Пол по сухой технологии. Сухая стяжка пола своими руками. Почему важно соблюдать технологию

Для получения ровной поверхности, выполняют стяжку пола: сухую или мокрую. У каждого из вариантов есть свои плюсы, но немало и минусов. Традиционно многие мастера предпочитают «мокрый» способ, предполагающий заливку полужидкой смесью. К его недостаткам относят трудоемкость, большое количество грязи, потребуется минимум 2-3 недели для высыхания. Цементный слой создает дополнительную нагрузку на перекрытие.

Отличной альтернативой «мокрому» методу является «сухой». Он позволяет с меньшими затратами времени и сил получить идеальное основание. В дальнейшем его можно использовать для укладки паркета, линолеума, ковролина, плитки. Такая технология приобретает все большую популярность. Выполнить сухую стяжка пола своими руками не составит особого труда.

Название «сухая стяжка пола» говорит о том, что при ее выполнении не используется вода. Классический «мокрый» вариант предполагает применение полужидкой смеси из песка, цемента и воды. За счет силы тяжести, заставляющей жидкость равномерно распределяться по занимаемому ею объему, обеспечивается идеально ровная поверхность. Казалось бы, что можно придумать лучше? Однако специалистам удалось создать принципиально новую технологию, реализация которой доступна обычному человеку.

Пол, выполненный на основе сухой стяжки, представляет собой многослойную конструкцию. Первым слоем идет сухая засыпка, затем гипсоволокнистые листы (ГВЛ). Такая сухопрессованная стяжка пола создает отличную звукоизоляцию, хорошо сохраняет тепло. На ее создание потребуется не боле 2-х дней в зависимости от объемов работ. Единственное ограничение для выполнения сухой стяжки пола своими руками – влажные помещения. Впитывая в себя влагу из воздуха, керамзит или другой наполнитель, теряет свою форму, разбухает. Как следствие, пол перестает быть ровным, деформируется финишная отделка.

Производители предлагают несколько вариантов сухой смеси для стяжки пола. Они отличаются сложностью приготовления и назначением. Их выбирают с учетом особенностей основания:

  • Альфа – подойдет для ровных перекрытий;
  • Бета – для ровного основания, покрытого слоем пористого или звукоизоляционного материала;
  • Вега – укладывают на выравнивающий, звукоизоляционный слой;
  • Гамма – предназначен для укладки на выравнивающий слой засыпки, после укладки теплоизоляционных материалов с прослойкой из гипсолистов.

Готовая стяжка чем-то напоминает слоеный пирог. Ее можно укладывать на бетонное и даже деревянное основание. Внутри нее можно смело прокладывать коммуникации. Она прекрасно подходит для монтажа теплого пола, позитивно влияет на его энергоэффективность.

Технология сухой стяжки пола

Прежде чем приступить непосредственно к работам, потребуется подготовить материалы: гидроизоляционную пленку, керамзит, ГВЛ, профили для маячков. Крепление листов выполняют, саморезами, дополнительно фиксируют строительным клеем. Сухая стяжка пола выполняется поэтапно.

Подготовительный этап. Обустройство пола начинают после окончания установки сантехники, приладки труб, электросетей, завершения других работ. Перед укладкой нового покрытия, следует снять старые материалы. Затем выровнять основание, заделать цементной смесью щели, выступы, сколы. Когда «грязный» этап пройден, нужно тщательно вымести образовавшийся мусор, собрать пыль. Наметить на стенах высоту расположения стяжки.

Этап второй – укладка изоляции. Технология сухой стяжки пола включает устройство гидроизоляционного слоя из полиэтилена или пергамина. Лучше использовать целое полотно. Если укладку ведут кусками, они должны заходить друга на друга с нахлестом не менее 20 см. На стену пленку заводят до отметки уровня пола (минимум 6 см). Изоляцию выбирают, учитывая особенности перекрытия:

  • бетон ‑ берут полиэтилен толщиной 200-250 мкм;
  • дерево ‑ лучше использовать пергамин или влагоизоляционную бумагу, пропитанную битумом.

Задача влагоизоляционного слоя: защитить засыпку от разбухания при впитывании воды или пара.

Выполняя сухую стяжку пола своими руками, не следует забывать о звукоизоляции. Ее выполняют из стекловаты, пенопропилена или минеральной ваты, приклеивая ленту по периметру стен. Такая полоса защитит от посторонних шумов, она препятствует деформации пола при тепловых расширениях.

Этап третий – выставление маяков. Не используя приспособления, просто невозможно ровно уложить сыпучую смесь. Надеяться на то, что потом удастся выровнять ее уровнем, не стоит: каждый проход по вязкому основанию оставляет следы от ног. Сложное оборудование не понадобится, достаточно профилей П-образной формы. Их поворачивают вверх острой кромкой, выставляют по уровню, закрепляют саморезами. Между ними потом будут засыпать керамзит.

Этап основной – обустройство пола. Первым делом засыпают смесь, стараясь создать однородный слой. Его делают из керамзита, мелкозернистого шлака, кварцевого песка или приобретают готовую смесь. Количество засыпки определяется неровностями пола. Толщина слоя в среднем достигает 4-х см, не рекомендуется делать ее более 6 см. На подготовленный пол укладывают листы, закрепляют их между собой. Лист не следует вдавливать в песок, также не нужно его сдвигать. Укладку ГВЛ на засыпанную поверхность начинают от двери. Если листы идут поверх изоляционного материала, то движутся от противоположной стены к двери.

Листовой материал кладут со смещением (как кирпичи), чтобы обеспечить полу прочность и устойчивость.

Крепление листов выполняют саморезами по периметру, располагая их через 15-20 см. Дополнительно можно закрепить полотна на клей. Неровности заделывают шпаклевкой, затем шлифуют. Поверхность листов покрывают битумной изоляцией. Теперь можно приступать к финишной отделке. Хотя лучше дать полу 2-3 дня, чтобы «отлежаться».

Плюсы и минусы

Сухая стяжка пола заслужила свою популярность благодаря многим присущим ей достоинствам. Главное из них – она не нуждается в просушке. После окончания укладки не придется ожидать 45 суток, как в случае с бетонным основанием. Уже на следующий день можно стелить линолеум, класть плитку или укладывать паркетную доску. Еще один немаловажный плюс – небольшой вес покрытия. Создаваемая им дополнительная нагрузка на перекрытие минимальна. Время, которое придется затратить на выполнение, зависит только от площади помещения и оперативности исполнителя. Такой слоистый «пирог» улучшает звуко и теплоизоляцию.

Для полноты картины необходимо отметить минусы сухой стяжки пола. Их немного, но они есть. Такое покрытие не рекомендовано для неотапливаемых помещений, ванных комнат, душевых. Для них подойдет традиционная или полусухая стяжка. Разобравшись с плюсами и минусами, можно смело приступать к работе. Для жилых помещений этот вариант идеален. Его небольшие недостатки с лихвой компенсируются простотой и оперативностью монтажа. Его выполнение по силам даже одному человеку. Только при укладке ГВЛ лучше воспользоваться помощью еще одного человека, так как одному справляться с ними неудобно.

Как сделать сухую стяжку пола

Начиная ремонт, каждый мастер решает вопрос: что можно сделать самостоятельно, а какие работы потребуют привлечения специалистов? Сухая стяжка пола вполне выполнима своими руками. Технология выполнения простая, не требует применения сложного оборудования. Если внимательно изучить порядок выполнения, то сложностей не возникнет. Здесь важно придерживаться принятых правил, использовать материалы рекомендуемые для сухой стяжки пола.

Частой ошибкой мастеров является пренебрежение прокладкой демпферной ленты. Ее отсутствие даст о себе знать сразу после начала эксплуатации пола: скрипы, звуки не дадут наслаждаться новым ремонтом. Ленту можно приклеить на ПВА, двухсторонним скотчем или закрепить непосредственно к полиэтилену степлером.

Еще один немаловажный вопрос: что выбрать в качестве засыпки? Нет жесткого требования – песок, керамзит или шлак. Эти материалы имеют близкие характеристики: не горят, держат тепло, не дают усадку. Толщина слоя должны быть не менее 3-х, но не более 6 см. Если пол ровный, без нее вообще можно обойтись. Тогда вместо засыпки используют плиты экструзионного пенополистирола.

Приступая к монтажу сухой стяжки пола из листов ГВЛ, важно избежать непосредственного хождения по засыпке. Поэтому листы начинают класть сразу от двери. Когда уложен один лист, пол еще «ходит» под ногами. Не нужно расстраиваться: каждый последующий лист придает конструкции требуемую устойчивость.

Работы по монтажу можно проводить в любое время года. Главное, точно следовать технологии, выкладывая «слои» из гидроизоляционной пленки, выравнивающего слоя, окружив его демпферной лентой, и листового материала, как основы для финишного покрытия.

Упаковки сметаны и подобных молочных продуктов в пластиковой таре в могут оформляться различными способами: используя термоусадочную пленку, бумажную оборачиваемую этикетку, инмолд технологию и в том числе печатью по банке. В этом случае использовать сложный с точки зрения изображения дизайн может быть проблематично, посколько невысокое разрешение печати и использование только красок системы Пантон накладывает определенные ограничения. Технология печати – сухой офсет, количество цветов до 8 шт, при этом диапазон воспроизводимого растра составляет от 7% до 100%, то есть невозможно получить плавный переход в цвет материала. Второе существенное ограничение – толщина линий не менее 1 пункта, ко всему добавляется крайне желательное использование шрифта без засечек, то есть подойдет Прагматика и ему подобные гарнитуры.

