Отрицательные числа — зачем дети изучают то, что не существует? Положительные и отрицательные числа

Вельмякина Кристина и Николаева Евгения

Данная исслеловательская работа направлена на изучение применения положительных и отрицательных чисел в жизни человека.

Скачать:

Предварительный просмотр:

МБОУ «Гимназия №1» Ковылкинского муниципального района

Применение положительных и отрицательных чисел в жизни человека

Исследовательская работа

Выполнили:

ученицы 6В класса

Вельмякина Кристина и Николаева Евгения

Руководитель: учитель математики и информатики

Соколова Наталья Сергеевна

Ковылкино 2015

Введение 2

1.История возникновения положительных и отрицательных чисел 4

2.Применение положительных и отрицательных чисел 6

Заключение 13

Список используемой литературы 14

Введение

Введение положительных и отрицательных чисел было связано с необходимостью развития математики как науки, дающей общие способы решения арифметических задач, независимо от конкретного содержания и исходных числовых данных.

Изучив положительные и отрицательные числа на уроках математики, мы решили узнать, а где еще кроме математики используются данные числа. И оказалось, что положительные и отрицательные числа имеют довольно широкое применение.

Данная исследовательская работа направлена на изучение применения положительных и отрицательных чисел в жизни человека.

Актуальность данной темы заключается в изучении применения положительных и отрицательных чисел.

Цель работы: Изучить применение положительных и отрицательных чисел в жизни человека.

Объект исследования: Области применения положительных и отрицательных чисел в жизни человека.

Предмет исследования: Положительные и отрицательные числа.

Метод исследования: чтение и анализ используемой литературы и наблюдения.

Для достижения цели исследования были поставлены следующие задачи:

1. Изучить литературу по данной теме.

2. Понять суть положительных и отрицательных чисел в жизни человека.

3. Исследовать применение положительных и отрицательных чисел в различных областях.

4. Сделать выводы.

  1. История возникновения положительных и отрицательных чисел

Впервые положительные и отрицательные числа появились в Древнем Китае уже примерно 2100 лет тому назад.

Во II в. до н. э. китайский ученый Чжан Цань написал книгу «Арифметика в девяти главах». Из содержания книги видно, что это не вполне самостоятельный труд, а переработка других книг, написанных задолго до Чжан Цаня. В этой книге впервые в науке встречаются отрицательные количества. Они понимаются им не так, как понимаем и применяем их мы. Полного и ясного понимания природы отрицательных и положительных величин и правил действия с ними у него нет. Каждое отрицательное число он понимал как долг, а положительное – как имущество. Действия с отрицательными числами он производил не так, как мы, а используя рассуждения о долге. Например, если к одному долгу прибавить другой долг, то в результате получиться долг, а не имущество (т, е. по нашему (- а) + (- а) = - 2а. Знака минус тогда не знали, поэтому, чтобы отличить числа, выражавшие долг, Чжань Цань писал их другими чернилами, чем числа, выражавшие имущество (положительные). Положительные количества в китайской математике называли «чен» и изображали красным цветом, а отрицательные – «фу» и изображали черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Хотя китайские ученые и объяснили отрицательные количества как долг, а положительные - как имущество, всё же они избегали широкого употребления их, так как числа эти казались непонятными, действия с ними были неясны. Если же задача приводила к отрицательному решению, то старались заменить условие (как греки), чтобы в итоге получалось решение положительно. В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В отличие от Китая в Индии были уже известны и правила умножения, деления. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Знаки «+» и «-» широко использовались в торговле. Виноделы на пустых бочках ставили знак «-», означавший убыль. Если бочку наполняли, то знак перечеркивали и получали знак «+», означавший прибыль. Эти знаки как математические ввел Ян Видман в XV.

В европейской науке отрицательные и положительные числа окончательно вошли в употребление лишь со времени Французского математика Р.Декарта(1596 – 1650), давшего геометрическое истолкование положительным и отрицательным числам как направленных отрезков. В 1637 году он ввел «координатную прямую».

В 1831 году Гаусс полно обосновал, что отрицательные числа абсолютно равнозначны по правам с положительными, а то что их можно применить не во всех случаях значения не имеет.

История возникновения отрицательных и положительных чисел заканчивается в XIX веке когда Уильям Гамильтон и Герман Грассман создали полную теорию положительных и отрицательных чисел. С этого момента начинается история развития данного математического понятия.

