Геотермальный источник энергии. Геотермальная энергетика и ресурсы россии

Уже прочитали: 3 179

Геотермальная энергетика - откуда берется энергия?

Основные источники энергии, используемые сегодня, полностью обеспечивают все текущие потребности населения. Однако, согласно расчетам ученых, уже через 20 лет человечество начнет ощущать нехватку энергии. Это произойдет из-за постоянно возрастающих потребностей населения и, в особенности, промышленных предприятий. К тому времени заметно истощатся такие источники, как угольные нефтяные и газовые месторождения, а гидроэнергетические сооружения уже сегодня значительно изношены и нуждаются в поддержке со стороны.

Ученые видят выход в использовании альтернативных ( и ) или возобновляемых видов энергии (ВИЭ), одной из разновидностей которых является геотермальная энергетика.

Согласно результатов исследований, температура земного ядра составляет около 6000°С . По мере приближения к земной коре она понемногу снижается. Скорость охлаждения земного ядра составляет около 400°С за миллиард лет, что позволяет не беспокоиться о том, что источник иссякнет. Причиной такого нагрева считается постоянная реакция радиоактивного распада элементов, составляющих значительную часть земного ядра урана, тория, радиоактивного калия.

Использование этого тепла человеком пока значительно ограничено, поскольку технологические возможности низки и не позволяют получать энергию в любой географической точке. На сегодня используются только термоаномальные зоны, где имеются точки выхода на поверхность горячих пород или водных источников.

Различают следующие типы источников тепловой энергии:

  • поверхностные, находящиеся на глубинах нескольких десятков метров
  • подземные гидротермальные резервуары
  • парогидротермальные участки
  • петротермальные системы, обладающие «сухим» теплом горных пород
  • магматические участки, где к поверхности подходят расплавленные горные массивы

Основными типами геотермальных источников являются участки с теплоносителями (вода или пар) и с сухими нагретыми горными породами. Рассмотрим их внимательнее.

Петротермальная энергетика

Петротермальная энергетика основана на получении энергии с помощью подземного тепла, полученного от горячих горных пород. Технологически это направление еще не отработано, поскольку для получения энергии требуется иметь доступ к нагретым горным породам, а они даже в регионах с повышенным температурным градиентом залегают на глубине около 2 км от поверхности. Поэтому на сегодня используются только близкие к поверхности, по сути - аномальные участки земной коры с выходом на поверхность горячих массивов.

При появлении технологической возможности бурить на глубины 8-10 км, сооружать геотермальные электростанции (ГеоТЭС) будет можно в любой точке, где это необходимо.

Получение электроэнергии планируется путем закачки в подземные полости воды, превращающейся в перегретый пар. Он выводится под давлением на поверхность, где подключается к турбинным установкам, производящим электроэнергию. Сложность заключается в необходимости большой площади контакта, чтобы получать достаточные мощности. Предполагается использование подземных разломов, систем трещин и прочих полостей с высокими температурами.

Гидротермальная энергетика

Это направление активно используется уже сегодня . Страны, имеющие на своей территории участки с богатыми горячими источниками, используют их для обогрева жилья и получения электроэнергии.

Наиболее заметными пользователями в этом направлении являются:

  • Исландия
  • Новая Зеландия
  • Мексика
  • Япония
  • Италия
  • Сальвадор

В зависимости от характера источников, температуры и мощности подземных процессов, устанавливаются электростанции, производится подключение городских отопительных сетей к подземным резервуарам с горячей водой, находящейся под давлением. Температура пара , пригодного для выработки электроэнергии в промышленных масштабах, должна составлять как минимум 200°С , что возможно не везде. Практически, все существующие ныне электростанции, использующие геотермальную энергию, являются особенными, работающими в отдельных уникальных условиях.

ЧИТАЙТЕ ТАКЖЕ: Как работает тепловой насос «грунт-вода» - плюсы и минусы, выбор оборудования

Принципы работы геотермальных электростанций

Геотермальные электростанции используют либо горячие горные породы для нагрева закачиваемой в подземные полости воды, либо естественные горячие источники , уже существующие в толще земли. Перегретый пар, образующийся в результате геотермальных процессов, выводится на поверхность земли и задействует лопатки турбин паровых электрогенераторов.