Технология сухого офсета была разработана в начале 1982 года японской фирмой Toray Industries. Данная технология не требует увлажнения пробельных элементов и наличия увлажняющего аппарата, в отличие от ставшего традиционным процесса офсетной печати с увлажняющим раствором. Для создания слоя пробельных элементов печатной формы, отталкивающих краску, используется силикон. Отсутствие увлажняющего раствора имеет и положительные и отрицательные стороны: отсутствие благоприятно влияет на процесс печати, так как не возникает проблемы эмульгирования краски и связанного с этим искажения градаций, нет необходимости постоянного поддержания баланса «краска-вода», а основная трудность – создание красок, к которым предъявляются особые требования, ведь они не должны восприниматься пробельными участками формы. Особенность печати способом сухого офсета состоит и в том, что процесс печати должен происходить при поддержании определенного температурного уровня (так как от температуры зависит вязкость красок). Понижение температуры приводит к повышению вязкости и к ухудшению перехода краски на форму, а следовательно и на оттиски. Повышение температуры приводит к снижению вязкости, что может приводить к тенению форм и оттисков.
Для печати по технологии сухого офсета применяются и УФ-краски, позволяющие наносить более толстые слои краски, нежели обычные офсетные.
К достоинствам сухого офсета можно отнести более высокое по сравнению с традиционным офсетом качество печати, а именно повышенную четкость, контрастность и насыщенность оттисков, лучшую проработку светов и теней, также сокращение производственного времени на подготовку печати и сокращение производственных издержек, связанных с обслуживанием сложного увлажняющего аппарата, повышение стабильности печатного процесс и улучшение его экологических характеристик, так как нет необходимости в использовании изопропилового спирта.
К недостаткам сухого офсета относятся прежде всего более высокая по сравнению с традиционным офсетом себестоимость печатной продукции вследствие высокого уровня цен на расходные материалы и более узкий ассортимент специализированных печатных красок, в частности металлизированных.

Дизайн для подобного процесса оптимально готовить в виде конечного количества векторных объектов, ими удобно управлять как на этапе разработки, так и на этапе подготовки и подгонки под необходимый размер, кроме того, в большинстве случаев подобные элементы достаточно хорошо масштабируются на различные размеры банок, если предполагается некая серийность продукции. Необходимо помнить, что достаточно низкая линиатура не дает качественно воспроизвести плавные градиентные заливки и будет хорошо заметен растр. Про дизайн для такого вида печати хорошо использовать правило: не мельчить, все элементы необходимо прорисовать достаточно крупно с четкими краями.
Отсюда возникает вопрос подготовки фотографического дизайна, когда используются полутоновые изображения, образованные более чем одним цветом на каждый элемент дизайна. Например, пейзаж: голубое небо с облаками, зеленая трава и разноцветные цветы и, допустим, велосипед. В этом случае, особенно если необходимо тиражировать дизайн на несколько разных по формату носителей – 150, 250, 400 г банки – можно делать каждйы вышеописанный элемент отдельным файлом PSD c четким обтравочным контуром, полученным либо с использованием инструмента Path, либо с максимально контрастной ч/б маской, и компоновать его в программе сборки, чаще всего в Иллюстраторе, раскрашивая вставленные полутоновые изображения – по сути аппликации – в необходимые выбранные пантоны. Для зеленой травы полей может потребоваться использование более одной краски – желтая почти 100% плашкой и растр от какого-то светло-синего, в принципе, возможно использование процессных цветов.
Чем-то данная технология напоминает подготовку к печати дизайнов на алюминиевые банки, где так же краска наносится напрямую на материал.
С точки зрения стоимости производства и его качества нельзя сказать, что это исключительно прерогатива регионального рынка, некоторый дизайн гораздо удобнее печатать именно так, а отсутствие дополнительных составляющих упаковки типа пленок и картонов может быть выгодно с точки зрения утилизации пустой тары, в том числе вторичной переработки.

Сухое порошковое молоко получают из коровьего молока в результате сложного технологического процесса, состоящего из нескольких этапов. Особенность такого продукта и его отличие от цельного аналога — более длительный срок хранения, без потери качества и питательных свойств. Производство продукта требует наличия специального оборудования и соблюдения определенных технологий.

Технология производства сухого молока состоит из нескольких последовательных этапов:

  • Нормализация (уменьшение процента жира),
  • Пастеризация (проводится при температурных условиях в +81 +86 С),
  • Предварительное сгущение (процесс направлен на повышение содержания процентной доли сухих компонентов),
  • Сушка,
  • Получение и расфасовка готового сухого порошкового молока.

Вода из цельного молока в процессе приготовления выпаривается в два этапа. Сгущение продукта — это первый этап, а второй — сушка.

Уже сгущенная молочная смесь проходит процесс сушки до образования порошка с заданной влажностью. Определяется уровень влажности готового продукта качеством связи порошкообразных компонентов с водой. А допустимая влажность — до 15% от массовой доли молочного белка.

Уровень влажности сухого молока определяется качеством связи сухих компонентов порошка с водой. Допустимая влажность продукта — до 15% от массовой доли молочного белка.

Производство сухого молока предусматривает постепенное поступление концентрированного молочного сырья на специальную сушилку, после которой продукт приобретает влажность в три процента. Использование этой технологии позволяет получить сухое молоко высокого качества.

Когда сгущенный продукт соприкасается с раскаленным барабаном сушильной установки, начинается процесс карамелизации. Сухое обезжиренное молоко, которое изготовлено при помощи вальцевой сушилки, обладает большей жирностью. Единственный минус этого способа — довольно низкая производительность.

После завершения сушки, сухое обезжиренное молоко охлаждается, фильтруется и упаковывается.

Необходимое оборудование

Производство сухого молока невозможно без специального и довольно громоздкого оборудования, а также без надежного источника электроэнергии и водоснабжения. Помещения, где установлено оборудование, должно иметь хорошую вентиляцию и быть в соответствии с требованиями санитарии.

Необходимое оборудование для производства сухого молока:

  • Выпарное оборудование вакуумное,
  • Оборудование для кристаллизации,
  • Оборудование для распылительной сушки.

Установка выпарная вакуумная

Данное оборудование позволяет получить концентрированную молочную сыворотку и само молоко. Особенность установки — в оснащенности специальными приспособлениями, напоминающими по форме трубы. Они отделяют молочные фракции от конденсата. Стандартные установки имеют также блоки для большей вместимости молока, и охлаждающие готовый продукт детали. Так готовый продукт не требует дополнительного охлаждения, что очень удобно для производителей. Вакуумная выпарная установка довольно проста в использовании, поскольку имеет встроенный автоматический пульт управления.

Оборудование для кристаллизации

Основная функция данного оборудования — кристаллизация молочной сыворотки и конденсата, с подготовкой их для сушильного аппарата. Кристаллизация возможна благодаря работе инертных газов, которыми наполнена камера. Корпус аппарата изготавливается из прочной стали. Установка имеет также сложную систему пневматических клапанов и насосов, которые упрощают рециркуляцию молочного сырья.

Установка для распылительной сушки

В данном аппарате проходит заключительный этап производства. В камере сушильной установки происходит испарение остатков жидкости, что положительно влияет на продолжительность хранения уже готового продукта. Результат работы сушилки — хорошо сыпучие и быстро растворимые гранулы белого или светло-бежевого цвета.

Технология сушки очень простая: при помощи внутреннего насоса кристаллизованное молочное сырье попадает на распылительные форсунки внутри камеры флюидного дна. В ней происходит смешение холодных и горячих воздушных потоков, которые и обеспечивают испарение остатков влаги из сырья.

Разновидности сухого молока

Обычное или цельное сухое молочко отличается большей питательностью, так как содержит больше жиров.

Храниться оно может не столь долго, как обезжиренный аналог, а энергетическая ценность на сто грамм порошка — 550 ккал. Обезжиренный молочный порошок содержит крайне мало молочных жиров, а храниться может в течение восьми месяцев. В ста граммах обезжиренного продукта не более 370 ккал. Существует также молоко быстрорастворимое сухое. Оно представляет собой смесь из обезжиренного молочного порошка и порошка цельного молочного. Обычно данный вид используется в приготовлении детской еды и многих продуктов быстрого питания. Процесс изготовления и технология изготовления никак не зависят от разновидности продукта.

Состав

Если различаются виды молочного порошка соотношением жиров, белков и углеводов, то общее у них — витаминный состав, включающий в себя еще и минералы, и полезные аминокислоты. По государственному стандарту в составе обязательно должны присутствовать витамины группы B, PP, A, D, E и С, холин, кальций (не менее 1000 мг на сто грамм продукта), калий (не менее 1200 мг на сто грамм продукта), фосфор (не менее 780 мг на сто грамм продукта), натрий (не менее 400 мг на сто грамм продукта). Также в нем содержится довольно много селена, кобальта, молибдена и железа. Из незаменимых аминокислот оно содержит лизин, метионин, триптофан, лейцин и изолейцин.

