Изменение давления газа при изменении массы. Законы идеальных газов. Примеры решения задач

Исследования зависимости давления газа от температуры при условии неизменного объема определенной массы газа впервые были произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746 – 1823). Можно воспроизвести эти опыты в упрощенном виде, нагревая газ в большой колбе, соединенной с ртутным манометром М в виде узкой изогнутой трубки (рис. 6).

Пренебрежем ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, будем отмечать температуру газа по термометру Т , а соответствующее давление – по манометру М . Наполнив сосуд тающим льдом, измерим давление p 0 , соответствующее температуре 0 °C.

Опыты подобного рода показали следующее.

1. Приращение давления некоторой массы составляет определенную часть α того давления, которая имела данная масса газа при температуре 0 °C. Если давление при 0 °C обозначить через p 0 , то приращение давления газа при нагревании на 1 °C есть p 0 +αp 0 .

При нагревании на τ приращение давления будет в τ раз больше, т.е. приращение давления пропорционально приращению температуры .

2. Величина α, показывающая, на какую часть давления при 0 °C увеличивается давление газа при нагревании на 1 °C, имеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно 1/273 °C -1 . Величину α называют температурным коэффициентом давления. Таким образом, температурный коэффициент давления для всех газов имеет одно и то же значение, равное 1/273 °C -1 .

Давление некоторой массы газа при нагревании на 1 °C при неизменном объеме увеличивается на 1/273 часть давления, которое эта масса газа имела при 0 °C (закон Шарля ).

Следует, однако, иметь в виду, что температурным коэффициентом давления газа, полученный при измерении температуры по ртутному манометру, не в точности одинаков для разных температур: закон Шарля выполняется только приближенно, хотя и с очень большой степенью точности.

Формула, выражающая закон Шарля. Закон Шарля позволяет рассчитывать давление газа при любой температуре, если известно его давление при температуре
0 °C. Пусть давление данной массы газа при 0 °C в данном объеме есть p 0 , а давление того же газа при температуре t есть p . Приращение температуры есть t , следовательно, приращение давления равно αp 0 t и искомое давление

Этой формулой можно пользоваться также и в том случае, если газ охлажден ниже 0 °C; при этом t будет иметь отрицательные значения. При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприменим и формула (2) перестает быть годной.

Закон Шарля с точки зрения молекулярной теории. Что происходит в микромире молекул, когда температура газа меняется, например, когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления данного газа: во-первых, могло увеличиться число ударов молекул за единицу времени на единицу площади, во-вторых, мог увеличиться импульс, передаваемый при ударе в стенку одной молекулой. И та, и другая причина требуют увеличения скорости молекул (напоминаем, что объем данной массы газа остается неизменным). Отсюда становится ясным, что повышение температуры газа (в макромире) есть увеличение средней скорости беспорядочного движения молекул (в микромире).

Некоторые типы электрических ламп накаливания наполняют смесью азота и аргона. При работе лампы газ в ней нагревается примерно до 100 °C. Какое должно быть давление смеси газов при 20 °C, если желательно, чтобы при работе лампы давление газа в ней не превышало атмосферного? (ответ: 0,78 кгс/см 2)

На манометрах ставится красная черта, указывающая предел, свыше которого увеличение газа опасно. При температуре 0 °C манометр показывает, что избыток давления газа над давлением наружного воздуха равен 120 кгс/см 2 . Будет ли достигнута красная черта при повышении температуры до 50 °C, если красная черта стоит на 135 кгс/см 2 ? Давление наружного воздуха принять равным 1 кгс/см 2 (ответ: стрелка манометра перейдет за красную черту)

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Уравнение состояния идеального газа определяет связь температуры, объема и давления тел.

  • Позволяет определить одну извеличин, характеризующих состояние газа, по двум другим (используется в термометрах);
  • Определить, как протекают процессы при определенных внешних условиях;
  • Определить, как меняется состояние системы, если она совершает работу или получает тепло от внешних тел.

Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа)

- универсальная газовая постоянная , R = kN A

Уравнение Клапейрона (объединенный газовый закон)

Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный.

Количественные зависимости между двумя параметрами газа одной и той же массы при неизменном значении третьего параметра называют газовыми законами.