Изложенный принцип верно отражает схему, но на практике все обстоит намного сложнее. Во-первых, состав пара, выводимого из подземных емкостей, сложен и насыщен агрессивными и ядовитыми газами и соединениями. Во-вторых, количество выводимого носителя должно пополняться закачкой свежих объемов, иначе будет нарушен гидродинамический баланс, отчего функционирование источника может быть нарушено или вовсе прекратится.

В зависимости от типа источника существуют следующие типы ГеоТЭС:

  • сооружения, установленные на природных источниках горячего пара или воды (парогидротермах)
  • двухконтурные ГеоТЭС, использующие горячий водяной пар из источника и вторичный пар, полученный от подведенной и нагретой воды
  • двухконтурные ГеоТЭС, использующие перегретую воду естественного происхождения

Конструкция каждой конкретной установки специализирована под местные условия, температуры и состав воды или пара. В большинстве случаев используются теплообменники, забирающие тепло у выведенного из подземных полостей носителя, который после этого закачивается обратно. Используются различные циклы очистки пара от ядовитых или агрессивных примесей, сернистых соединений, сероводорода и других веществ.

Достоинства ГеоТЭС

К достоинствам гидротермальных электростанций можно отнести:

  • источник энергии практически неисчерпаем
  • не используются углеводородные источники энергии
  • сооружение ГеоТЭС не меняет природный ландшафт, не требует использования больших площадей поверхности земли
  • необходимость во внешнем источнике энергии присутствует только на момент запуска оборудования. Как только станция дает первый ток, она обеспечивает свою работу самостоятельно
    никаких вложений, кроме первоначальных расходов на строительство, не имеется. Требуются лишь обслуживание и ремонт оборудования по необходимости
  • существуют возможности дополнительного использования оборудования станции (например, в качестве опреснителей воды)
  • экологическая чистота, отсутствие опасности заражения или загрязнения местности (этот пункт действует с определенными оговорками)

Недостатки

  • привязка станции к точке выхода на поверхность горячих источников, иногда находящихся в удаленных районах
  • эксплуатация ГеоТЭС способствует изменениям в ходе естественных природных процессов, в результате чего появляется опасность их прекращения
  • скважины или иные точки выхода могут стать источниками выбросов вредных или агрессивных летучих соединений
  • расходы на постройку станции достаточно велики, что способствует возрастанию стоимости энергии для конечного пользователя

Основная причина наличия указанных недостатков - неустойчивость естественных процессов для промышленного использования . Любое вмешательство способно нарушить хрупкое равновесие, а в гидродинамических системах опасность возрастает из-за появления возможности образования карстовых полостей. Эксплуатация ГеоТЭС требует аккуратного и бережного отношения к природным системам, возобновления объемов воды и прочих профилактических мероприятий.

Сферы применения

Геотермальная энергия на сегодняшний день не имеет преобладающего значения , но используется вполне активно. В регионах, где это возможно, создаются ГеоТЭС, станции обогрева жилья или производственных зданий и помещений. Рассмотрим наиболее популярные сферы использования геотермальной энергии:

Сельское хозяйство и садоводство

Доступ к нагретой воде или пару позволяет применять их в сельскохозяйственных или садоводческих комплексах и хозяйствах. Производится обогрев и полив растений , сельскохозяйственных культур в теплицах, оранжереях. Возможен обогрев сельскохозяйственных комплексов по содержанию и разведению животных, птицы. Возможности данного направления во многом зависят от характеристик источника, его специфических параметров и состава воды. Активное использование геотермальной энергии в сельском хозяйстве наблюдается в Израиле, Мексике, Кении, Греции Гватемале.