  1. Применение положительных и отрицательных чисел
  1. Медицина

Близорукость и дальнозоркость

Отрицательные числа выражают патологию глаза. Близорукость (миопия) проявляется снижением остроты зрения. Для того чтобы при близорукости глаз мог ясно видеть отдаленные предметы применяют рассеивающие (отрицательные) линзы. Близорукость (-), дальнозоркость (+).

Дальнозоркость (гиперметропия) - вид рефракции глаза, при котором изображение предмета фокусируется не на определенной области сетчатки, а в плоскости за ней. Такое состояние зрительной системы приводит к нечеткости изображения, которое воспринимает сетчатка.

Причиной дальнозоркости может быть укороченное глазное яблоко, либо слабая преломляющая сила оптических сред глаза. Увеличив ее, можно добиться того, что лучи будут фокусироваться там, где они фокусируются при нормальном зрении.

С возрастом, зрение особенно вблизи все больше ухудшается из-за уменьшения аккомодативной способности глаза вследствие возрастных изменений в хрусталике - снижается эластичность хрусталика, ослабевают мышцы, удерживающие его, и как следствие снижается зрение. Именно поэтому возрастная дальнозоркость (пресбиопия ) наличествует практически у всех людей после 40–50 лет.

При малых степенях дальнозоркости обычно сохраняется высокое зрение и вдаль, и вблизи, но могут быть жалобы на быструю утомляемость, головную боль, головокружение. При средней степени гиперметропии - зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости - плохое зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

Дальнозоркость, в том числе и возрастная, может быть выявлена только при проведении тщательного диагностического обследования (при медикаментозном расширении зрачка хрусталик расслабляется и проявляется истинная рефракция глаза).

Близорукость – это болезнь глаз, при которой человек плохо видит предметы, расположенные вдалеке, но хорошо видит те предметы, которые находятся близко. Близорукость также называется миопией.

Считается, что около восьмисот миллионов людей болеют близорукостью. Близорукостью могут страдать все: и взрослые, и дети.

В наших глазах существуют роговица и хрусталик. Эти составляющие глаза способны пропускать лучи, преломляя их. А на сетчатке возникает изображение. Потом это изображение становится нервными импульсами и по зрительному нерву передается в мозг.

Если роговица и хрусталик преломляют лучи так, что фокус находится на сетчатке, то изображение будет четким. Поэтому люди без каких-либо болезней глаз будут хорошо видеть.

При близорукости изображение получается размытым и нечетким. Это может происходить по следующим причинам:

– если глаз сильно удлиняется, то сетчатка отходит от стабильного расположения фокуса. При близорукости у людей глаз достигает тридцати миллиметров. А у нормального здорового человека величина глаза равна двадцать три – двадцать четыре миллиметра;– если хрусталик и роговица преломляют лучи света слишком сильно.

По данным статистики, на земле каждый третий человек страдает миопией, то есть близорукостью. Таким людям сложно увидеть предметы, которые находятся вдалеке от них. Но при этом если книга или тетрадь будут близко расположены от глаз человека, который болеет близорукостью, то он будет хорошо видеть данные предметы .

2) Термометры

Посмотрим на шкалу обычного уличного термометра.

Она имеет вид, изображенный на шкале 1. На ней нанесены только положительные числа, и поэтому при указании численного значения температуры приходится дополнительно пояснять 20 градусов тепла (выше нуля). Это для физиков неудобно – ведь слова в формулу не подставишь! Поэтому в физике применяется шкала с отрицательными числами (шкала 2).

3) Баланс на телефоне

Проверяя баланс на своем телефоне или планшете можно увидеть число со знаком (-), это означает что данный абонент, имеет задолжность и не может осуществить звонок, пока не пополнит свой счет, число же без знака (-) означает что можно звонить или осуществлять какую-либо другую функцию.

  1. Уровень моря

Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). На карте нарисована шкала глубин и высот, которая показывает, какую высоту (глубину) означает тот или иной цвет, например, такая:

Шкала глубин и высот в метрах

Глубже 5000 2000 200 0 200 1000 2000 4000 выше

На этой шкале мы видим только положительные числа и нуль. За нуль принимается высота (и глубина тоже), на которой находится поверхность воды в Мировом океане. Использование в этой шкале только неотрицательных чисел неудобно для математика или физика. У физика получается такая шкала.