Польза и вред

О полезных качествах сухого молока известно не всем. Многие люди утверждают, что сухое молоко не имеет ничего полезного, а все витамины убиваются в процессе приготовления порошка. Это утверждение не верно. Данный продукт играет важную роль в жизни северных регионов и народов, поскольку может храниться более долгое время. В процессе приготовления сырье проходит сложные стадии термической и физической обработки, а значит в нем содержится гораздо меньше опасных болезнетворных бактерий.

Если употреблять продукт регулярно, снижается риск анемии и рахита, укрепляются кости и сухожилия, восстанавливается нормальное функционирование нервной системы.

Может сухое молоко оказать и негативное влияние на здоровье. Особенно опасен продукт для людей, имеющих врожденную лактозную недостаточность или же аллергию на молочный белок. Последствия — от легкого покраснения кожного покрова до отеков и анафилактического шока. Еще один риск связан с качеством продукта и правилами его хранения. Недобросовестные производители для уменьшения стоимости готового продукта добавляют в состав растительные жиры, в том числе и пальмовое масло. Это снижает не только качество и питательную ценность, но и делает продукт опасным для здоровья. Нарушение условий хранения и герметичности упаковки может спровоцировать рост вредных бактерий и плесени, что вызовет серьезного отравление.

Производители сухого молока в России активно сотрудничают со многими предприятиями пищевой промышленности, поскольку гораздо выгоднее использовать в приготовлении многих продуктов именно сухое молоко. Цельное молочко быстро портится, довольно дорого обходится в транспортировке и занимает достаточно много места при хранении.

Продукт широко применяется:

  • В кондитерском деле,
  • В изготовлении хлеба, выпечки,
  • В производстве молочных продуктов: сыров, сгущенки, творожных изделий, йогуртов и молочных напитков,
  • На мясокомбинатах,
  • В производстве алкогольной продукции,
  • В косметологической отрасли,
  • В производстве различных полуфабрикатов,
  • В приготовлении сухих кормов для животных.

Предприятия, изготавливающие сухое молоко

На территории России действует около семидесяти молочных комбинатов. Часть из них занимается и производством сухого продукта. Это:

  • Любинский молочный комбинат, Омская область,
  • Благовещенский молочный комбинат, Амурская область,
  • Брянский молочный комбинат, Брянская область,
  • Ульяновский молочный комбинат, Ульяновская область,
  • Мелеузовский молочно-консервный комбинат, Башкортостан
  • Сухонский молочный комбинат, Вологодская область.

Распылительная сушка оказалась наиболее подходящей технологией удаления остатков воды из упаренного продукта, так как позволяет превратить концентрат молока в порошок, сохраняя ценные свойства молока.

Принцип действия всех распылительных сушилок состоит в превращении концентрата в мелкие капли, которые подаются в быстрый поток горячего воздуха. В силу очень большой поверхности капель (1 л концентрата распыляется на 1,5×10 10 капель диаметром 50мкм с общей поверхностью 120 м 2 ) испарение воды происходит практически мгновенно, и
капли превращаются в частицы порошка.

Одноступенчатая сушка

Одноступенчатая сушка – это процесс распылительной сушки, при котором продукт высушивается до конечной остаточной влажности в камере распылительной сушилки, см. рисунок 1. Теория образования капель и испарения в первом периоде сушки одинакова и для одноступенчатой и для двухступенчатой сушки и излагается здесь.

Начальная скорость капель, срывающихся с роторного распылителя, приблизительно равна 150 м/с. Основной процесс сушки протекает, пока капля тормозится под действием трения о воздух. Капли диаметром 100 мкм имеют путь торможения 1м, а капли диаметром 10 мкм – только несколько сантиметров. Основное снижение температуры сушильного воздуха, вызванное испарением воды из концентрата, происходит в этот период.

Гигантский тепло- и массообмен происходит между частицами и окружающим воздухом за очень короткое время, поэтому качество продукта может сильно пострадать, если оставить без внимания те факторы, которые способствуют ухудшению продукта.

При удалении воды из капель происходит значительное уменьшение массы, объема и диаметра частицы. При идеальных условиях сушки масса капли из роторного распылителя
уменьшается приблизительно на 50 %, объем – на 40 %, а диаметр – на 75 %. (см. рисунок 2).

Однако идеальная техника создания капель и сушки пока не разработана. Какое-то количество воздуха всегда включается в концентрат при его перекачивании из выпарного аппарата и особенно при подаче концентрата в питающий резервуар из-за разбрызгивания.

Но и при распылении концентрата роторным распылителем в продукт включается много воздуха, так как диск распылителя действует как вентилятор и подсасывает воздух. Включению воздуха в концентрат можно противодействовать, используя диски специальной конструкции. На диске с загнутыми лопатками (так называемом диске высокой насыпной плотности), см. рисунок 3, воздух под действием все той же центробежной силы частично отделяется от концентрата, а в диске, омываемом паром, см. рисунок 4, проблема частично решается тем, что вместо контакта жидкость-воздух здесь существует контакт жидкость-пар. Считается, что при распылении форсунками воздух не включается в концентрат или включается в очень малой степени. Однако оказалось, что некоторое количество воздуха включается в концентрат на ранней стадии распыления вне и внутри факела распыла из-за трения жидкости о воздух еще до образования капель. Чем выше производительность форсунки (кг/ч), тем больше воздуха попадает в концентрат.

Способность концентрата включать в себя воздух (т.е. пенообразующая способность) зависит от его состава, температуры и содержания сухого вещества. Оказалось, что концентрат с низким содержанием сухих веществ имеет значительную пенообразующую способность, которая возрастает с температурой. Концентрат с высоким содержанием сухих веществ пенится значительно слабее, что особенно проявляется с возрастанием температуры, см. рисунок 5. Вообще говоря, концентрат цельного молока пенится слабее, чем концентрат обезжиренного молока.

Таким образом, содержание воздуха в каплях (в форме микроскопических пузырьков) в значительной мере определяет уменьшение объема капли при сушке. Другой, еще более важный фактор, это температура окружающего воздуха. Как уже отмечалось, между сушильным воздухом и каплей происходит интенсивный обмен теплом и водяным паром.

Поэтому вокруг частицы создается градиент температуры и концентрации, так что весь процесс становится сложным и не вполне ясным. Капли чистой воды (активность воды 100 %) при контакте с воздухом, имеющим высокую температуру, испаряются, сохраняя до самого конца испарения температуру смоченного термометра. С другой стороны, продукты, содержащие сухое вещество, при предельной сушке (т.е. при приближении активности воды к нулю) нагреваются к концу сушки до температуры окружающего воздуха, что применительно к распылительной сушилке означает температуру воздуха на выходе. (см. рисунок 6).

Поэтому градиент концентрации существует не только от центра к поверхности, но и между точками поверхности, в результате разные участки поверхности имеют разную температуру. Общий градиент тем больше, чем больше диаметр частицы, так как это означает меньшую относительную поверхность. Поэтому мелкие частицы высыхают более
равномерно.

При сушке содержание сухих веществ, естественно, увеличивается из-за удаления воды, при этом увеличивается и вязкость, и поверхностное натяжение. Это означает, что коэффициент диффузии, т.е. время и зона диффузионного переноса воды и пара, становится меньше, и из-за замедления скорости испарения происходит перегрев. В предельных случаях происходит так называемое поверхностное твердение, т.е. образование на поверхности жесткой корки, через которую вода и пар или абсорбированный воздух диффундируют
очень медленно. В случае поверхностного твердения остаточная влажность частицы составляет 10-30 %, на этой стадии белки, особенно казеин, очень чувствительны к нагреву и легко денатурируют, в результате образуется трудно растворимый порошок. Кроме того, аморфная лактоза становится твердой и почти непроницаемой для водяных паров, так что температура частицы возрастает еще больше, когда скорость испарения, т.е. коэффициент диффузии, приближается к нулю.

Поскольку внутри частицы остаются водяной пар и пузырьки воздуха, они перегреваются, и если температура окружающего воздуха достаточно высока, пар и воздух расширяются. Давление в частице возрастает, и она раздувается в шар с гладкой поверхностью, см. рисунок 7. Такая частица содержит множество вакуолей, см. рисунок 8. Если температура окружающего воздуха достаточно высока, частица может даже взорваться, но если этого и не произойдет, частица все равно имеет очень тонкую корку, около 1 мкм, и не выдержит механической обработки в циклоне или в системе транспортировки, так что она покинет сушилку с выбросным воздухом. (см. рисунок 9).

Если в частице мало пузырьков воздуха, то расширение даже при перегреве не будет слишком сильным. Однако перегрев в результате поверхностного твердения ухудшает качество казеина, что снижает растворимость порошка.

Если окружающая температура, т.е. температура на выходе из сушилки, поддерживается низкой, то низкой будет и температура частицы.

Температура на выходе определяется многими факторами, главные из которых:

  • содержание влаги в готовом порошке
  • температура и влажность сушильного воздуха
  • содержание сухих веществ в концентрате
  • распыление
  • вязкость концентрата

Содержание влаги в готовом порошке

Первый и важнейший фактор – это содержание влаги в готовом порошке. Чем ниже должна быть остаточная влажность, тем меньше требуемая относительная влажность воздуха на выходе, а это означает более высокую температуру воздуха и частиц.

