Схемы стабилизаторов с малым падением напряжения. Стабилизатор с малым минимальным падением напряжения. Преимущества и недостатки линейных и импульсных стабилизаторов

Область применения

  • Питание схем от аккумуляторной батареи
  • Сотовые телефоны
  • Ноутбуки и карманные компьютеры
  • Сканеры штрих-кода
  • Автомобильная электроника
  • DC-DC модули
  • Опорное напряжение в устройствах
  • Линейные низковольтные блоки питания

Второй вариант схемы

Эта схема представляет из себя low drop регулируемый блок питания с очень малым падением напряжения на нём. Конечно существует множество других конструкций для регулируемых источников питания, но микросхема MIC2941 имеет ряд преимуществ.

В зависимости от режима работы падение всего 40 - 400 мВ (сравните с 1, 25 - 2 В на LM317). Это означает, что вы можете использовать более широкий диапазон выходных напряжений (в том числе формирование стандартных для некоторых цифровых схем 3.3 В от столь же низкого 3.7 В напряжения (например, 3-х AA или литий-ионный аккумулятор). Обратите внимание, что микросхемы серии MIC2940 работают с фиксированным напряжением выхода, а MIC2941 можно плавно регулировать.

Таблица напряжений MIC294х

Возможности схемы на MIC2941

  • Защита от короткого замыкания и от перегрева.
  • Входной диод для защиты цепи от отрицательного напряжения или переменного тока.
  • Два индикаторных светодиода для высокого и низкого напряжения.
  • Выходной переключатель, чтобы выбрать 3,3 В или 5 В.
  • На плате потенциометр для регулировки напряжения от 1,25 В до максимального входного напряжения (20V max).
  • Высокая точность поддержания выходного напряжения
  • Гарантированный ток выхода 1.25 A.
  • Очень низкий температурный коэффициент
  • Вход микросхемы может выдержать от -20 до +60 В.
  • Логически управляемый электронный выключатель.
  • И, конечно, малое падение напряжения - от 40 мВ.

Эта схема стабилизирует ток через один или несколько светодиодов, причём практически независимо от напряжения питания. Её главным преимуществом является очень малое падение напряжения, которое может быть меньше 100 мВ. Конструкция может найти применение в светодиодных лентах, где напряжение может изменяться по длине за счет резистивного падения, и небольшие изменения напряжения приводят к существенным изменениям тока и яркости. А также в , где каждый вольт на счету.

Схема стабилизатора тока светодиодов

Падение напряжения в цепи резистора R не превышает 40 мВ. Остальное зависит от параметров Q3.

Номинальный ток светодиода здесь составляет 7,2 мА при 9 В. Увеличение напряжения до 20 В вызывает изменение тока всего +15%, благодаря динамическому сопротивлению.

Значение резистора R1 выбрано для синего/белого светодиода с падением напряжения в диапазоне 2,9 - 3,4 вольта. Для поддержания нужного уровня на другой вольтаж падения напряжения - измените значение R1 пропорционально изменению падения напряжения.

Ток через светодиоды обратно пропорционален значению R. Ток может быть грубо изменен с помощью этого резистора, и точно настроен путем изменения R1.

Для получения хорошей термостабильности, Q1 и Q2 должны быть в тепловом контакте. В идеале, они должны быть на одном кристалле, но и так получаются хорошие результаты, когда они прижаты друг к другу.

Схема хорошо работает не только с одним светодиодом. Максимальное количество светодиодов в линии зависит только от параметров компонентов схемы.