Шкала высот в метрах

Меньше -5000 -2000 -200 0 200 1000 2000 4000 больше

Используя такую шкалу, достаточно указать число без всяких дополнительных слов: положительные числа отвечают различным местам на суше, находящимся над поверхностью моря; отрицательные числа соответствуют точкам, находящимся под поверхностью моря.

В рассмотренной нами шкале высот за нулевую принимается высота поверхности воды в Мировом океане. Эта шкала используется в геодезии и картографии.

В отличие от этого, в быту мы обычно за нулевую высоту принимаем высоту поверхности земли (в том месте, в котором мы находимся).

5) Качества человека

Каждый человек индивидуален и неповторим! Однако мы не всегда задумываемся над тем, какие же черты характера определяют нас как личность, что в нас привлекает людей, а что отталкивает. Выделяют положительные и отрицательные качества человека. Например, положительные качества активность, благородность, динамичность, отважность, предприимчивость, решительность, самостоятельность, смелость, честность, энергичность, отрицательные, агрессивность, вспыльчивость, конкурентоспособная, критичность, упрямство, эгоистичность.

6) Физика и расческа

Положите на стол несколько маленьких кусочков тонкой бумаги. Возьмите чистую сухую пластмассовую расческу и 2-3 раза проведите ею по своим волосам. Расчесывая волосы, вы должны услышать легкое потрескивание. Затем медленно поднесите расческу к клочкам бумаги. Вы увидите, что они сначала притягиваются к расческе, а потом отталкиваются от нее.

Этой же расческой можно притягивать воду. Такое притяжение легко наблюдать, если поднести расческу к тонкой струйке воды, спокойно вытекающей из крана. Вы увидите, что струйка заметно искривляется.

Теперь сверните из тонкой бумаги (лучше всего папиросной) две трубочки длиной 2-3см. и диаметром 0,5см. Подвесьте их рядом (так, чтобы они слегка касались друг друга) на шелковых нитках. Расчесав волосы, прикоснитесь расческой к бумажным трубочкам – они сразу разойдутся в стороны и останутся в таком положении (то есть нитки будут отклонены). Мы видим, что трубочки отталкиваются друг от друга.

Если у вас есть стеклянная палочка (или трубочка, или пробирка) и кусочек шелковой ткани, то опыты можно продолжить.

Потрите палочку о шелк и поднесите к обрывкам бумаги – они начнут «прыгать» на палочку точно так же, как и на расческу, и затем соскальзывать с нее. Струйка воды тоже отклоняется стеклянной палочкой, а бумажные трубочки, к которым вы палочкой прикоснулись, отталкиваются друг от друга.

А теперь возьмите одну палочку, к которой вы прикасались расческой, и вторую трубочку, - и поднесите друг к другу. Вы увидите, что они притягиваются друг к другу. Итак, в этих опытах проявляются силы притяжения и силы отталкивания. В опытах мы видели, что заряженные предметы (физики говорят – заряженные тела) могут притягиваться друг к другу, а могут и отталкиваться друг от друга. Это объясняется тем, что существует два вида, два сорта электрических зарядов, причем заряды одного и того же вида отталкиваются друг от друга, а заряды разных видов притягиваются.

7) Счет времени

В разных странах по-разному. Например, в Древнем Египте каждый раз, когда начинал править новый царь, счёт лет начинался заново. Первый год правления царя считался первым годом, второй – вторым и так далее. Когда этот царь умирал и к власти приходил новый, вновь наступал первый год, затем второй, третий. Иным был счет лет, применявшийся жителями одного из древнейших городов мира-Рима. Год основания своего города римляне считали первым, следующий - вторым и так далее.

Счет лет, которым мы пользуемся, возник давно и связан с почитанием Иисуса Христа – основателя христианской религии. Счёт лет от рождения Иисуса Христа постепенно был принят в разных странах.В нашей стране он введён царём Петром Первым триста лет назад. Время, исчисляемое от Рождества Христова, мы называем НАША ЭРА (а пишем сокращённо Н.Э.). Продолжается наша эра две тысячи лет. Рассмотрим «линию времени» на рисунке.

Основание Начало Первое упоминание о Москве Рождение А. С. Пушкина

Рима восстания

Спартака

Заключение

Работая с различными источниками и исследуя различные явления и процессы, мы выяснили, что отрицательные и положительные используются в медицине, физике, географии, истории, в современных средствах связи, при изучении качеств человека и других сферах деятельности человека. Данная тема является актуальной и находит широкое применение и активно используются человеком.