Температура и влажность сушильного воздуха

Содержание влаги в порошке напрямую связано с влажностью воздуха на выходе, и увеличение подачи воздуха в камеру приведет к чуть большему увеличению расхода выходящего воздуха, так как из-за усиленного испарения в воздухе будет присутствовать больше влаги. Большую роль играет также содержание влаги в сушильном воздухе, и если оно велико, необходимо повысить температуру воздуха на выходе, чтобы компенсировать добавочную влагу.

Содержание сухих веществ в концентрате

Увеличение содержания сухих веществ потребует более высокой температуры на выходе, т.к. испарение идет медленнее (средний коэффициент диффузии меньше) и требует большей разности температур (движущей силы) между частицей и окружающим воздухом.

Распыление

Улучшение распыления и создание более тонкодисперсного аэрозоля позволяет снизить температуру на выходе, т.к. относительная поверхность частиц увеличивается. Из-за этого испарение протекает легче, и движущая сила может быть уменьшена.

Вязкость концентрата

Распыление зависит от вязкости. Вязкость возрастает с увеличением содержания белков, кристаллической лактозы и общего содержания сухих веществ. Нагрев концентрата (не забудьте о загустевании при старении) и увеличение скорости диска распылителя или давления форсунки позволяет решить эту проблему.

Общий КПД сушки выражается следующей приближенной формулой:

где: T i - температура воздуха на входе; T o - температура воздуха на выходе; T a - температура окружающего воздуха

Очевидно, что для повышения эффективности распылительной сушки нужно либо увеличить температуру окружающего воздуха, т.е. подогревать отбираемый воздух, например, конденсатом из выпарного аппарата, либо увеличить температуру воздуха на входе, либо понизить температуру на выходе.

Зависимость ζ от температуры служит хорошим показателем эффективности работы сушилки, поскольку температура на выходе определяется остаточной влажностью продукта, которая должна соответствовать определенному стандарту. Высокая температура на выходе означает, что сушильный воздух используется не оптимально, например, из-за плохого распыления, плохого распределения воздуха, высокой вязкости и т.д.

У нормальной распылительной сушилки, обрабатывающей обезжиренное молоко (T i = 200°C, T o = 95°C), ζ ≈ 0,56.

Обсуждавшаяся до сих пор технология сушки относилась к установке с системой пневмотранспорта и охлаждения, в которой выгружаемый со дна камеры продукт высушен до требуемого содержания влаги. На этой стадии порошок теплый и состоит из слипшихся частиц, очень слабо связанных в большие рыхлые агломераты, образовавшиеся при первичной агломерации в факеле распыла, где частицы разного диаметра обладает разной скоростью и поэтому сталкиваются. Однако при прохождении через систему пневмотранспорта агломераты подвергаются механическому воздействию и рассыпаются на отдельные частицы. Этот тип порошка, (см. рисунок 10), можно охарактеризовать следующим образом:

  • отдельные частицы
  • высокая насыпная плотность
  • пыление, если это сухое обезжиренное молоко
  • не быстрорастворимый

Двухступенчатая сушка

Температура частицы определяется температурой окружающего воздуха (температурой на выходе). Поскольку связанная влага трудно удаляется традиционной сушкой, температура на выходе должна быть достаточно высокой, чтобы обеспечить движущую силу (Δ t, т.е. разность температур между частицей и воздухом), способную удалить остаточную влагу. Очень часто это ухудшает качество частиц, как обсуждалось выше.

Поэтому не удивительно, что была разработана совершенно иная технология сушки, предназначенная для испарения из таких частиц последних 2-10 % влаги.

Поскольку испарение на этой стадии из-за низкого коэффициента диффузии идет очень медленно, оборудование для досушивания должно быть таким, чтобы порошок оставался в нем длительное время. Такую сушку можно проводить в пневмотранспортной системе, используя горячий транспортирующий воздух для увеличения движущей силы процесса.

Однако, поскольку скорость в транспортном канале должна быть ≈ 20 м/с, для эффективной сушки потребуется канал значительной длины. Другая система, это так называемая “горячая камера” с тангенциальным входом для увеличения времени выдержки. По завершении сушки порошок отделяется в циклоне и поступает в другую пневмотранспортную систему с холодным или осушенным воздухом, где порошок охлаждается. После отделения в циклоне порошок готов к упаковке в мешки.

Другая система досушки – это аппарат VIBRO-FLUIDIZER, т.е. большая горизонтальная камера, разделенная приваренной к корпусу перфорированной пластиной на верхнюю и нижнюю секции. (рисунок 11). Для сушки и последующего охлаждения в распределительные камеры аппарата подается теплый и холодный воздух и равномерно распределяется по рабочей зоне специальной перфорированной пластиной, BUBBLE PLATE.


Это дает следующие преимущества:

  • Воздух направляется вниз, к поверхности пластины, поэтому частицы движутся по пластине, которая имеет редкие, но большие отверстия и поэтому может долго работать без чистки. Кроме того, она очень хорошо освобождается от порошка.
  • Уникальный способ изготовления предотвращает образование трещин. Поэтому BUBBLE PLATE отвечает строгим санитарным требованиям и разрешена USDA.

Размер и форма отверстий и расход воздуха определяются скоростью воздуха, необходимой для псевдоожижения порошка, которая в свою очередь определяется свойствами порошка, такими как содержание влаги и термопластичность.

Температура определяется требуемым испарением. Размер отверстий выбирается так, чтобы скорость воздуха обеспечивала псевдоожижение порошка на пластине. Скорость воздуха не должна быть слишком большой, чтобы агломераты не разрушались от истирания. Однако невозможно (а иногда и не желательно) избежать уноса некоторых (особенно мелких) частиц из псевдоожиженного слоя с воздухом. Поэтому воздух должен пройти через циклон или рукавный фильтр, где частицы отделяются и возвращаются в процесс.

Это новое оборудование позволяет бережно испарить из порошка последние проценты влаги. Но это означает, что распылительную сушилку можно эксплуатировать способом, отличным от описанного выше, при котором выходящий из камеры порошок имеет влажность готового продукта.

Преимущества двухступенчатой сушки можно резюмировать следующим образом:

  • более высокая производительность на кг сушильного воздуха
  • повышенная экономичность
  • лучшее качество продукта:
  1. хорошая растворимость
  2. высокая насыпная плотность
  3. низкое содержание свободного жира
  4. низкое содержание абсорбированного воздуха
  • Меньшие выбросы порошка

Ожиженный слой может быть либо виброкипящим слоем поршневого типа (VibroFluidizer), либо неподвижным псевдоожиженным слоем обратного смешивания.

Двухступенчатая сушка в аппарате Vibro-Fluidizer (поршневой поток)

В аппарате Vibro-Fluidizer весь псевдоожиженный слой вибрирует. Перфорации в пластине сделаны так, чтобы сушильный воздух направлялся вместе с потоком порошка. Для того чтобы перфорированная пластина не вибрировала с собственной частотой, она установлена на специальных опорах. (см. рисунок 12).


Рисунок 12 - Распылительная сушилка с аппаратом Vibro-Fluidizer для двухступенчатой сушки

Распылительная сушилка работает с меньшей температурой на выходе, что приводит к увеличению влагосодержания и снижению температуры частиц. Влажный порошок выгружается самотеком из сушилной камеры в Vibro-Fluidizer.

Существует, однако, предел снижения температуры, так как из-за возросшей влажности порошок становится липким даже при меньшей температуре и образует комки и отложения в камере.

Обычно применение аппарата Vibro-Fluidizer позволяет снизить температуру на выходе на 10-15 °С. Это приводит к гораздо более мягкой сушке, особенно на критической стадии процесса (от 30 до 10 % влажности), усыхание частиц (см. рисунок 13) не прерывается поверхностным твердением, так что условия сушки близки к оптимальным. Более низкая температура частиц отчасти обусловлена более низкой температурой окружающего воздуха, но также и более высоким содержанием влаги, так что температура частиц оказывается близкой к температуре смоченного термометра. Это, естественно, положительно сказывается на растворимости готового порошка.

Уменьшение температуры на выходе означает более высокий КПД сушильной камеры в силу увеличения Δ t. Очень часто сушку проводят при более высокой температуре и при более высоком содержании сухих веществ в сырье, что еще больше повышает КПД сушилки. При этом, конечно, возрастает и температура на выходе, но повышенное содержание влаги снижает температуру частиц, так что перегрев и поверхностное твердение частиц не происходят.

Опыт показывает, что температура сушки может достигать 250 °С или даже 275 °С при сушке обезжиренного молока, что поднимает КПД сушки до 0,75.

Частицы, достигающие дна камеры, имеют более высокую влажность и более низкую температуру, чем при традиционной сушке. Со дна камеры порошок попадает непосредственно в сушильную секцию аппарата Vibro-Fluidizer и немедленно ожижается. Любая выдержка или транспортирование приведут к слипанию теплых влажных термопластичных частиц и образованию трудно разрушаемых комков. Это снизило бы эффективность сушки в аппарате Vibro-Fluidizer и часть готового порошка имела бы слишком высокую влажность, т.е. качество продукта пострадало бы.

