Вихревое электрическое поле правило ленца самоиндукция индуктивность. Вихревое электрическое поле. Самоиндукция. ЭДС самоиндукции. Индуктивность. Энергия магнитного поля. Тема: Электромагнитная индукция

Переменное магнитное поле порождает инду­цированное электрическое поле . Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами , как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя , подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле , подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов - бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле
(вихревое электр. поле)

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.

Тема: Электромагнитная индукция

Урок: Вихревое электрическое поле

Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.

Закон электромагнитной индукции

При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.

Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта - вихревого электрического поля .

Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток - значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.

Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.

Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).


Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым - таким же, как и магнитное поле.

Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.

Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, - ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.

В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Электронный учебник физики ().
  2. Классная физика ().
  3. Xvatit.com ().
  1. Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
  2. * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков - 4 см?

Как же возникает электродвижущая сила в проводнике, который находится в переменном магнитном поле? Что такое вихревое электрическое поле, его природа и причины возникновения? Какие основные свойства этого поля? На все эти и многие другие вопросы ответит сегодняшний урок.

Тема: Электромагнитная индукция

Урок: Вихревое электрическое поле

Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.

Закон электромагнитной индукции

При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.

Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта - вихревого электрического поля .

Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е. из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток - значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.

Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды. Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер. Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды. Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.

Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое. Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике. Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).


Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде. Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля. Следовательно, это электрическое поле является вихревым - таким же, как и магнитное поле.

Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю. Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю. В случае вихревого поля работа по замкнутому контуру будет отлична от нуля. Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга. Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.

Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, - ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.

В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами. После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля. Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е. отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
  1. Электронный учебник физики ().
  2. Классная физика ().
  3. Xvatit.com ().
  1. Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
  2. * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков - 4 см?

«Физика - 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией .

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля , созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.


Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: w м ~ В 2 ,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w э ~ Е 2 .

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.

Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

где R - сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле - создается неподвижными электрическими зарядами, силовые линии поля разомкнуты - -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле (вихревое электр. поле) - вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.


Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах - магнитных изоляторах вихревые токи практически не возникают.


Использование вихревых токов

Нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

Это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.




Электромагнитное поле - Класс!ная физика


Любознательным

Сальто-мортале жука-щелкуна

Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25, при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается в воздухе и приземляется уже на ноги. 400 g - удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности, которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?

Оказывается...
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться, чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.