Эту работу можно использовать на уроках математики, мотивируя учащихся к изучению положительных и отрицательных чисел.

Список используемой литературы

  1. Вигасин А.А,.Годер Г.И., «История древнего мира», учебник 5 кл.,2001.
  2. Выговская В.В. « Поурочные разработки по Математике:6 класс» - М.:ВАКО, 2008г.
  3. Газета «Математика» №4, 2010г.
  4. Гельфман Э.Г. «Положительные и отрицательные числа», учебное пособие по математике для 6-го класса, 2001.

Сейчас мы разберем положительные и отрицательные числа . Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа.

Навигация по странице.

Положительные и отрицательные числа – определения и примеры

Дать определение положительных и отрицательных чисел нам поможет . Для удобства будем считать, что она расположена горизонтально и направлена слева направо.

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными .

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными .

Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.

Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.

Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел . Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330 , да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212... , а отрицательных – числа , −11 , −51,51 и −3,(3) . В качестве примеров положительных иррациональных чисел можно привести число пи, число e , и бесконечную непериодическую десятичную дробь 809,030030003… , а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел .

Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5 , и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.

Определение.

Числа со знаком плюс называют положительными , а со знаком минус – отрицательными .

Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.

Определение.

Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.

Таким образом, нуль как бы отделяет положительные числа от отрицательных.

Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).

Интерпретация положительных и отрицательных чисел

Мы уже достаточно долго описываем положительные и отрицательные числа. Однако неплохо было бы знать, какой смысл они несут в себе? Давайте разберемся с этим вопросом.

Положительные числа можно интерпретировать как приход, как прибавку, как увеличение какой-либо величины и тому подобное. Отрицательные числа, в свою очередь, означают строго противоположное – расход, недостаток, долг, уменьшение какой-либо величины и т.п. Разберемся с этим на примерах.

Можно сказать, что мы обладаем 3 предметами. Здесь положительное число 3 указывает количество находящихся у нас предметов. А как можно интерпретировать отрицательное число −3 ? Например, число −3 может означать, что мы должны кому-нибудь отдать 3 предмета, которых у нас даже нет в наличии. Аналогично можно сказать, что в кассе нам выдали 3,45 тысяч рублей. То есть, число 3,45 связано с нашим приходом. В свою очередь отрицательное число −3,45 будет указывать на уменьшение денег в кассе, выдавшей эти деньги нам. То есть, −3,45 – это расход. Еще пример: повышение температуры на 17,3 градуса можно описать положительным числом +17,3 , а понижение температуры на 2,4 можно описать с помощью отрицательного числа, как изменение температуры на −2,4 градуса.

Положительные и отрицательные числа часто используются для описания значений каких-либо величин в различных измерительных приборах. Самым доступным примером является прибор для измерения температур – термометр - со шкалой, на которой записаны и положительные и отрицательные числа. Часто отрицательные числа изображают синим цветом (он символизирует снег, лед, а при температуре ниже нуля градусов Цельсия начинает замерзать вода), а положительные числа записывают красным цветом (цвет огня, солнца, при температуре выше нуля градусов начинает таять лед). Запись положительных и отрицательных чисел красным и синим цветом используют и в других случаях, когда нужно особо выделить знак чисел.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

  • Отрицательные формы рельефа
  • Отрицательный и положительный нуль

Смотреть что такое "Отрицательные числа" в других словарях:

    Отрицательные числа - действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    Положительные и отрицательные числа - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Целые числа - Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Натуральные числа - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    ЭЙЛЕРОВЫ ЧИСЛА - коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число - Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    История арифметики - Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Арифметика - Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. В 2 частях. Часть 2. Положительные и отрицательные числа , . Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5-6 классов, разработанного авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках…

Чалина Ирина

Презентация об истории возникновения отрицательных чисел.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Отрицательные числа Чалина Ирина

Математика – виват! Слава, слава, слава! Не поют ей серенад, Не кричат ей браво. Жили-были 2 числа, Жили, не тужили. Один – минус, другой – плюс, Весело дружили. Знаки разные во всем, Но поставить можно, Чтоб сложилося число, Которое быть должно. Плюс на плюс – получим плюс, Плюс на минус – будет минус. Ну а если (-20) прибавим (-8), То в итоге мы получим число (-28).