Самотеком поступает в Vibro-Fluidizer только порошок из сушильной камеры. Мелочь из основного циклона и из циклона, обслуживающего Vibro-Fluidizer, (или из моющегося рукавного фильтра) подается в Vibro-Fluidizer транспортной системой.

Поскольку эта фракция представлена частицами меньшего размера, чем порошок из сушильной камеры, влажность частиц меньше, и они не требуют той же степени вторичной сушки. Очень часто они являются достаточно сухими, тем не менее, их обычно подают в последнюю треть секции сушки аппарата Vibro-Fluidizer, чтобы гарантировать требуемое содержание влаги в продукте.

Точку выгрузки порошка из циклона не всегда можно расположить непосредственно над аппаратом Vibro-Fluidizer, чтобы порошок поступал в секцию сушки самотеком. Поэтому для перемещения порошка часто применяют нагнетательную пневмотранспортную систему. Нагнетательная пневмотранспортная система позволяет легко доставить порошок в любую часть установки, поскольку транспортная линия обычно представлена 3-х или 4-х дюймовой молочной трубой. Система состоит из воздуходувки с малым расходом и высоким давлением и продувного клапана, и обеспечивает сбор и транспортировку порошка, см. рисунок 14. Количество воздуха невелико относительно количества транспортируемого порошка (всего 1/5).


Небольшая часть этого порошка опять уносится воздухом из аппарата Vibro-Fluidizer, а затем транспортируется из циклона обратно в Vibro-Fluidizer. Поэтому, если не предусмотреть специальных устройств, при останове сушилки требуется определенное время для прекращения такой циркуляции.

Например, можно установить в транспортной линии распределительный клапан, который будет направлять порошок в самую последнюю часть аппарата Vibro-Fluidizer, откуда он будет выгружен за несколько минут.

На заключительном этапе порошок просеивается и упаковывается в мешки. Поскольку порошок может содержать первичные агломераты, рекомендуется направлять его в бункер посредством еще одной нагнетательной пневмотранспортной системы, чтобы увеличить насыпную плотность.

Общеизвестно, что при испарении воды из молока расход энергии на кг выпаренной воды увеличивается с приближением остаточной влаги к нулю. (рисунок 15).


Эффективность сушки зависит от температуры воздуха на входе и выходе.

Если расход пара в выпарном аппарате составляет 0,10-0,20 кг на кг испаренной воды, то в традиционной одноступенчатой распылительной сушилке он равен 2,0-2,5 кг на кг испаренной воды, т.е. в 20 раз выше, чем в выпарном аппарате. Поэтому всегда предпринимались попытки увеличить содержание сухих веществ в упаренном продукте. Это означает, что выпарной аппарат будет удалять большую долю воды, а расход энергии снизится.

Конечно, это слегка увеличит расход энергии на кг испаренной воды в распылительной сушилке, но общий расход энергии снизится.

Указанный выше расход пара на кг испаренной воды – это средний показатель, поскольку расход пара в начале процесса гораздо ниже, чем в конце сушки. Расчеты показывают, что для получения порошка с влажностью 3,5 % требуется 1595 ккал/кг порошка, а для получения порошка с влажностью 6 % - только 1250 ккал/кг порошка. Другими словами, последний этап испарения требует приблизительно 23 кг пара на кг испаренной воды.


Таблица иллюстрирует эти расчеты. Первый столбец отражает рабочие условия в традиционной установке, где порошок из сушильной камеры направляется в циклоны системой пневмотранспорта и охлаждения. Следующий столбец отражает рабочие условия в двухступенчатой сушилке, в которой сушка от 6 до 3,5 % влажности осуществляется в аппарате Vibro-Fluidizer. Третий столбец представляет двухступенчатую сушку при высокой температуре на входе.

Из показателей, отмеченных знаком *), находим: 1595 – 1250 = 345 ккал/кг порошка

Испарение на кг порошка составляет: 0,025 кг (6 % - 3,5 % + 2,5 % )

Значит, расход энергии на кг испаренной воды равен: 345/0,025 = 13,800 ккал/кг, что соответствует 23 кг греющего пара на кг испаренной воды.

В аппарате Vibro-Fluidizer средний расход пара составляет 4 кг на кг испаренной воды, естественно, он зависит от температуры и расхода сушильного воздуха. Даже если расход пара в аппарате Vibro-Fluidizer вдвое выше, чем в распылительной сушилке, расход энергии на испарение того же количества воды все равно оказывается гораздо ниже (поскольку время обработки продукта составляет 8-10 минут, а не 0-25 секунд, как в распылительной сушилке). И при этом производительность такой установки больше, качество продукта выше, выбросы порошка ниже, а функциональные возможности шире.

Двухступенчатая сушка с неподвижным псевдоожиженнымслоем (с обратным смешением)

Для улучшения КПД сушки, температура воздуха на выходе To при двухступенчатой сушке уменьшена до того уровня, при котором порошок с содержанием влаги 5-7 % становится липким и начинает оседать на стенках камеры.

Однако создание псевдоожиженного слоя в конической части камеры обеспечивает дальнейшее усовершенствование процесса. Воздух для вторичной сушки подается в камеру под перфорированной пластиной, через которую распределяется по слою порошка. Такой тип сушилки может работать в режиме, при котором первичные частицы высыхают до влажности 8-12 %, что соответствует температуре воздуха на выходе 65-70 °С. Такая утилизация сушильного воздуха позволяет значительно уменьшить размеры установки при той же производительности сушилки.

Сухое молоко всегда считалось трудным для псевдоожижения. Однако пластина специальной запатентованной конструкции, см. рисунок 17, обеспечивает движение воздуха и порошка в том же направлении, в котором движется первичный сушильный воздух. Эта пластина при условии правильного выбора высоты слоя и скорости начала псевдоожижения позволяет создавать статический псевдоожиженный слой для любого выработанного из молока продукта.


Выпускаются аппараты со статическим псевдоожиженным слоем (SFB) трех конфигураций:

  • с кольцевым псевдоожиженным слоем (сушилки Compact)
  • с циркуляционным псевдоожиженным слоем (сушилки MSD)
  • с комбинацией таких слоев (сушилки IFD)

Кольцевой псевдоожиженный слой (сушилки Compact)

Кольцевой псевдоожиженный слой обратного смешения располагается в нижней части конуса традиционной сушильной камеры вокруг центральной трубы отвода отработанного воздуха. Таким образом, в конической части камеры нет деталей, мешающих потоку воздуха, и это вместе со струями, выходящими из псевдоожиженного слоя, предотвращает образование отложений на стенках конуса даже при обработке липких порошков с высоким содержанием влаги. Цилиндрическая часть камеры защищена от отложений системой обдува стенок: небольшое количество воздуха тангенциально подается с высокой скоростью через сопла специальной конструкции в том же направлении, в котором закручивается первичный сушильный воздух.

В силу вращения воздушно-пылевой смеси и возникающего в камере эффекта циклона только небольшое количество порошка уносится отработанным воздухом. Поэтому доля порошка, попадающего в циклон или моющийся рукавный фильтр, так же как и выбросы порошка в атмосферу, для этого типа сушилок снижены.

Порошок непрерывно выгружается из псевдоожиженного слоя, перетекая через перегородку регулируемой высоты, таким образом поддерживается определенный уровень псевдоожиженного слоя.

Из-за низкой температуры воздуха на выходе эффективность сушки значительно увеличена по сравнению с традиционной двухступенчатой сушкой см. таблицу.

После выхода из сушильной камеры порошок может охлаждаться в пневмотранспортной системе см. рисунок 20. Образующийся порошок состоит из отдельных частиц и имеет такую же или лучшую насыпную плотность, чем полученный двухступенчатой сушкой.


Продукты, содержащие жир, следует охлаждать в виброожиженном слое, в котором одновременно осуществляется агломерация порошка. В этом случае фракция мелочи возвращается из циклона в распылитель для агломерации. (см. рисунок 21).

Циркуляционный псевдоожиженный слой (сушилки MSD)

Для еще большего повышения КПД сушки без создания проблем с налипанием отложений была разработана совершенно новая концепция распылительной сушилки - MultiStage Dryer (многоступенчатая сушилка), MSD.

В этом аппарате сушка выполняется в три ступени, каждая из которых приспособлена к характерной для нее влажности продукта. На ступени предварительной сушки концентрат распыляется прямоточными форсунками, расположенными в канале горячего воздуха.

Воздух подается в сушилку вертикально с высокой скоростью через воздухораспределитель, который обеспечивает оптимальное смешивание капель с сушильным воздухом. Как уже отмечалось, на этой испарение протекает мгновенно, пока капли движутся вертикально вниз через сушильную камеру специальной конструкции. Содержание влаги в частицах снижается до 6-15 %, в зависимости от типа продукта. При такой высокой влажности порошок обладает высокой термопластичностью и липкостью. Поступающий с высокой скоростью воздух создает эффект Вентури, т.е. подсасывает окружающий воздух и увлекает мелкие частицы во влажное облако вблизи распылителя. Это приводит к “спонтанной вторичной агломерации”. Поступающий снизу воздух имеет достаточную скорость для псевдоожижения слоя осевших частиц, а его температура обеспечивает вторую ступень сушки. Воздух, выходящий из этого псевдоожиженного слоя возвратного смешивания, вместе с отработанным воздухом первой ступени сушки выходит из камеры сверху и подается в первичный циклон. Из этого циклона порошок возвращается в псевдоожиженный слой обратного смешивания, а воздух подается во вторичный циклон для конечной очистки.

