с которыми и связан внутриплитный магматизм. Они же, очевидно, стимулируют конвекцию в астеносфере, ответственную за перемещение литосферных плит. Процессы же, происходящие в ядре, японские авторы обозначают в отличие от плейт- и плюм-тектоники, как тектонику роста (growth teсtonics), имея ввиду рост внутреннего, чисто железо-никелевого ядра за счёт внешнего ядра, пополняемого корово-мантиным силикатным материалом.

Возникновение мантийных плюмов, приводящее к образованию обширных провинций плато-базальтов, предшествует рифтогенезу в пределах континентальной литосферы. Дальнейшее развитие может происходить по полному эволюционному ряду, включающему заложение тройных соединений континентальных рифтов, последующее утонение, разрыв материковой коры и начало спрединга. Однако развитие отдельно взятого плюма не может привести к разрыву материковой коры. Разрыв происходит в случае заложения системы плюмов на континенте и далее процесс раскола происходит по принципу продвигающей трещины от одного плюма к другому.

Литосфера и астеносфера

Литосфера состоит из земной коры и части верхней мантии. Это понятие чисто реологическое, в отличие от коры и мантии. Она более жесткая и хрупкая, чем более ослабленная и пластичная подстилающая оболочка мантии, которая была выделена как астеносфера . Мощность литосферы от 3-4 км в осевых частях срединно-океанских хребтов до80-100 км на периферии океанов и 150-200 км и более (до 400 км?) под щитами древних платформ. Глубинные границы (150-200 км и более) между литосферой и астеносферой определяется с большим трудом, либо вовсе не выявляются, что, вероятно, объясняется высокой изостатической уравновешенностью и уменьшением контраста между литосферой и астеносферой в приграничной зоне, обусловленным высоким геотермическим градиентом, уменьшением количества расплава в астеносфере и т.д.

Тектоносфера

Источники тектонических движений и деформаций лежат не в самой литосфере, а в более глубоких уровнях Земли. В них вовлечена вся мантия вплоть до пограничного слоя с жидким ядром. В связи с тем, что источники движений проявляются и в непосредственно подстилающем литосферу более пластичном слое верхней мантии – астеносфере, литосферу и астеносферу нередко объединяют в одно понятие – тектоносферы как области проявления тектонических процессов. В геологическом смысле (по вещественному составу) тектоносфера делится на земную кору и верхнюю мантию до глубины примерно 400 км, а в реологическом смысле – на литосферу и астеносферу. Границы между этими подразделениями, как правило, не совпадают, и литосфера обычно включает кроме коры и какую-то часть верхней мантии.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру, так как обширные шельфовые области, например в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.



На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В.Е. Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.

Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж. Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.

За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию, представляющую собой эмпирическое обобщение огромного фактического материала, но страдавшую одним существенным недостатком: оно не давало, как совершенно справедливо полагает В.Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.

Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой метаморфогенной складчатости (рис. 16.1). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 % и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.

Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. "авлос" - борозда, ров; "ген" - рожденный, т.е. рожденные рвом), как их впервые назвал Н.С. Шатский. Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силлами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.

Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно "зенит" развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.

Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектономагматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты - лавы и туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1- 1,5 %. Объем продуктов трапповой формации может достигать 1-2 млн. км 3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).

Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются: эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры, обычно располагающимся в зоне перехода от континента к океану и в процессе эволюции формирующим мощную континентальную кору. Смысл эволюции геосинклинали заключается в образовании прогиба в земной коре в условиях тектонического растяжения. Этот процесс сопровождается подводными вулканическими излияниями, накоплением глубоководных терригенных и кремнистых отложений. Затем возникают частные поднятия, структура прогиба усложняется и за счет размыва поднятий, сложенных основными вулканитами, формируются граувакковые песчаники. Распределение фаций становится более прихотливым, появляются рифовые постройки, карбонатные толщи, а вулканизм более дифференцированным. Наконец, поднятия разрастаются, происходит своеобразная инверсия прогибов, внедряются гранитные интрузивы и все отложения сминаются в складки. На месте геосинклинали возникает горное поднятие, перед фронтом которого растут передовые прогибы, заполняемые молассами. - грубообломочными продуктами разрушения гор, а в последних развивается наземный вулканизм, поставляющий продукты среднего и кислого состава - андезиты, дациты, риолиты. В дальнейшем горно-складчатое сооружение размывается, так как темп поднятий падает, и ороген превращается в пенепленизированную равнину. Такова общая идея геосинклинального цикла развития.

Рис. 16.2. Схематический разрез через срединно-океанский хребет (по Т. Жюто, с упрощением)

Успехи в изучении океанов привели в 60-е годы нашего века к созданию новой глобальной геотектонической теории - тектоники литосферных плит, позволившей на актуалистической основе воссоздать историю развития подвижных геосинклинальных областей и перемещения континентальных плит. Суть этой теории заключается в выделении крупных литосферных плит, границы которых маркируются современными поясами сейсмичности, и во взаимодействии плит путем их перемещения и вращения. В океанах происходит наращивание, расширение океанской коры путем ее новообразования в рифтовых зонах срединно-океанских хребтов (рис. 16. 2). Поскольку радиус Земли существенно не меняется, новообразованная кора должна поглощаться и уходить под континентальную, т.е. происходит ее субдукция (погружение).