Отрицательное число Отрица́тельное число́ - элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля. Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Историческая справка История говорит о том, что люди долго не могли привыкнуть к отрицательным числам. Отрицательные числа казались им непонятными, ими не пользовались, просто не видели в них смысла. Положительные числа трактовали как «прибыль», а отрицательные – как «долг», «убыток». В Древнем Египт е, Вавилон е и Древней Греции не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или признавались как промежуточный этап, полезный для вычисления окончательного, положительного результата. Но знаков + или – в древности не было ни для чисел, ни для действий. Правда, умножение и деление для отрицательных чисел тогда ещё не были определены. Греки тоже поначалу знаки не использовали, пока Диофант Александрийский в III веке стал использовать знак « - » при решении линейных уравнений. Знак « + » появился как результат противоположного действия знаку « - » путем перечеркивания минуса. Было очень похоже на тот плюс, который мы используем сейчас. Он уже знал правило знаков и умел умножать отрицательные числа. Однако и он рассматривал их лишь как временные значения.

Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными. В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Даже Паскаль считал, что 0 − 4 = 0, так как ничто не может быть меньше, чем ничто. Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия. В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(-1) = (-1):1 - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс Арно»). Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии. Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке Уильямом Гамильтоном и Германом Грассманом.

Свойства отрицательных чисел Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху. При умножении целых чисел действует правило знаков: произведение чисел с разными знаками отрицательно, с одинаковыми - положительно. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10. При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Для каждого натурального числа (n) существует одно и только одно отрицательное число, обозначаемое (-n), которое дополняет n до нуля: Оба числа называются противоположными друг для друга. Вычитание целого числа (a) из другого целого числа (b) равносильно сложению b с противоположным для a знаком: (b)+ (-а)

Основные правила Правило 1. Сумма двух отрицательных чисел есть число отрицательное, равное сумме модулей этих чисел. Пример - Сумма чисел (-3) и (-8) равно минус 11. Правило 2 . Произведение двух чисел с разными знаками есть отрицательное число, модуль которого равен произведению модулей сомножителей. Пример - Произведение минус трех и пяти равно минус пятнадцати, потому что при умножении двух чисел с разными знаками получается отрицательное число, а его модуль равен произведению модулей сомножителей, то есть трех и пяти. Правило 3 . Чтобы отметить отрицательные числа, надо координатный луч дополнить противоположным ему лучом и нанести на него соответствующие координаты. Пример. Числа, расположенные на координатной прямой справа от нуля, называются положительными, а слева – отрицательными.

Модуль отрицательного числа Расстояние от точки А(а) до начала отсчета, т.е. до точки О(о), называют модулем числа а и обозначают /а/ Модуль отрицательного числа равен числу, ему противоположному. Модуль, ничего не делая с положительными числами и нулем, отнимает у отрицательных чисел знак "минус". Модуль обозначается вертикальными черточками, которые пишутся с двух сторон от числа. Например / -3 / = 3; / -2,3 / = 2,3 ; / -526/7 / = 526/7. Из двух отрицательных чисел больше то, модуль которого меньше и, меньше то, модуль которого больше. (По этому поводу обычно шутят, что у отрицательных чисел все не как у людей, наоборот)

вывод Отрицательные числа в наши дни вещь обыденная: их используют, например, для того, чтобы представить температуру ниже нуля. Поэтому кажется удивительным, что еще несколько столетий назад какой-либо конкретной интерпретации отрицательных чисел не было, а возникающие по ходу вычислений отрицательные числа назывались «воображаемыми». Отрицательные числа нужны не только при измерении температуры. Например, если предприятие получило доход на 1 млн.руб., или, наоборот, потерпело убытки на 1 млн.руб., как это отразить в финансовых документах? В первом случае записывают 1000 000 руб. или + 1000000 руб. А во втором, соответственно, (- 1 000 000 руб.).

Спасибо за внимание! -

Допустим, у Дениса очень много конфет - целая большая коробка. Сперва Денис съел 3 конфеты. Потом папа дал Денису 5 конфет. Потом Денис подарил Матвею 9 конфет. Наконец, мама дала Денису 6 конфет. Вопрос: Стало ли у Дениса в конечном итоге больше или меньше конфет, чем было вначале? Если больше, то насколько больше? Если меньше, то насколько меньше?