Геотермальных ресурсов в общем топливно-энергетическом балансе может достигать 5-10%. Различают гидрогеотермальные ресурсы (ресурсы геотермальных вод), заключённые в естественных подземных коллекторах, и петрогеотермальные ресурсы, аккумулированные в блоках нагретых (до 350°С и более), практически безводных (так называемых сухих) горных пород. Технология извлечения петрогеотермальных ресурсов основана на создании искусственных циркуляционных систем (так называемых тепловых котлов). Гидрогеотермальные ресурсы эксплуатируют при помощи скважин с применением фонтанного и насосного способов, а также метода поддержания пластовых давлений (ППД) - путём обратной закачки в пласт отработанных геотермальных вод. Практическое значение имеют гидрогеотермальные ресурсы, устойчивый режим которых, относительная простота добычи и значительные площади распространения позволили использовать эти воды для теплоснабжения (при температуре от 40°С до 100-150°С) и выработки электроэнергии (100-300°С). На базе выведенного подземного пара и пароводяных смесей строят геотермальные электростанции (ГеоТЭС). Гидрогеотермальные ресурсы приурочены к пластовым водонапорным системам, расположенным в депрессионных зонах, выполненных мощными толщами осадочных отложений мезозойского и кайнозойского возрастов, и к трещинным водонапорным системам, развитым в районах современного и молодого вулканизма и в складчатых областях, испытавших воздействие новейших тектонических движений. Трещинные водонапорные системы расположены локально в крупных зонах тектонических разломов.

В России наибольшее значение имеют пластовые гидрогеотермальные ресурсы, в меньшей степени - трещинные. Перспективные районы пластовых гидрогеотермальных ресурсов - Западная Сибирь, Предкавказье, Северный Сахалин; в этих районах глубина залегания вод 1500-5000 м, температура 40-200°С, минерализация 1-150 г/л. Наиболее крупные пластовые гидрогеотермальные месторождения находятся в Предкавказье: Махачкалинское, Избербашское, Кизлярское - в Дагестане; Черкесское - в Карачаево-Черкесии; Мостовское, Майкопское, Вознесенское - в Краснодарском крае. Районы развития трещинных термальных вод: Камчатка (Паужетское, Паратунское месторождения) и Курильские острова, где продуктивные зоны вскрыты на глубинах 500-2000 м, температура вод от 40 до 200-300°С, минерализация 10-20 г/л; Прибайкалье; северный склон Большого Кавказа, где глубина вод 500-1000 м, температура 40-100°С, минерализация 1-2 г/л. В России общие запасы тепловой энергии в водах с минерализацией до 35 г/л (при насосной эксплуатации скважин и коэффициенте полезного использования теплового потенциала 0,5) оценены в 850-1200 миллионов ГДж/год, что эквивалентно сжиганию 30-40 миллионов тонн условного топлива (смотри в статье Возобновляемые источники энергии); при эксплуатации методом ППД экономия условного топлива может составить 130-140 миллиардов тонн в год. Гидрогеотермальная энергия используется для отопления и горячего водоснабжения городов Махачкала, Черкесск и др., для теплоснабжения тепличных комбинатов на Северном Кавказе, Камчатке, для выработки электроэнергии (ГеоТЭС действуют на Камчатке - Паужетская и Мутновская; проектируются в Ставропольском крае и в Дагестане).

За рубежом в основном используются гидрогеотермальные ресурсы, сосредоточенные в районах современного или молодого вулканизма, где воды имеют температуру 200-300°С и могут непосредственно использоваться для выработки электроэнергии. Такие районы известны в США (месторождение Большие Гейзеры в Калифорнии, где построены самые крупные в мире ГеоТЭС), Италии (месторождение Лардерелло в Тоскане), Новой Зеландии (месторождение Уайра-Кей), Японии (месторождения Атагава, Отака, Мацукава на островах Хоккайдо, Кюсю, Хонсю), Мексике (месторождение Серро-Прието в Нижней Калифорнии), Исландии, а также на Филиппинах, в Индонезии и др. Кроме того, во многих странах (в том числе в Исландии) гидрогеотермальные воды с температурой 40-110°С используются для теплоснабжения городов.

При использовании гидрогеотермальных ресурсов происходит химическое и тепловое загрязнение окружающей среды. С целью охраны среды термальные воды после их использования закачивают обратно в продуктивные пласты (трещинные зоны). Борьба с коррозионным воздействием естественных теплоносителей на оборудование, приборы, конструкционные материалы решается на стадии эксплуатации конкретных месторождений путём добавок химических реагентов в теплоноситель, предварительной дегазации, а также подбором соответствующих коррозионно-устойчивых металлов и покрытий. Увеличение геотермальных ресурсов связано с открытием в перспективе новых месторождений, их искусственным стимулированием, усовершенствованием методов производства электроэнергии.