Один из важных параметров последовательных стабилизаторов напряжения (в том числе и микросхемных) - минимально допустимое напряжение между входом и выходом стабилизатора (ΔUмин) при максимальном токе нагрузки. Он показывает, при какой минимальной разности входного (Uвх) и выходного (Uвых) напряжений все параметры стабилизатора находятся в пределах нормы. К сожалению, не все радиолюбители обращают на него внимание, обычно их интересуют только выходное напряжение и максимальный выходной ток. Между тем этот параметр оказывает существенное влияние как на качество выходного напряжения, так и на КПД стабилизатора.
Например, у широко распространенных микросхемных стабилизаторов серии 1_М78хх (хх - число, равное напряжению стабилизации в вольтах) минимально допустимое напряжение дUмин= 2 В при токе 1 А. На практике это означает, что для стабилизатора на микросхеме LM7805 (Uвых = 5 В) напряжение Uвхмин должно быть не менее 7 В. Если амплитуда пульсаций на выходе выпрямителя достигает 1 В, то значение Uвхмин повышается до 8 В, а с учетом нестабильности сетевого напряжения в пределах ±10 % возрастает до 8,8 В. В результате КПД стабилизатора не превысит 57 %, а при большом выходном токе микросхема будет сильно нагреваться.
Возможный выход из положения - применение так называемых Low Dropout (с низким падением напряжения) микросхемных стабилизаторов, например, серии КР1158ЕНхх (ΔUмин = 0,6 В при токе 0,5 А) или LM1084 (Uмин= 1,3 В при токе 5 А). Но еще меньших значений Uмин можно добиться, если в качестве регулирующего элемента использовать мощный полевой транзистор. Именно о таком устройстве и пойдет речь далее.

Схема предлагаемого стабилизатора показана на рис. 1. Полевой транзистор VT1 включен в плюсовую линию питания. Применение прибора с п-каналом обусловлено результатами проведенных автором испытаний: оказалось, что такие транзисторы менее склонны к самовозбуждению и к тому же, как правило, сопротивление открытого канала у них меньше, чем у р-канальных. Управляет транзистором VT1 параллельный стабилизатор напряжения DA1. Для того чтобы полевой транзистор открылся, напряжение на его затворе должно быть как минимум на 2,5 В больше, чем на истоке. Поэтому необходим дополнительный источник с выходным напряжением, превышающим напряжение на стоке полевого транзистора именно на эту величину.
Такой источник - повышающий преобразователь напряжения - собран на микросхеме DD1. Логические элементы DD1.1, DD1.2 использованы в генераторе импульсов с частотой следования около 30 кГц, DD1.3, DD1.4 - буферные; диоды VD1, VD2 и конденсаторы СЗ, С4 образуют выпрямитель с удвоением напряжения, резистор R2 и конденсатор С5 - сглаживающий фильтр.

Конденсаторы С6, С7 обеспечивают устойчивую работу устройства. Выходное напряжение (его минимальное значение 2,5 В) устанавливают подстроеч-ным резистором R4.
Лабораторные испытания макета устройства показали, что при токе нагрузки 3 А и снижении входного напряжения с 7 до 5,05 В выходное уменьшается с 5 до 4,95 В. Иными словами, при указанном токе минимальное падение напряжения ΔUмин не превышает 0,1 В. Это позволяет более полно использовать возможности первичного источника питания (выпрямителя) и повысить КПД стабилизатора напряжения.

Детали устройства монтируют на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,5...2 мм. Постоянные резисторы - Р1-4, МЛТ, подстроечный - СПЗ-19а, конденсаторы С2, С6, С7 - керамические К10-17, остальные - оксидные импортные, например, серии ТК фирмы Jamicon. В стабилизаторе с выходным напряжением 3...6 В следует применять полевой транзистор с напряжением открывания не более 2,5 В. У таких транзисторов фирмы International Rectifier в маркировке, как правило, присутствует буква L (см. справочный листок "Мощные полевые переключательные транзисторы фирмы International Rectifier" в "Радио", 2001, № 5, с. 45). При токе нагрузки более 1,5...2 А необходимо использовать транзистор с сопротивлением открытого канала не более 0,02... 0,03 Ом.
Во избежание перегрева полевой транзистор закрепляют на тепло-отводе, к нему же через изолирующую прокладку можно приклеить плату. Внешний вид смонтированной платы показан на рис. 3.

Выходное напряжение стабилизатора можно повысить, однако не следует забывать, что максимальное напряжение питания микросхемы К561ЛА7- 15 В, а предельное значение напряжения затвор-исток полевого транзистора в большинстве случаев не превышает 20 В.