Для того чтобы не запутаться с этой задачей, удобно применить один трюк. Давайте выпишем подряд все числа из условия. При этом мы будем ставить знак «+» перед числами, которые обозначают, насколько конфет у Дениса прибавилось, и знак «−» перед числами, которые обозначают, насколько конфет у Дениса убавилось. Тогда всё условие выпишется очень коротко:

− 3 + 5 − 9 + 6.

Эту запись можно прочитать, например, так: «Сперва Денис получил минус три конфеты. Потом плюс пять конфет. Потом минус девять конфет. И наконец плюс шесть конфет». Слово «минус» меняет смысл фразы на прямо противоположный. Когда я говорю: «Денис получил минус три конфеты», - это на самом деле означает, что у Дениса на три конфеты убыло. Слово «плюс», напротив, подтверждает смысл фразы. «Денис получил плюс пять конфет» означает то же самое, что и просто «Денис получил пять конфет».

Итак, сперва Денис получил минус три конфеты. Значит, у Дениса стало на минус три конфеты больше, чем было вначале. Для краткости можно сказать: у Дениса стало минус три конфеты.

Потом Денис получил плюс пять конфет. Легко сообразить, что у Дениса стало плюс две конфеты. Значит,

− 3 + 5 = + 2.

Потом Денис получил минус девять конфет. И вот сколько конфет у него стало:

− 3 + 5 − 9 = + 2 − 9 = − 7.

Наконец Денису досталось еще +6 конфет. И всего конфет стало:

− 3 + 5 − 9 + 6 = + 2 − 9 + 6 = − 7 + 6 = − 1.

На привычном языке это означает, что в конце концов у Дениса оказалось на одну конфету меньше, чем было вначале. Задача решена.

Трюк со знаками «+» или «−» применяется очень широко. Числа со знаком «+» называются положительными . Числа со знаком «−» называются отрицательными . Число 0 (ноль) не является ни положительным, ни отрицательным, потому что +0 ничем не отличается от −0. Таким образом, мы имеем дело с числами из ряда

..., −5, −4, −3, −2, −1, 0, +1, +2, +3, +4, +5, ...

Такие числа называются целыми числами . А те числа, у которых вообще нет никакого знака и с которыми мы имели дело до сих пор, называются натуральными числами (только ноль не относится к натуральным числам).

Целые числа можно представить себе как ступеньки лестницы. Число ноль - это лестничная площадка, находящаяся вровень с улицей. Отсюда можно ступенька за ступенькой подняться наверх, к более высоким этажам, а можно и спуститься вниз, в подвал. До тех пор, пока нам не нужно заходить в подвал, нам вполне достаточно одних только натуральных чисел и нуля. Натуральные числа - это, по сути дела, то же самое, что положительные целые числа.

Строго говоря, целое число - это не номер ступеньки, а команда на перемещение по лестнице. Например, число +3 говорит, что следует подняться на три ступеньки вверх, а число −5 означает, что надо спуститься на пять ступенек вниз. Просто за номер ступеньки принимают такую команду, которая перемещает нас на данную спупеньку, если мы начинаем движение с нулевого уровня.

Вычисления с целыми числами легко проделывать, просто мысленно прыгая вверх или вниз по ступенькам - если, конечно, не потребуется делать слишком большие прыжки. Но как быть, когда надо прыгнуть на сто или более ступенек? Ведь не будем же мы рисовать такую длиннющую лестницу!

А впрочем, почему бы и нет? Мы можем нарисовать длинную лестницу с такого большого расстояния, на котором отдельные ступеньки уже неразличимы. Тогда наша лестница превратиться просто в одну прямую линию. А чтобы ее удобнее было поместить на страницу, нарисуем ее без наклона и отдельно отметим положение ступеньки 0.

Поучимся вначале прыгать по такой прямой на примере выражений, значения которых мы уже давно умеем вычислять. Пусть требуется найти

Строго говоря, раз уж мы имеем дело с целыми числами, то нам следовало бы написать

Но у положительного числа, стоящего в начале строки знак «+» обычно не ставят. Прыжки по лестнице выглядят приблизительно так:

Вместо двух больших прыжков нарисованных над прямой (+42 и +53), можно сделать один прыжок, нарисованный под прямой, причем длина этого прыжка, конечно, равна

Такого рода рисуночки на математическом языке принято называть диаграммами. Вот как выглядит диаграмма для привычного нам примера на вычитание

Вначале мы сделали большой прыжок вправо, потом прыжок поменьше влево. В результате мы так и остались справа от нуля. Но возможна и другая ситуация, как, например, в случае выражения