Газовые законы

Закон Бойля - Мариотта

Первый газовый закон был открыт английским ученым Р. Бойлем (1627-1691) в 1660 г. Работа Бойля называлась «Новые эксперименты, касающиеся воздушной пружины». И действительно, газ ведет себя подобно сжатой пружине, в этом можно убедиться, сжимая воздух в обычном велосипедном насосе.

Бойль изучал изменение давления газа в зависимости от объема при постоянной температуре. Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим (от греческих слов isos - равный, therme - тепло).

Независимо от Бойля несколько позднее французский ученый Э. Мариотт (1620-1684) пришел к тем же выводам. Поэтому найденный закон получил название закона Бойля-Мариотта.

Произведение давления газа данной массы на его объем постоянно, если температура не меняется

pV = const

Закон Гей-Люссака

Сообщение об открытии еще одного газового закона было опубликовано лишь в 1802 г., спустя почти 150 лет после открытия закона Бойля-Мариотта. Закон, определяющий зависимость объема газа от температуры при постоянном давлении (и неизменной массе), был установлен французским ученым Гей-Люссаком (1778- 1850).

Относительное изменение объема газа данной массы при постоянном давлении прямо пропорционально изменению температуры

V = V 0 αT

Закон Шарля

Зависимость давления газа от температуры при постоянном объеме экспериментально установил французский физик Ж. Шарль (1746-1823) в 1787 г.

Ж. Шарль в 1787 г., т. е. раньше, чем Гей-Люссак, установил и зависимость объема от температуры при постоянном давлении, но он своевременно не опубликовал своих работ.

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

p = p 0 γT

Название Формулировка Графики

Закон Бойля-Мариотта – изотермическ ий процесс

Для данной массы газа произведение давления на объем постоянно, если температура не меняется

Закон Гей-Люссака – изобарный процесс

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Убе­дим­ся в том, что мо­ле­ку­лы газа дей­стви­тель­но рас­по­ло­же­ны до­ста­точ­но да­ле­ко друг от друга, и по­это­му газы хо­ро­шо сжи­ма­е­мы.Возь­мем шприц и рас­по­ло­жим его пор­шень при­бли­зи­тель­но по­се­ре­дине ци­лин­дра. От­вер­стие шпри­ца со­еди­ним с труб­кой, вто­рой конец ко­то­рой на­глу­хо за­крыт. Таким об­ра­зом, неко­то­рая пор­ция воз­ду­ха будет за­клю­че­на в ци­лин­дре шпри­ца под порш­нем и в труб­ке.В ци­лин­дре под порш­нем за­клю­че­но неко­то­рое ко­ли­че­ство воз­ду­ха. Те­перь по­ста­вим на по­движ­ный пор­шень шпри­ца груз. Легко за­ме­тить, что пор­шень немно­го опу­стит­ся. Это озна­ча­ет, что объем воз­ду­ха умень­шил­ся Дру­ги­ми сло­ва­ми, газы легко сжи­ма­ют­ся. Таким об­ра­зом, между мо­ле­ку­ла­ми газа име­ют­ся до­ста­точ­но боль­шие про­ме­жут­ки. По­ме­ще­ние груза на пор­шень вы­зы­ва­ет умень­ше­ние объ­е­ма газа. С дру­гой сто­ро­ны, после уста­нов­ки груза пор­шень, немно­го опу­стив­шись, оста­нав­ли­ва­ет­ся в новом по­ло­же­нии рав­но­ве­сия. Это озна­ча­ет, что сила дав­ле­ния воз­ду­ха на пор­шень уве­ли­чи­ва­ет­ся и снова урав­но­ве­ши­ва­ет воз­рос­ший вес порш­ня с гру­зом. А по­сколь­ку пло­щадь порш­ня при этом оста­ет­ся неиз­мен­ной, мы при­хо­дим к важ­но­му за­клю­че­нию.

При умень­ше­нии объ­е­ма газа его дав­ле­ние уве­ли­чи­ва­ет­ся.