Когда влажность порошка снижается до определенного уровня, он выгружается через роторный затвор в Vibro-Fluidizer для завершающей сушки и последующего охлаждения.

Сушильный и охлаждающий воздух из аппарата Vibro-Fluidizer проходит через циклон, где от него отделяется порошок. Этот мелкий порошок возвращается в распылитель, в коническую часть камеры (в статический псевдоожиженный слой) или в Vibro-Fluidizer. В современных сушилках циклоны заменяются рукавными фильтрами с СИП.

В установке образуется грубодисперсный порошок, что обусловлено “спонтанной вторичной агломерацией” в облаке распылителя, где постоянно поднимающиеся снизу сухие мелкие частицы налипают на полусухие частицы, образуя агломераты. Процесс агломерации продолжается, когда распыленные частицы вступают в контакт с частицами псевдоожиженного слоя. (см. рисунок 22).

Такую установку можно эксплуатировать при очень высокой температуре воздуха на входе (220-275 °С) и чрезвычайно коротком времени контакта, достигая, тем не менее, хорошей растворимости порошка. Такая установка очень компактна, что снижает требования к размерам помещения. Это, а также сниженная за счет более высокой температуры на входе стоимость эксплуатации (на 10-15 % меньше по сравнению с традиционной двухступенчатой сушкой), делает такое решение очень привлекательным, особенно для агломерированных продуктов.


Рисунок 22 - Многоступенчатая распылительная сушилка (MSD)

Распылительная сушка с встроенными фильтрами и псевдоожиженными слоями (IFD)

Запатентованная конструкция сушилки с встроенным фильтром, (рисунок 23), использует проверенные системы распылительной сушки, такие как:

  • Система подачи с подогревом, фильтрованием и гомогенизацией концентрата, оборудованная высоконапорными насосами. Оборудование такое же, как в традиционных распылительных сушилках.
  • Распыление производится либо струйными форсунками, либо атомайзером. Струйные форсунки применяются, в основном, для жирных или продуктов с высоким содержанием белка, а роторные распылители – для любых продуктов, и особенно тех, которые содержат кристаллы.
  • Сушильный воздух фильтруется, нагревается и распределяется устройством, которое создает вращающийся или вертикальный поток.
  • Сушильная камера сконструирована так, чтобы обеспечить максимальную гигиеничность и предельно снизить потери тепла, например, благодаря использованию съемных
    пустотелых панелей.
  • Встроенный псевдоожиженный слой представляет собой комбинацию слоя обратного смешения для сушки и слоя поршневого типа для охлаждения. Аппарат с псевдоожиженным слоем – полностью сварной и не имеет полостей. Между слоем обратного смешения и окружающим его слоем поршневого типа имеется воздушный зазор для предотвращения переноса теплоты. Здесь используются новые запатентованные пластины Niro BUBBLE PLATE.

Система удаления воздуха, при всей революционной новизне, основана на тех же принципах, что и рукавный фильтр Niro SANICIP Мелочь собирается на фильтрах, встроенных в сушильную камеру. Рукава фильтра опираются на сетки из нержавеющей стали, прикрепленные к потолку по окружности сушильной камеры. Эти фильтрующие элементы очищаются обратной продувкой, как и фильтр SANICIP™.

Рукава продуваются по одному или по четыре за раз струей сжатого воздуха, которая подается в рукав через сопло. Это обеспечивает регулярное и частое удаление порошка, который падает в псевдоожиженный слой.

Здесь используется тот же фильтрующий материал, что и в рукавном фильтре SANICIP™, и обеспечивается такой же расход воздуха на единицу площади материала.

Сопла обратной продувки выполняют две функции. При работе сопло служит для продувки, а при безразборной мойке через него подается жидкость, промывающая рукава изнутри наружу, к грязной поверхности. Чистая вода впрыскивается через сопло обратной продувки, распыляется сжатым воздухом по внутренней поверхности рукава и выдавливается наружу. Эта запатентованная схема очень важна, поскольку промывкой снаружи очистить фильтрующий материал очень трудно или невозможно.

Для чистки нижней стороны потолка камеры вокруг рукавов применяются форсунки специальной конструкции, также играющие двойную роль. Во время сушки через форсунку подается воздух, предотвращающий отложения порошка на потолке, а при мойке она используется как обычная CIP-форсунка. Камера чистого воздуха очищается стандартной форсункой безразборной мойки.

Преимущества установки IFD™

Продукт

  • Более высокий выход первосортного порошка. В традиционных сушилках с циклонами и рукавными фильтрами из фильтров собирается продукт второго сорта, доля которого составляет приблизительно 1 %.
  • Продукт не подвергается механическому воздействию в каналах, циклонах и рукавных фильтрах, устраняется необходимость в возврате мелочи из внешних сепараторов, поскольку распределение потоков внутри сушилки обеспечивает оптимальную первичную и вторичную агломерацию.
  • Качество продукта улучшается, поскольку установка IFD™ может работать при более низкой температуре воздуха на выходе, чем традиционная распылительная сушилка. Это означает, что можно достичь более высокой производительности сушки на кг воздуха.

Безопасность

  • Система защиты проще, поскольку весь процесс сушки протекает в одном аппарате.
  • Защиты требует меньшее число компонентов.
  • Стоимость обслуживания ниже

Проектирование

  • Более простая установка
  • Меньшие размеры здания
  • Более простая опорная конструкция

Защита окружающей среды

  • Меньшая возможность утечки порошка внутрь рабочей зоны
  • Более простая очистка, так как площадь контакта оборудования с продуктом сокращена.
  • Меньший объем стоков при безразборной мойке
  • Меньший выброс порошка, до 10-20 мг/нм 3 .
  • Экономия энергии до 15 %
  • Меньший уровень шума в связи с меньшим падением давления в вытяжной системе

Стабильность работы электролизера с самообжигающимся анодом и верхним токоподводом зависит от работы анода. Хороший анод обеспечивается подбором соответствующих сырьевых материалов, качественным смешением анодной массы, низким сопротивлением и равномерным распределением тока.

Показатели работы «сухого» анода зависят от анодной массы используемой для его формирования, технологии ее производства и от процесса формирования самого анода.

На КрАЗе для изготовления анодной массы используется нефтяной кокс с истинной плотностью 2,01 - 2,05 г/см и каменноугольный пек с температурой размягчения 110-120 С (по Меттлеру). Выпуск массы производится на двух модернизированных технологических линиях, где установлено импортное оборудование :

Дозаторы фирмы «Прокон»;

Подогреватели шихты фирмы «Денвер»;

Смесители фирмы «Бусс»;

Грохота фирмы «Локер»;

Газоочистное оборудование фирмы «Проседейр»;

Котельная ВОТ.

Одной из проблем при использовании технологии «сухого» анода на КрАЗе является нестабильность качественных показателей коксов, полученных после прокаливания в печах цеха анодной массы, а именно нестабильность показателя «пористость». Причиной является количество поставщиков электродного сырья.

Известно, что на западных заводах, как правило, используют кокс одного, максимум двух поставщиков. Коксы имеют постоянные характеристики на протяжении длительных периодов. Совсем другая картина на российских заводах, динамика поступления сырых коксов на КрАЗ в течение 5 лет середины 90-х весьма неустойчивая и говорить о постоянном соотношении по поставкам от разных производителей не приходится. Вопрос как шихтовать, по какому параметру - стоит весьма остро. В силу ряда обстоятельств суммарный кокс, используемый на отечественных заводах, имеет значительные колебания по такому важнейшему показателю как пористость , колебания по этому показателю значительны даже в пределах одних суток. Вопрос о нестабильности наших прокаленных коксов по пористости и был одним из камней преткновения при внедрении технологии «сухого» анода на КрАЗе.

Специалисты КрАЗа и фирмы «Кайзер» смогли адаптировать технологию к ситуации с реальными поставками коксов.

Для прежней технологии анода, применяемой до сих пор на ряде российских заводов, качество углеродистого сырья не имеет столь большого влияния на стабильность ведения технологии анода и технико-экономические показатели. При переходе к более «тонким» технологиям таким как «сухой» анод, качество углеродистого сырья переходит в раз ряд важнейших параметров. Основная причина здесь заключается в том, что «жирный» анод условно можно назвать «самоформирующимся», так как существующий избыток пека достаточно велик и формирование анода здесь идет в значительной степени самопроизвольно за счет седиментации коксовых частиц в жидкой части анода (ЖАМ). Другое дело технология «сухого» анода - здесь баланс по пеку существенно сдвинут в область пониженных значений, при нормальном ведении процесса - седиментация твердых частиц должна быть минимальна или исключена вовсе. В этом случае баланс пека в аноде определяется свойствами исходных материалов (кокса и пека). С точки зрения экологии, чем ниже процент использования связующего - тем меньше выбросов смолистых веществ (рис 2.3.).

Рисунок 2.3.Выбросы вредных веществ: 1-«жирный» анод, 2- «П-сухой» анод, 3- «сухой» анод.