На этот раз прыжок враво оказался короче прыжка влево: мы перелетели через ноль и оказались в «подвале» - там, где находятся ступеньки с отрицательными номерами. Вглядимся попристальнее в наш прыжок влево. Всего мы преодолели 95 ступенек. После того как мы преодолели 53 ступеньки, мы поравнялись с отметкой 0. Спрашивается сколько ступенек мы предолели после этого? Ну, конечно

Таким образом, оказавшись на ступеньке 0, мы спустились вниз еще на 42 ступеньки, а значит, в конце концов мы пришли на ступеньку с номером −42. Итак,

53 − 95 = −(95 − 53) = −42.

Подобным же образом, рисуя диаграммы, легко установить что

−42 − 53 = −(42 + 53) = −95;

−95 + 53 = −(95 − 53) = −42;

и, наконец,

−53 + 95 = 95 − 53 = 42.

Таким образом, мы научились свободно путешествовать по всей лестнице целых чисел.

Рассмотрим теперь такую задачу. Денис и Матвей обмениваются фантиками. Вначале Денис дал Матвею 3 фантика, а потом взял у него 5 фантиков. Сколько фантиков в итоге получил Матвей?

Но раз Денис получил 2 фантика, то Матвей получил −2 фантика. К прибыли Дениса мы приписали минус и получили прибыль Матвея. Наше решение можно записать в виде единственного выражения

−(−3 + 5) = −2.

Тут всё просто. Но давайте слегка видоизменим условие задачи. Пусть Денис дал сперва Матвею 5 фантиков, а потом взял у него 3 фантика. Спрашивается, опять-таки, сколько фантиков в итоге получил Матвей?

Снова вначале рассчитаем «прибыль» Дениса:

−5 + 3 = −2.

Значит, Матвей получил 2 фантика. Но как теперь наше решение записать в виде единственного выражения? Что бы такое приписать к отрицательному числу −2, чтобы получить положительное число 2? Оказывается, и на этот раз надо приписать знак минус. Математики очень любят единообразие. Они стремятся к тому, чтобы решение похожих задач записывались в виде похожих выражений. В данном случае решение выглядит так:

−(−5 + 3) = −(−2) = +2.

Так уж математики договорились: если к положительному числу приписать минус, то оно превращается в отрицательное, а если к отрицательному числу приписать минус, то оно превращается в положительное. Это очень логично. В конце концов, спуститься на минус две ступеньки вниз это то же самое, что подняться на плюс две ступеньки вверх. Итак,

−(+2) = −2;
−(−2) = +2.

Для полноты картины отметим еще, что

+(+2) = +2;
+(−2) = −2.

Это дает нам возможность по-новому взглянуть на давно привычные вещи. Пусть дано выражение

Смысл этой записи можно представлять себе по-разному. Можно, по-старинке, считать, что из положительного числа +5 отнимается положительное число +3:

В этом случае +5 называется уменьшаемым , +3 - вычитаемым , а всё выражение - разностью . Именно так учат в школе. Однако слова «уменьшаемое» и «вычитаемое» нигде, кроме школы, не употребляются и их можно забыть после итоговой контрольной работы. Про эту же самую запись можно сказать, что к положительному числу +5 прибавляется отрицательное число −3:

Числа +5 и −3 называются слагаемыми , а всё выражение - суммой . В данной сумме только два слагаемых, но, вообще, сумма может состоять из скольких угодно слагаемых. Подобным же образом, выражение

можно с одинаковым правом рассматривать как сумму двух положительных чисел:

и как разность положительного и отрицательного чисел:

(+5) − (−3).

После того как мы познакомились с целыми числами, нам обязательно надо уточнить правила раскрытия скобок. Если перед скобками стоит знак «+», то такие скобки можно просто стереть, и все числа в них сохраняют свои знаки, например:

+(+2) = +2;
+(−2) = −2;
+(−3 + 5) = −3 + 5;
+(−3 − 5) = −3 − 5;
+(5 − 3) = 5 − 3
и так далее.

Если же перед скобками стоит знак «−», то стирая скобку, мы должны также поменять знаки у всех чисел, стоявших в ней:

−(+2) = −2;
−(−2) = +2;
−(−3 + 5) = +3 − 5 = 3 − 5;
−(−3 − 5) = +3 + 5 = 3 + 5;
−(5 − 3) = −(+5 − 3) = −5 + 3;
и так далее.