Лит.: Геотермальная энергия. Ресурсы, разработка, использование. М., 1975; Берман Э. Геотермальная энергия. М., 1978; Голицын М. В., Голицын А. М., Пронина Н. М. Альтернативные энергоносители. М., 2004.

Геотермальная энергетика России может обеспечивать население определенными ресурсами для коммунальных, промышленных и сельскохозяйственных нужд.

В России и бывшем Советском Союзе на протяжении более 60 лет проводились буровые работы для получения горячей воды и пара из недр Земли. Сегодня практически вся территория страны хорошо изучена. Выяснилось, что многие регионы имеют запасы горячей воды и пара с температурой от 50 до 200 0 С на глубине от 200 до 3000 м.

Геотермальные источники в России

Центральный регион, Северный Кавказ, Дагестан, Сибирь, зона Байкальского рифта, Красноярский край, Чукотка, Сахалин, полуостров Камчатка и Курильские острова имеют богатейшие ресурсы геотермальной энергии для производства до 2000 МВт электроэнергии и более 3000 МВт тепла для системы централизованного теплоснабжения. Использование геотермальных ресурсов в России особенно важно для снабжения северных территорий страны.

В России в связи с холодным климатом более 45% от общего объема энергетических ресурсов используются для теплоснабжения городов, населенных пунктов и производственных комплексов. До 30% этих энергетических ресурсов в отдельных районах может быть обеспечено при использовании тепла из недр Земли.

Использование геотермальной энергетики планируется провести в следующих регионах России: в Краснодарском крае (теплоснабжение города Лабинск, а также комплекс в поселке Розовый), Калининградской области и на Камчатке (теплоснабжение Елизовской и Паужетской электростанции мощностью 12 мВт и расширение существующей Мутновской Геоэс до 50 МВт, где используется вторичный пар для производства электроэнергии.

Экономические и политические изменения, которые произошли в России в значительной степени влияют на то, как электроэнергетика развивается.

Электроэнергия в России, в основном, базируется на использовании ископаемого топлива и эксплуатации атомных и гидроэлектростанций. В настоящее время геотермальная энергетика является сравнительно скромной, хотя страна обладает значительными ресурсами.

Современная экономическая ситуация в России зависит от развития своего энергетического потенциала. Трудности экономики делают проблему энергоснабжения существенной, особенно в северных и восточных регионах страны. Под эти обстоятельства, вполне естественно, что регионы должны стремиться к использованию собственных энергетических ресурсов и развития возобновляемых источников энергии. В регионах Дальнего Востока, Сахалина, Курил, на Камчатке, использование становится экономически целесообразным.

Есть несколько основных регионов, перспективных для “прямого” использования (теплоснабжения жилых домов и промышленных зданий, подогрева теплиц и почвы, в животноводстве, рыболовстве, в промышленном производстве, для добычи химических элементов, увеличения нефтеотдачи пластов, для плавления мерзлых пород, в бальнеологии и т. д.), а также для тепла с применением тепловых насосов и получения электроэнергии на Геоэс бинарного цикла (геотермальная электростанция).

Один из них регион (Камчатка и Курильские острова) находится в районе активных вулканов, наиболее перспективный район для “прямого” использования геотермальной энергетики и строительства Геоэс. До сих пор 66 скважин термальной воды и пара были изучены в России. Половина из них находится в эксплуатации, обеспечивая около 1,5 млн Гкал тепла в год, что равно почти 300 тысяч тонн условного топлива.