Соответствие углеродистого сырья нормативным требованиям и стабильность его показателей - становится одним из решающих факторов для нормального ведения технологии анода и электролиза в целом.

Несомненно, что стабилизация характеристик кокса позволила бы улучшить многие показатели при ведении, как технологии анода, так и электролиза в целом. В качестве одного из таких шагов служит пример с шихтовкой коксов и пеков, поступающих от разных производителей.

В определенной степени это позволяет уменьшить вариативность некоторых показателей, но для таких заводов-гигантов как КрАЗ и БрАЗ остается актуальной задача по приведению к одинаковым показателям качественных характеристик сырья на заводах-изготовителях.

Для определения влияния содержания летучих в сырых коксах на качество прокаленного кокса на КрАЗе были проведены эксперименты по раздельному прокаливанию коксов разных изготовителей: Перми, Омска и Китая. Как и ожидалось, наибольшую пористость показали коксы, имеющие большее содержание летучих веществ в сырых коксах (табл.2.2).

Таблица 2.2. Значения пористости для коксов разных изготовителей

Как выше было упомянуто, при ведении технологии «сухого» анода величина пористости определяет количество пека, которое необходимо использовать при производстве анодной массы.

Соотношение между количеством пека и пористостью описывается уравнением:

% Связующего = Соnst + Коэф · Пористость.

То есть, при прочих равных условиях рост пористости в коксах требует увеличения содержания связующего в анодной массе и естественно в теле анода, а значит, приводит к увеличению выбросов смолистых веществ с поверхности анода.

Российская алюминиевая промышленность стандартно была ориентирована на использование при производстве анодной массы каменноугольного пека с температурой размягчения 68-76 °С. Такой пек в полной мере пригоден для использования в технологии «жирного» и «полусухого» анода, но по ряду характеристик непригоден для технологии «сухого» анода. Поэтому на первом этапе внедрения технологии «сухого» анода (в корп. 19) было принято решение закупить каменноугольный пек с повышенной температурой размягчения за рубежом, в Чехии (комбинат «Deza»). Качественные характеристики пека этого производителя подробно обсуждались в работе (20).

Сравнительные данные СТП и ВТП по вязкости представленные на рис.2.4, показывают наибольшее различие в вязкости высокотемпературного и среднетемпературного пеков наблюдается в области температур 150°С и ниже, что примерно соответствует температуре поверхности анода (под слоем брикетов Т? 115-160 °С).


Рисунок 2.4. Зависимость вязкости пека от температуры

Можно предположить, что “сухой” анод, сформированный из анодной массы с использованием среднетемпературного пека, будет иметь пониженную устойчивость в части сохранения геометрии лунки и склонность к пересушиванию, по сравнению с ВТП, при одинаковом содержании пеков в используемых массах и при прочих равных условиях электролиза.

На практике это означает, что анодные массы, произведенные на СТП, должны иметь заведомо большее содержание связующего по сравнению с массами, произведенными на ВТП, соответственно и текучесть этих масс увеличится.

Допустимое содержание фракций с температурой кипения до З60°С в ВТП составляет величину не более 4,0%, против 6,0% в СТП. Использование СТП в аноде приводит к смещению баланса по пеку в большую сторону (по отношению к ВТП) как минимум на величину 0,5-0,7% (в расчете на анодную массу).

В случае использования СТП усугубляется противоречие с одним из основных постулатов технологии “сухого” анода - избыток пека в теле анода должен быть минимальным. На практике используется смесь коксов от различных поставщиков, а значит, существует практически неуправляемый параметр - пористость кокса, и даже в случае с использованием ВТП необходимо варьировать процент пека в большей степени, чем принято на западных заводах, работающих на коксах со строго определенной пористостью.

При возрастании избытка пека в анодной массе даже на незначительные количества на первое место выходит вязкость исходного пека, потому что именно она будет определять способность анода сохранять форму лунки в течение времени, необходимого для нормального процесса перестановки штыря.

Отработав в достаточной степени технологию «сухого» анода в корпусе №19 на КрАЗе было принято решение расширить масштабы использования этой технологии. В течение 2-З кварталов 1999г ЭЛЦ-З полностью был переведен на технологию «сухого» анода. Такой крупномасштабный перевод на новую технологию не обошелся и без трудностей. Было принято решение отказаться от закупок импортного высокотемпературного пека и перейти на использование более дешевых отечественных.

Следует отметить, что ввиду отсутствия спроса на высокотемпературный пек со стороны алюминиевых заводов отечественные производители не были заинтересованы в проведении работ по отработке технологии производства высокотемпературного пека. Сейчас ситуация стала меняться коренным образом, так как КрАЗ взял магистральное направление на модернизацию своего производства с целью перевода в ближайшем будущем и всего завода на технологию «сухого» анода и очевидно другие заводы, также пойдут по этому пути. Сейчас проводится большая работа по расширению базы производства высокотемпературного пека. Получены и опробованы ВТП от целого ряда поставщиков: Магнитогорска, Новокузнецка, Днепродзержинска, Заринска (Алтай-кокс) и т.д. Начиная со второй половины 1999г. отмечен рост вязкостных свойств пека, максимальное значение было зарегистрировано в сентябре 2000г. Превышение относительно нормативного составило более чем в два раза. Нестабильность поставляемых пеков по этому показателю связана, прежде всего, с вовлечением пеков заводов-изготовителей ранее не выпускающих эту продукцию и отработкой технологии у них. Изменение характеристик пека и, прежде всего его вязкостных свойств, привело к необходимости корректировки технологии ведения анода .

Анодная масса для «сухих» анодов c использованием пека с высокой температурой размягчения. В компании «Гидро Алюминиум» точка размягчения (ТР) каменноугольного пека для производства массы методом Содерберга за последние 15 лет повысилась от 110 до 130 °С по Меттлеру или с 92 до 112 °С по Крамеру-Сарнову. Основные причины в таком увеличении - это улучшение качества производимой массы, предобожжснного анода, которое заключается в:

Уменьшении испарений/эмиссии полициклических ароматических углеводородов (ПАУ) с верхней части анода;

Уменьшении угольной пыли, собирающейся на рабочей поверхности анода;

Улучшении качества подштыревой массы в предобожженных анодах;

Лучшей возможности управления сухими анодами с увеличенной силой тока внутри электролизера.

Уменьшение эмиссии ПАУ. В Норвегии предельно допустимые нормы испарений ПАУ охватывают группу из 16 компонентов, начиная с фенантрена и заканчивая 1,2,4,5-ди-бенз(а)пиреном в зависимости от точек кипения. Содержание компонентов ПАУ снижается с повышением температуры размягчения пека. Ниже приведено качество пека, поставляемого на завод компании «Гидро Алюминиум» в Кармое (Норвегия):

Год ТР, °С ПАУ 16-ая группа

По Меттлеру ppm

1996 120 96800±5800

1997 125 87400±5500

1998 130 79100±9100

2000/2001 130 76600±6500


Рисунок 2.5. Зависимость потери массы от температуры при прокаливании каменноугольного пека с температурой размягчения 65 и 130°С no Меттлеру.

При повышении ТР содержание ПАУ в пеке уменьшается, что обусловливает также испарения с верхушки анода при неизменных прочих параметрах.

Уменьшение пыли. Повышение ТР увеличивает выход кокса, что даёт больше нелетучего углерода и меньше газа, когда пек прокаливается в аноде. Рис. 2.5 показывает потери в массе в результате прокаливания каменноугольного пека в зависимости от температуры. Темп нагрева 10 °С/ч, прокаливание происходит в атмосфере азота.

Повышение ТР приводит к уменьшению объема газа, высвобождаемого в результате прокаливания, и к увеличению объема пекового кокса. В результате получается более плотный кокс. В предобожженном аноде это выражается в содержании кокса с меньшей активностью СО2.

В натурном испытании на заводе «Гидро Алюминиум» в Кармое в 1994г. 5 электролизеров были заправлены массой, замешенной на пеке с ТР 130°С (электролизеры-тесты). Сравнение проводили относительно другой группы электролизеров (всего 29) этой секции (электролизеры-эталоны). В течение 20 недель до того, как масса достигла рабочей области, и за 14 недель испытаний из электролизеров были извлечены следующие объемы пыли:

Электролизёры……………………………..Тест Эталон

Пыль, образовавшаяся до периода

испытаний, кг/т Al………………….…………16,1 18,0

Пыль, образовавшаяся во время

испытаний, кг/т Al……………………..………4,0 13,8

Испытания были повторены на 11 электролизерах-тестах и 23 электролизерах-эталонах. Объем пыли, извлеченной из электролизеров-тестов составил 25 % от объема пыли, полученной и электролизерах-эталонах.

Замеры химической активности СО2 при газообразовании и образовании пыли в лаборатории не выявили разницы между массами, произведенными из двух разных пеков. Это объясняется газопроницаемостью анода. Однако проницаемость существенно не влияет на химическую активность СО2.