Эти районы отмечены мощной вулканической деятельностью, сейсмичностью, наличием островных дуг, окраинных морей, глубоководных желобов, как, например, на восточной периферии Евразии. Все эти процессы отмечают собой активную континентальную окраину, т.е. зону взаимодействия океанской и континентальной коры. Напротив, те участки континентов, которые составляют с частью океанов единую литосферную плиту, как, например, по западной и восточной окраин Атлантики, называются пассивной континентальной окраиной и лишены всех перечисленных выше признаков, но характеризуются мощной толщей осадочных пород над континентальным склоном (рис. 16.3). Сходство вулканогенных и осадочных пород ранних стадий развития геосинклиналей, так называемой офиолитовой ассоциации, с разрезом коры океанского типа позволило предположить, что последние закладывались на океанской коре и дальнейшее развитие океанского бассейна приводило сначала к его расширению, а затем закрытию с образованием вулканических островных дуг, глубоководных желобов и формированию мощной континентальной коры. В этом видят сущность геосинклинального процесса.

Таким образом, благодаря новым тектоническим идеям, учение о геосинклиналях обретает как бы "второе дыхание", позволяющее реконструировать геодинамическую обстановку их эволюции на базе актуалистических методов. Исходя из сказанного, под геосинклинальным поясом, (окраинно- или межконтинентальным) понимается подвижной пояс протяженностью в тысячи километров, закладывающийся на границе литосферных плит, характеризующийся длительным проявлением разнообразного вулканизма, активного осадконакопления и на конечных стадиях развития превращающийся в горно-складчатое сооружение с мощной континентальной корой. Примером таких глобальных поясов являются: межконтинентальные - Урало-Охотский палеозойский; Средиземноморский альпийский; Атлантический палеозойский; окраинно-континентальные - Тихоокеанский мезозойско-кайнозойский и др. Геосинклинальные пояса подразделяются на геосинклинальные области - крупные отрезки поясов, отличающиеся историей развития, структурой и отделяющиеся друг от друга глубокими поперечными разломами, пережимами и т.д. В свою очередь, в пределах областей могут быть выделены геосинклинальные системы, разделяющиеся жесткими блоками земной коры - срединными массивами или микроконтинентами, структурами, которые во время погружения окружающих районов оставались стабильными, относительно приподнятыми и на которых накапливался маломощный чехол. Как правило, эти массивы являются обломками той первичной древней платформы, которая подверглась дроблению при заложении подвижного геосинклинального пояса.

В конце 30-х годов нашего столетия Г. Штилле и М. Кэй подразделили геосинклиналии на эв- и миогеосинклинали. Эвгеосинклиналью ("полной, настоящей, геосинклиналью") они называли более внутреннюю по отношению к океану зону подвижного пояса, отличавшуюся особо мощным вулканизмом, ранним (или начальным) подводным, основного состава; наличием ультраосновных интрузивных (поих мнению) пород; интенсивной складчатостью и мощным метаморфизмом. В то же время миогеосинклиналь ("не настоящая геосинклиналь") характеризовалась внешним положением (по отношению к океану), контактировала с платформой, закладывалась на коре континентального типа, отложения в ней были слабее метаморфизованы, вулканизм также был развит слабо или совсем отсутствовал, а складчатость наступала позднее, чем в эвгеосинклинали. Такое разделение геосинклинальных областей на эв- и миогеосинклинальные прекрасно выражено на Урале, в Аппалачах, Североамериканских Кордильерах и в других складчатых областях.

Важную роль стала играть офиолитовая ассоциация пород, широко распространенная в разнообразных эвгеосинклиналях. Нижняя часть разреза такой ассоциации состоит из ультраосновных, часто серпентинизированных пород - гарцбургитов, дунитов; выше располагается так называемый расслоенный или кумулятивный комплекс габброидов и амфиболитов; еще выше - комплекс параллельных даек, сменяющийся подушечными толеитовыми базальтами, перекрываемыми кремнистыми сланцами (рис. 16.4). Такая последовательность близка разрезу океанской коры. Значение этого сходства трудно переоценить. Офиолитовая ассоциация в складчатых областях, залегающая, как правило, в покровных пластинах, является реликтом, следами былого морского бассейна (не обязательно океана!) с корой океанского типа. Отсюда не следует, что океан отождествляется с геосинклинальным поясом. Кора океанского типа могла располагаться только в его центре, а по периферии это была сложная система островных дуг, окраинных морей, глубоководных желобов и т.д., да и сама кора океанского типа могла быть в окраинных морях. Последующее сокращение океанского пространства приводило к сужению подвижного пояса в несколько раз. Океанская кора в основании эвгеосинклинальных зон может быть как древней, так и новообразованной, сформировавшейся при раскалывании и раздвиге континентальных массивов.