Южная часть России

Дагестан на Северном Кавказе является одним из крупнейших в области развития геотермальной энергетики. Общая сумма ресурсов на глубине 0,5-5,5 км позволяет получить примерно 4 млн. м 3 /сутки горячей воды. В настоящее время более 7,5 млн. м 3 /год воды температурой 50-110 0 C используется в Дагестане. Среди них 17% в качестве горячей; 43% для централизованного теплоснабжения; 20% для теплиц и 3% для бальнеологии и производства минеральной воды. В Дагестане около 180 скважин пробурено на глубине от 200 до 5500 м. Такие города, как Кизляр, Тарумовка и Южно-Сухокумск, обладают уникальными запасами горячей воды. Например, Таруморское месторождение имеет запасы горячих вод высокой минерализации (200 г/л) с температурой до 95 0 С шесть скважин были пробурены на глубину около 5500 м, самых глубоких скважин в России. Тесты указывают на высокую проницаемость пласта скважин между 7500 и 11000 м 3 /сутки и устьевое давление 140-150 бар.

На Кавказе и в Предкавказье термальные воды образовались за счет многослойных артезианских бассейнов в отложениях геологической эры Мезозоя и Кайнозоя.

Минерализация и температура этих вод существенно различается: на глубинах 1-2 км — от 0,5 до 65 г/кг и от 70 до 100 0 С соответственно, в то время как на Скифской платформе на глубинах 4-5 км – от 1 до 200 г/кг и от 50°С до 170°С.

В Дагестане общая сумма разведанных термальных запасов воды составляет 278 тыс. м3/сутки, а с использованием пласта воды – 400 тыс. м 3 /сутки. Тепловой потенциал здесь эквивалентен ежегодной замене 600 тыс. тонн условного топлива.

Геотермальная энергетика использует ресурсы при температуре от 40-107 0 С и минерализацию от 1,5-27 г/л находящиеся в Северном Дагестане. За последние 40 лет 12 крупных термальных вод были обнаружены и 130 скважин было пробурено и подготовлено к эксплуатации в данном регионе.

Однако в настоящее время используется только 15% потенциальных известных термальных запасов воды.

Краснодарский край также обладает значительными запасами геотермальной энергетики. Район имеет широкий опыт использования геотермальных источников энергии. Порядка 50 скважин находятся в эксплуатации, которые принимают воду в объеме до 10 млн. м 3 с температурой от 75 до 110 °C. Широкие области использования энергии в Краснодарском крае позволят обеспечить к 2020 году до 10% спроса всего тепла и до 3% всех энергетических потребностей региона. В совокупности тепловая мощность месторождений, находящихся в эксплуатации составляет 238 МВт.

Центральная часть России и Сибирь

Экономическая целесообразность использования геотермальных ресурсов для выработки тепла и производства электроэнергии становится более очевидной если ресурсы в основном доступны с температурой от 30 до 80 0 С (иногда даже до 100 0 С) на глубинах 1-2 км. Такие ресурсы находятся в центральной части средне-русского бассейна (Московская синеклиза (разрез)), которые включает в себя 8 районов: Вологодский, Ивановский, Костромской, Московский, Нижегородский,

Новгородский, Тверской и Ярославский. Есть также перспективные возможности для эффективного использования термальных вод в Ленинградской области и особенно в Калининградской области. Эффективность их использования может быть обеспечена за счет применения тепловых насосов и бинарных циркуляционных систем. Широкое использование геотермальной энергетики возможно в центре Европейской части России.

Сибирь также обладает запасами тепла из недр, которые могут использоваться для теплоснабжения и сельского хозяйства. Термальные воды платформы Западной Сибири имеют большой артезианский бассейн на площади почти 3 млн. км 2 . На глубинах до 3 км имеются тепловые ресурсы воды с температурой от 35 до 75 0 С и минерализацией от 1 до 25 г/кг и оцениваются в 180 м 3 /сек.

Высокая минерализация этих термальных вод требует их обратной закачки после использования теплового потенциала для предотвращения загрязнения среды.

Использование даже 5% своих резервов позволит производить 834 млн Гкал/год, что позволит сэкономить 119 млн. т условного топлива.

На Байкале и прилегающей территории есть множество термальных источников, энергия которых может достигать многих тысяч кубических метров в сутки с температурой от 30 до 80 0 С и выше. Обычно минерализация таких вод не превышает 0,6 г/л.