Качество ниппельной анодной массы. При эксплуатации сухих анодов анодный штырь выдергивается, и ниппель остается открытым, после чего специальная масса (ниппельная масса) добавляется в ниппельное отверстие. Это масса с большим содержанием пека (35-40 %). После того как масса расплавилась, новый ниппель вводится в отверстие, и через некоторое время начинается процесс обжига. Качество предобожженной ниппельной массы зависит от объема пека в массе и, соответственно, от объема газа, образующегося при прокаливании. Так как повышение ТР пека уменьшает объем выделяемого газа, оно улучшает качество предобожженной ниппельной массы.

Увеличение силы тока в электролизере. На заводе в Кармое сила тока в электролизере Содерберга увеличена со 125 до 140 кА, или до 0,80 А/см2. В результате затраты энергии на анод значительно увеличились, что привело к высоким температурам в мягкой зоне анода. Чтобы избежать слишком сильного размягчения верхней части анода, содержание пека в массе может быть уменьшено. Но сильное сокращение содержания пека приводит к получению пористого предобожженного анода.

На заводе в Кармое повышение ТР со 120 до 130°С помогло использовать сухие аноды при большей нагрузке тока. При повышении ТР пека температура верхней части анода может повышаться без увеличения вязкости массы. При 150°С вязкость пека с ТР 120 °С в 3 раза выше, чем при ТР пека 130 °С.

Производство массы с высокой температурой размягчения. При производстве массы Содерберга каменноугольный пек смешивается с нефтяным коксом. Процесс смешивания может проводиться отдельными партиями или непрерывно.

Во время перемешивания температура должна быть достаточно высокой, чтобы смочить кокс жидким пеком и добиться впитывания пека в поры кокса. С повышением температуры смешивания степень заполнения коксовых пор возрастает и происходит заполнение пор со значительно меньшим диаметром. Так как пек занимает место газа в порах кокса, плотность массы зеленого анода увеличивается до тех пор, пока содержание пека остается постоянным.

Рис. 2.6, 2.7 показывают эффект влияния температуры смешивания на показатель текучести и на плотность зеленого анода.


Рисунок 2.6. Зависимость текучести от температуры смешивания.


Рисунок 2.7. Зависимость плотности зеленого анода от температуры смешивания.

Пек смачивал кокс при 165 °С. Дальнейшее повышение температуры обусловливало проникновение пека в поры кокса, уменьшая объем пека вокруг и между частицами кокса. В результате уменьшалась текучесть или относительное удлинение и увеличивалась плотность зеленого анода, когда пек замещал газ в порах кокса.

Когда ТР используемого пека увеличивается, температуры смешивания должны также повышаться, чтобы степень проникновения пека в поры кокса была аналогичной. Если только ТР пека увеличивается, то заполнение пор кокса пеком во время смешивания будет уменьшаться. В результате больше пека проникнет в поры кокса в мягкой зоне анодов и анодная масса «высохнет» гораздо быстрее. В результате можно получить пористый предобожженный анод, дающий большое количество пыли в электролизере.

На заводах компании «Гидро Алюминиум» для производства массы используется печное топливо, чтобы достичь высокой температуры смешивания. Если температуры кокса и жидкого пека 175 и 205 °С, то типичная температура печного топлива, подаваемого в смесители, находится в районе 230 °С (завод по производству массы в Кармое). Это приводит к температуре массы 205 °С, что превышает ТР на 75 °С. При использовании печного топлива возможно повышать ТР и установить температуру смешивания ТР + 75 °С. Таким образом, масса с ТР пека 135 °С была произведена и испытана с хорошими результатами. Возможно увеличивать ТР еще больше .

Вывод: увеличение ТР каменноугольного пека в массе Содерберга уменьшает ПАУ испарения и улучшает качество преобожжённого анода и ниппельной массы. С увеличением силы тока и затрат энергии на анод повышение ТР поможет стабилизировать работу сухого анода. При переходе на пек с более высокой ТР температура смешивания, которая определяется как температура над ТР, должна быть неизменной.

Анодная масса, используемая на ОАО «КрАЗ»

Технология «сухого» анода предусматривает использование нескольких типов анодной массы с различным содержанием пека (связующего) и коэффициентом относительного удлинения (КОУ).

Типы анодной массы:

-«сухая корректировочная» - с содержанием высокотемпературного пека (BТП) от 26 до 28 % в зависимости от содержания пека: «сухая нормальная» - с содержанием ВТП от 28 до 29%; «подштыревая» - с содержанием ВТП от 38 до 42 %.

При выпуске отдельных партий анодной массы содержание пека может отличаться от указанных пределов, что определяется фактическим технологическим состоянием анодов на период выпуска анодной массы.

Подштыревая анодная масса (ПАМ) подвергается дополнительной обработке на участке сушки ЦАМ в соответствии с требованиями существующей инструкции «Сушка подштыревой анодной массы в ЦАМе», на участке сушки и дробления ЭЛЦ-3 в соответствии с требованиями ТИ 3-05-2001 «Участок сушки и дробления подштыревой анодной массы».

В технологии «сухого» анода допускается использование анодной массы на среднетемпературном пеке (СТП). В этом случае используют следующие типы анодной массы:

«сухая» - с содержанием СТП от 27 до 29 % и КОУ от 10 до 60 %;

«жирная» - с содержанием СТП от 36 до 38 % и коэффициентом текучести от 2,95 до 3,55 о.е.

«подштыревая масса» - с содержанием ВТП от 38 до 42 % и коэффициентом текучести от 3,20 до 3,60 о.е.

Таблица 2.3. Технологические параметры анода, при использовании массы на ВТП.

Параметры

Значение параметра

Схема расстановки штырей

12 горизонтов

18 горизонтов

от 3,0 до 3,5

от 3,0 до 3,5

2. Пустота в аноде при температуре воздуха: до минус 15°С ниже минус 15 °С: -анодный кожух с вынесенными контрфорсами - анодный кожух с внутренними контрфорсами

от 4 до 10 от 4 до 10 от 4 до 12 от 4 до 12 от 4 до 12

от 0 до 6 от 4 до 10 от 0 до 10 от 4 до12

3. Уровень КПК в центре анода

32, не менее

32, не менее

4. Столб анода

160, не менее

160, не менее

5. t КПК в центре анода на глубине 5 см

160, не более

160, не более

130, не более

130, не более

7. Минимальное расстояние переставляемых штырей; Среднее минимальное расстояние всех штырей

23 ±1* 41,0 ±2,5*

23 ±1 * 37.5 ± 1,75 *

8. Шаг перестановки

9. Расстояние между горизонтами

10. Количество штырей на аноде не установленных на горизонт: - за один цикл перестановки (72 штыря) - в течении 6 месяцев после замены штырей

14, не более 20, не более

20, не более 25, не более

12. Коэффициент неравномерности, токораспределения по штырям

13. Количество штырей с токовой нагрузкой на 1 штырь: - менее 0,5 кА, более 3,5 кА

4, не более 0

4, не более 0

10, не более

10, не более

16. Количество «газящих» контрфорсов

1, не более

1, не боле

17. Количество «газящих» штырей

2, не более

2, не более

15, не более

15, не более

Таблица 2.4. Технологические параметры анода, при использовании массы на СТП

Параметры

Значение параметра

Схема расстановки штырей

12 горизонтов

от 3,0 до 3,5

(КПК) анода

2. Пустота в аноде при температуре воздуха:

до минус 15 °С:

Анодный кожух с вынесенными контрфорсами

Анодный кожух с внутренними контрфорсами

ниже минус 15 °С:

Анодный кожух с вынесенными контрфорсами

Анодный кожух с внутренними контрфорсами

3. Уровень КПК в центре анода

32, не менее

4. Столб анода

160, не менее

5. Температура КПК в центре анода на глубине

160, не более

6. Конус спекания в центре анода

130, не более

7. Минимальное расстояние переставляемых штырей: Среднее минимальное расстояние всех штырей

23 - 24 * 41,5±2*

8. Шаг перестановки

9 Расстояние между горизонтами

10. Количество штырей на аноде не установленных на горизонт: за один цикл перестановки (72 штыря): - в течении 6 месяцев после замены штырей

14, не более 20, не более

11. Расстояние от подошвы анода до нижнего среза газосборной секции («ножка»)

12. Коэффициент неравномерности токораспределения по штырям

13. Количество штырей с токовой нагрузкой на 1 штырь: - менее 0,5 кА более 3,5 кА

4, не более 0 .

14. Падение напряжения в контакте "штанга-шина"

10, не более

15. Падение напряжения в аноде (АСУТП)

16. «Газящих» контрфорсов

1, не более

17. «Газящих» штырей

2, не более

18. Величина выгорания угла анода

15, не более

19. Оценка пробы анодной массы из КПК анода

20. Баланс пека в аноде Процент загрузки анодной массы

Устанавливается протоколом технологического совещания

* Минимальное расстояние переставляемых штырей и среднее минимальное расстояние может увеличиваться в холодный период года. Значение устанавливается приказом или распоряжением по заводу.

Примечание: анод считается «газящим» в следующих случаях:

1. «Газит» 3 и более штырей;

2. «Газит» 2 и более контрфорсов;

3. Одновременно «газит» 2 штыря и 1 контрфорс.

К «газящим» не относятся аноды, на которых в момент проверки ведется перестановка штырей, загрузка анодной массы, подъем анодной рамы или анодного кожуха, прорезка или подпрессовка анода.

Количество единовременно «газящих» анодов в корпусе не должно превышать 6 %.