Будем пом­нить при этом, что масса газа и его тем­пе­ра­ту­ра в ходе опыта оста­ва­лись неиз­мен­ны­ми . Объ­яс­нить за­ви­си­мость дав­ле­ния от объ­е­ма можно сле­ду­ю­щим об­ра­зом. При уве­ли­че­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми уве­ли­чи­ва­ет­ся. Каж­дой мо­ле­ку­ле те­перь нужно прой­ти боль­шее рас­сто­я­ние от од­но­го удара со стен­кой со­су­да до дру­го­го. Сред­няя ско­рость дви­же­ния мо­ле­кул оста­ет­ся неиз­мен­ной.Сле­до­ва­тель­но, мо­ле­ку­лы газа реже уда­ря­ют­ся о стен­ки со­су­да, а это при­во­дит к умень­ше­нию дав­ле­ния газа. И, на­о­бо­рот, при умень­ше­нии объ­е­ма газа его мо­ле­ку­лы чаще уда­ря­ют­ся о стен­ки со­су­да, и дав­ле­ние газа уве­ли­чи­ва­ет­ся. При умень­ше­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми умень­ша­ет­ся

Зависимость давления газа от температуры

В преды­ду­щих опы­тах тем­пе­ра­ту­ра газа оста­ва­лась неиз­мен­ной, и мы изу­ча­ли из­ме­не­ние дав­ле­ния вслед­ствие из­ме­не­ния объ­е­ма газа. Те­перь рас­смот­рим слу­чай, когда объем газа оста­ет­ся по­сто­ян­ным, а тем­пе­ра­ту­ра газа из­ме­ня­ет­ся. Масса при этом также оста­ет­ся неиз­мен­ной. Со­здать такие усло­вия можно, по­ме­стив неко­то­рое ко­ли­че­ство газа в ци­линдр с порш­нем и за­кре­пив пор­шень

Из­ме­не­ние тем­пе­ра­ту­ры дан­ной массы газа при неиз­мен­ном объ­е­ме

Чем выше тем­пе­ра­ту­ра, тем быст­рее дви­жут­ся мо­ле­ку­лы газа .

Сле­до­ва­тель­но,

Во-пер­вых, чаще про­ис­хо­дят удары мо­ле­кул о стен­ки со­су­да;

Во-вто­рых, сред­няя сила удара каж­дой мо­ле­ку­лы о стен­ку ста­но­вит­ся боль­ше. Это при­во­дит нас к еще од­но­му важ­но­му за­клю­че­нию. При уве­ли­че­нии тем­пе­ра­ту­ры газа его дав­ле­ние уве­ли­чи­ва­ет­ся. Будем пом­нить, что дан­ное утвер­жде­ние спра­вед­ли­во, если масса и объем газа в ходе из­ме­не­ния его тем­пе­ра­ту­ры оста­ют­ся неиз­мен­ны­ми.

Хранение и транспортировка газов.

За­ви­си­мость дав­ле­ния газа от объ­е­ма и тем­пе­ра­ту­ры часто ис­поль­зу­ет­ся в тех­ни­ке и в быту. Если тре­бу­ет­ся пе­ре­вез­ти зна­чи­тель­ное ко­ли­че­ство газа из од­но­го места в дру­гое, или когда газы необ­хо­ди­мо дли­тель­но хра­нить, их по­ме­ща­ют в спе­ци­аль­ные проч­ные ме­тал­ли­че­ские со­су­ды. Эти со­су­ды вы­дер­жи­ва­ют вы­со­кие дав­ле­ния, по­это­му с по­мо­щью спе­ци­аль­ных на­со­сов туда можно за­ка­чать зна­чи­тель­ные массы газа, ко­то­рые в обыч­ных усло­ви­ях за­ни­ма­ли бы в сотни раз боль­ший объем. По­сколь­ку дав­ле­ние газов в бал­ло­нах даже при ком­нат­ной тем­пе­ра­ту­ре очень ве­ли­ко, их ни в коем слу­чае нель­зя на­гре­вать или любым спо­со­бом пы­тать­ся сде­лать в них от­вер­стие даже после ис­поль­зо­ва­ния.

Газовые законы физики.

Физика реального мира в расчетах часто сводится к несколько упрощенным моделям. Наиболее применим такой подход к описанию поведения газов. Правила, установленные экспериментальным путем, были сведены различными исследователями в газовые законы физики и послужили появлению понятия «изопроцесс». Это такое прохождение эксперимента, при котором один параметр сохраняет постоянное значение. Газовые законы физики оперируют основными параметрами газа, точнее, его физического состояния. Температурой, занимаемым объемом и давлением. Все процессы, которые относятся к изменению одного или нескольких параметров и называются термодинамическими. Понятие изостатического процесса сводится к утверждению, что во время любого изменения состояния один из параметров остается неизменным. Это поведение так называемого «идеального газа», которое, с некоторыми оговорками, может быть применено к реальному веществу. Как отмечено выше, в реальности все несколько сложнее. Однако, с высокой достоверностью поведение газа при неизменной температуре характеризуется с помощью закона Бойля-Мариотта, который гласит:

Произведение объема на давление газа - величина постоянная. Это утверждение считается верным в том случае, когда температура не изменяется.