При этом полезно держать в голове задачу про обмен фантиками между Денисом и Матвеем. Например, последнюю строчку можно получить так. Считаем, что Денис вначале взял 5 фантиков у Матвея, а потом еще −3. Всего Денис получил 5 − 3 фантиков, а Матвей - то же самое число, но с противоположным знаком, то есть −(5 − 3) фантиков. Но ведь эту же задачу можно решить и другим способом, имея в виду, что всякий раз, когда Денис получает, Матвей отдает. Значит, вначале Матвей получил −5 фантиков, а потом еще +3, что в итоге дает −5 + 3.

Подобно натуральным числам, целые числа можно сравнивать между собой. Зададимся, например, вопросом: какое число больше: −3 или −1? Посмотрим на лестницу с целыми числами, и сразу станет ясно, что −1 больше, чем −3, и, значит, −3 меньше, чем −1:

−1 > −3;
−3 < −1.

А теперь давайте уточним: насколько −1 больше, чем −3? Иными словами, на сколько ступенек надо подняться, чтобы перейти со ступеньки −3 на ступеньку −1? Ответ на этот вопрос можно записать в виде разности чисел −1 и −3:

− 1 − (−3) = −1 + 3 = 3 − 1 = 2.

Прыгая по ступенькам, легко проверить, что это так. А вот еще один любопытный вопрос: насколько число 3 больше числа 5? Или, что то же самое: на сколько ступенек надо подняться вверх, чтобы перейти со ступеньки 5 на ступеньку 3? Еще недавно этот вопрос поставил бы нас в тупик. Но теперь мы легко можем выписать ответ:

3 − 5 = − 2.

Действительно, если мы находимся на ступеньке 5 и поднимемся вверх еще на −2 ступеньки, то окажемся как раз на ступеньке 3.

Задачи

2.3.1. Какой смысл имеют следующие фразы?

Денис дал папе минус три конфеты.

Матвей старше Дениса на минус два года.

Чтобы попасть в нашу квартиру, надо спуститься на минус два этажа вниз.

2.3.2. Имеют ли смысл такие фразы?

У Дениса минус три конфеты.

На лугу пасется минус две коровы.

Замечание. Эта задача не имеет однозначного решения. Не будет, конечно, ошибкой утверждать, что данные высказывания бессмысленны. И в то же время им можно придать вполне ясный смысл. Допустим, у Дениса есть большая коробка, доверху наполненная конфетами, но содержимое этой коробки - не в счет. Или допустим, что две коровы из стада не вышли пастись на луг, а по какой-то причине остались в коровнике. Стоит иметь в виду, что и самые привычные фразы могут оказаться неоднозначными:

У Дениса три конфеты.

Это высказывание не исключает, что у Дениса припрятана где-то еще огромная коробка с конфетами, но о тех конфетах просто умалчивается. Точно так же, когда я говорю: «У меня пять рублей», - я не имею в виду, что это и есть всё мое состояние.

2.3.3. Кузнечик прыгает по лестнице, начиная с этажа, где находится квартира Дениса. Сначала он прыгнул на 2 ступеньки вниз, потом на 5 ступенек вверх, и наконец на 7 ступенек вниз. На сколько ступенек и в каком направлении переместился кузнечик?

2.3.4. Найти значения выражений:

− 6 + 10;
− 28 + 76;
и т.п.

− 6 + 10 = 10 − 6 = 4.

2.3.5. Найти значения выражений:

8 − 20;
34 − 98;
и т.п.

8 − 20 = − (20 − 8) = − 12.

2.3.6. Найти значения выражений:

− 4 − 13;
− 48 − 53;
и т.п.

− 4 − 13 = − (4 + 13) = − 17.

2.3.7. Для следующих выражений найти значения, проводя вычисления в том порядке, который задается скобками. Затем раскрыть скобки и убедиться, что значения выражений остались прежними. Составить задачи про конфеты, которые решаются таким образом.

25 − (−10 + 4);
25 + (− 4 + 10);
и т.п.

25 − (− 10 + 4) = 25 − (−(10 − 4)) = 25 − (−6) = 25 + 6 = 31.

25 − (− 10 + 4) = 25 + 10 − 4 = 35 − 4 = 31.

«У Дениса было 25 конфет. Он отдал папе минус десять конфет, а Матвею четыре конфеты. Сколько конфет у него стало?»