Если рассмотреть химический состав термальных вод, в основном, они имеют щелочную реакцию, сульфат или гидрокарбонат натрия. Большая часть этих ресурсов находится в Тункинской и Баргузинской полости и вдоль побережья озера Байкал.

Камчатка и Курильские острова

Курильские острова, в основном, питаются дизель-генераторами электроэнергии и отапливаются котельными работающими на привозном угле. В то же время Курильские острова богаты геотермальной энергетикой. Ожидается, что их мощность будет достигать 300 МВт. Геотермальная энергетика необходимой мощности может быть реализована в непосредственной близости от каждого крупного населенного пункта, действующих или планируемых объектов Курильских островов — на Кунашире, Итурупе, островах Парамушир и др.

Были изучены несколько источников геотермальной энергетики на упомянутых островах. Например, на острове Кунашир по данным геологоразведочных работ ожидается, что запасы геотермальных резервуаров оцениваются в 52 МВт. Ожидаемые запасы самого Северного острова Курильской гряды — Парамушир, рассчитанные с помощью различных методов, могут поддерживать работу геотермальных электростанций мощностью 15 — 100 мВт.

Прямое использование геотермальных ресурсов в основном развито в Курило-Камчатской области, Дагестане и Краснодарском крае, и в первую очередь для теплоснабжения и отопления теплиц. Развитие геотермальных ресурсов является достаточно перспективным в таких регионах, как Западная Сибирь, Байкал, Чукотка, Приморье, Сахалин.

Экономическая целесообразность использования геотермальных ресурсов при воде с температурой между 30 и 80/даже 100ºС на глубинах 1-2 км.

Природные ресурсы России

Россия, в отличие от многих других стран, обладает уникальными природными ресурсами.

Запасы ископаемого топлива огромны в России, и по сравнению с мировыми составляют: 35% газа, 33% для древесины, 12% на нефть, но в то же время обладают огромным количеством горячей воды из земли — тепла из недр.

Потенциальная энергия в 8-12 раз превышает энергетический потенциал углеводородного топлива, который может кардинально изменить энергетический баланс.

Резюмируя ситуацию с использованием геотермальной энергии в России в первую очередь надо еще раз отметить, что на Камчатке три геотермальные электростанции успешно работают: 12 МВт и 50 МВт (Верхне-Мутновская и Мутновская) и 11 МВт на Паужетской области. На Курильских островах (Кунашир и Итуруп) есть две небольшие Геотэс мощностью 3,6 МВт, которые также успешно работают.

Общие сведения о геотермальных ресурсах

Запасы глубинного тепла Земли относятся к геотермальным ресурсам. Геотермальная энергия земных недр образуется в результате расщепления радионуклидов.

Россия обеспечена этим видом ресурсов, энергия которых превышает весь потенциал органического топлива на порядок. В общем балансе теплоснабжения России тепло Земли может составить 10%. В стране разведано 66 геотермальных месторождений, пробурено более 4 тыс. скважин для использования геотермальных ресурсов.

Перспективными в отношении освоения являются Камчатско-Курильский, Западно-Сибирский, Северо-Кавказский регионы.

Геотермальные месторождения Северного Кавказа хорошо изучены. Они залегают на глубине от 300 до 5000 м и имеют температуру до 180 градусов. Термальные воды этого региона образуют многослойные артезианские бассейны.

Разведанные геотермальные месторождения Краснодарского края имеют тепловой потенциал, превышающий 3800 ГДж в год. В теплоснабжающих системах края используется только 5% этого потенциала.

Термальные месторождения Западно-Сибирской плиты относятся к перспективным для прямого использования. Прямое использование термальных вод предполагает отопление жилых зданий, теплиц, выращивание рыбы, грибов и др.

Определение 1

Геотермальные ресурсы – постоянно обновляемый и экологически чистый источник энергии.

Вблизи поверхности Земли вода нагревается до температуры кипения и в виде водяного пара может подаваться на турбины для выработки электрического тока.

Специалисты подразделяют геотермальные ресурсы на гидротермальные и петротермальные. Данный вид ресурсов в России исследован давно, ещё в 1983 г. существовал «Атлас ресурсов термальных вод СССР». Атлас включал карту потенциальных термальных ресурсов страны.