Этот процесс носит название «изотермический». При этом меняются два из трех исследуемых параметров. Физически все выглядит просто. Сожмите надутый шарик. Температуру можно считать неизменной. А в результате внутри шара повысится давление при уменьшении объема. Величина произведения двух параметров останется неизменной. Зная исходное значение хотя бы одного из них, можно легко узнать показатели второго. Еще одно правило в списке «газовые законы физики» - изменение объема газа и его температуры при одинаковом давлении. Это называется «изобарный процесс» и описывается с помощью закона Гей-Люсака. Соотношение объема и температуры газа неизменно. Это верно при условии постоянного значения давления в данной массе вещества. Физически тоже все просто. Если хоть раз заряжали газовую зажигалку или пользовались углекислотным огнетушителем, видели действие этого закона «вживую». Газ, выходящий из баллончика или раструба огнетушителя, быстро расширяется. Его температура резко падает. Можно обморозить кожу рук. В случае с огнетушителем - образуются целые хлопья углекислотного снега, когда газ под воздействием низкой температуры быстро переходит в твердое состояние из газообразного. Благодаря закону Гей-Люсака, можно легко узнать температуру газа, зная его объем в любой момент времени. Газовые законы физики описывают и поведение при условии неизменного занимаемого объема. Такой процесс называется изохорным и описывается законом Шарля, который гласит: При неизменном занимаемом объеме, отношение давления к температуре газа остается неизменным в любой момент времени. В реальности все знают правило: нельзя нагревать баллончики от освежителей воздуха и прочие сосуды, содержащие газ под давлением. Дело кончается взрывом. Происходит именно то, что описывает закон Шарля. Растет температура. Одновременно растет давление, так как объем не меняется. Происходит разрушение баллона в момент, когда показатели превышают допустимые. Так что, зная занимаемый объем и один из параметров, можно легко установить значение второго. Хотя газовые законы физики описывают поведение некой идеальной модели, их можно легко применять для предсказания поведения газа в реальных системах. Особенно в быту, изопроцессы могут легко объяснить, как работает холодильник, почему из баллончика освежителя вылетает холодная струя воздуха, из-за чего лопается камера или шарик, как работает разбрызгиватель и так далее.

Основы МКТ.

Молекулярно-кинетическая теория вещества - способ объяснения тепловых явлений , который связывает протекание теп­ловых явлений и процессов с особенностя­ми внутреннего строения вещества и изу­чает причины, которые обусловливают теп­ловое движение. Эта теория получила при­знание лишь в XX в., хотя исходит из древнегреческого атомного учения о стро­ении вещества.

объясняет тепловые явле­ния особенностями движения и взаимодействия микрочастиц вещества

Основывается на законах классичес­кой механики И. Ньютона, которые позво­ляют вывести уравнение движения микро­частиц. Тем не менее в связи с огромным их количеством (в 1 см 3 вещества находится около 10 23 молекул) невозможно ежесекундно с помощью законов классичес­кой механики однозначно описать движение каждой молекулы или атома. Поэтому для построения современной теории теплоты ис­пользуют методы математической статистики, которые объясняют течение тепловых явле­ний на основании закономерностей поведе­ния значительного количества микрочастиц.

Молекулярно-кинетическая тео­рия построена на основании обобщенных уравнений движе­ния огромного количества мо­лекул.

Молекулярно-кинетическая теория объяс­няет тепловые явления с позиций пред­ставлений о внутреннем строении вещества, то есть выясняет их природу. Это более глубокая, хотя и более сложная теория, которая объясняет сущность тепловых явле­ний и обусловливает законы термодинамики.

Оба существующих подхода - термодинамический подход и молекулярно-кинетическая теория - научно доказаны и взаимно дополняют друг друга, а не проти­воречат друг другу. В связи с этим изучение тепловых явлений и процессов обычно рассматривается с позиций или моле­кулярной физики, или термодинамики, в зависимости от того, как проще изложить материал.

Термодинамический и молекулярно-кинетический подходы взаимно дополняют друг друга при объяснении тепловых явлений и процессов.