Поэтому в подобном случае следует применить повышающий преобразователь, собранный по иной схеме (на элементной базе, допускающей более высокое напряжение питания), и ограничить напряжение на затворе полевого транзистора, подключив параллельно конденсатору С5 стабилитрон с соответствующим напряжением стабилизации. Если стабилизатор предполагается встроить в источник питания с понижающим трансформатором, то преобразователь напряжения (микросхему DD1, диоды VD1, VD2, резистор R1 и конденсаторы С2, СЗ) можно исключить, а "основной" выпрямитель на диодном мосте VD5 (рис. 4) дополнить удвоителем напряжения на диодах VD3, VD4 и конденсаторе С9 (нумерация элементов продолжает начатую на рис. 1).


Дата публикации: 29.09.2009

Мнения читателей
  • Серегй / 06.10.2011 - 08:34
    Какие номиналы нужно изменить, чтоб Uвых стало 9в?
  • Николай / 30.07.2011 - 22:30
    Удачная схема, спасибо. Использовал ее для стабилизации напряжения при токах до 0,5А от источника с сильно просаживающимся напряжением при увеличении тока нагрузки. Стал вопрос о собственном потреблении управляющей части - много жрет:), от 18,6 мА (U вх макс) до 8,7 мА. Поставил R3 = 8,2 кОм (TL431 в номинальном режиме, I > 1мА, хотя типичный минимальный ток 450 мкА) и регулирующий R4 = 50 кОм. потребляемый ток снизился до 2,3 мА - 1,1 мА. При такой модификации можно использовать конденсаторы С3-С5 меньшей емкости, я использовал 10мкФ.

Порой в радиолюбительской практике возникает необходимость в стабилизаторе с малым падением напряжения на регулирующем элементе (1,5-2В). Это может быть вызвано недостаточным напряжением на вторичной обмотке трансформатора, габаритными ограничениями, когда корпус не вмещает радиатор необходимого размера, соображениями экономичности устройства и т.д.

И если выбор микросхем для построения «обычных» стабилизаторов достаточно широк (типа LM317 , 78XX и т.п.), то микросхемы для построения Low-Drop стабилизаторов обычно не всем доступны. Поэтому несложная схема на доступных компонентах может быть весьма актуальна.

Представляю схему, которой сам пользовался много лет. За это время схема показала надёжную, стабильную работу. Доступные компоненты и простота настройки позволят без трудностей повторить конструкцию даже начинающим радиолюбителям.

увеличение по клику

Схема напоминает довольно стандартный параметрический стабилизатор , который дополнен ГСТ (генератором стабильного тока) для управления током базы регулирующего транзистора, за счёт чего и удалось получить низкое падение напряжения .

Схема рассчитана на выходное напряжение 5В (выставляется резистором R4) и ток нагрузки 200мА. Если требуется получить больший ток, то вместо T3 следует применить составной транзистор .

При необходимости получить большее выходное напряжение придётся пересчитать значения резисторов.

В случае отсутствия транзисторных сборок можно использовать дискретные транзисторы. В моём варианте вместо сборки КР198НТ5 использовалось два подобранных транзистора КТ361. Сборку КР159НТ1 можно заменить двумя транзисторами КТ315, подбор которых не требуется.

Так как информации в Интернете по отечественным компонентам практически нет, привожу для справки цоколёвку транзисторных сборок.

На основе мощных переключательных полевых транзисторов можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в . Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток-исток - 55 В, затвор-исток - ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 - вход, 2 - общий, 3 - выход. В качестве управляющего элемента применена микросхема DA1 - параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор-исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.

Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод - к истоку.

В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в , желательно выделенный желтым цветом. VT1 - КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы - К10-17, резисторы - Р1-4, МЛТ, С2-33.
Схема подключения модуля стабилизатора приведена на рис. 2.

При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 - площадки на печатной плате, а вывод 3 (сток транзистора VT2) - металлический вывод-стойка на керамической шайбе.

Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть - навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.

Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. - Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. - Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск
“Радио” №2 2005г.