Термальные воды в зависимости от условий теплового питания делятся на две группы:

  1. Термальные воды, которые нагреваются в региональном тепловом поле. К ним относятся в основном пластовые подземные воды крупных артезианских бассейнов;
  2. Термальные воды, формирующиеся в аномальных геотермических условиях, воздействие на которые оказывают вулканические процессы. Это порово-пластовые, трещинно-пластовые, трещинно-жильные, связанные с системами вулкано-тектонических депрессий.

Геотермальная энергетика России

Лидерами по использованию внутреннего тепла Земли являются США, но и Россия в этом вопросе не стоит в стороне, потому что геотермальная энергетика относится к перспективным отраслям хозяйства.

Электростанции, использующие внутреннее тепло Земли, располагаются в районах с вулканической деятельностью. Объясняется это тем, что вулканическая лава при соприкосновении с водными ресурсами сильно их нагревает и в местах разломов горячая вода выходит на поверхность, образуя гейзеры, геотермальные озера, подводные течения. При отсутствии открытых источников, термальную воду извлекают с помощью бурения скважин.

Геотермальные электростанции непрямого типа, работающие на термальных ресурсах, получили наибольшее распространение. Электростанции смешанного типа являются в экологическом плане более чистыми. Несмотря на наличие богатых запасов геотермальных ресурсов масштабы его использования в России весьма скромны.

Опыт использования геотермального тепла в стране был осуществлен в 1967 г. На Паратунском месторождении Камчатки создали опытно-промышленную геотермальную электростанцию. Её мощность была около 500 кВт. В это же время первая промышленная выработка электроэнергии в стране началась на Паужетской ГеоЭС, дающая Камчатке самую дешевую электроэнергию. Но, в условиях современной рыночной экономики, цена на мазут резко поднялась и себестоимость некогда дешевой электроэнергии выросла. Несмотря на наличие геотермальных ресурсов, развитие геотермальной энергетики на Камчатке идет не совсем активно, чего требует экономика региона и экологическая обстановка.

Геотермальная энергетика имеет свои преимущества:

  • Такой тип электростанций можно использовать в течение всего года и в разных климатических условиях с коэффициентом использования более 90%;
  • Себестоимость электрической энергии, по сравнению с другими типами электростанций в принципиальном плане, должна быть ниже;
  • Отсутствие вредных выбросов, включая выбросы углекислого газа;
  • Не требуют значительного технического обслуживания.

В России построено пять электростанций, использующих геотермальные ресурсы.

Проблема обеспечения электричеством северных, малообжитых территорий страны для которых централизованное энергообеспечение неприемлемо в экономическом плане, во многом может быть разрешена развитием геотермальной энергетики.

Геотермальные электростанции России

Первая российская геотермальная электростанция была построена в 1966 г и получила название Паужетская. Цель её создания заключалась в необходимости обеспечения электроэнергией жилых поселков и предприятий по переработке рыбы. Свое название электростанция получила по имени села на западном побережье Камчатки, где находятся вулканы Камбальный и Кошелев.

Мощность Паужетской ГеоЭС на момент пуска составляла 5 МВт. С введением бинарного энергоблока мощность электростанции увеличится до 17 МВт. Электростанция сбрасывает геотермальные воды в большом количестве в нерестовую реку Озерная. Температура воды доходит до 120 градусов, что, безусловно, ухудшает экологию реки. Кроме этого идут потери теплового потенциала геотермального носителя.

Опытно-Промышленная Верхне-Мутновская ГеоЭС, расположена на высоте 780 м. над уровнем моря, на юго-востоке Камчатки. В эксплуатацию была введена в 1999 г с проектной мощностью 12 МВт.

Вблизи вулкана Мутновский, в 120 км от Петропавловск-Камчатского находится электростанция, самая большая в регионе. Это Мутновская ГеоЭС. В строй действующих вошла в 2003 г с установленной мощностью 50 МВт. Электростанция имеет автоматизированное обслуживание. Пар, температура которого 250 градусов, приводит в движение турбины ГеоЭС. Поступает он с глубины 300 м. Вода, сконденсированная из пара, отапливает соседний населенный пункт.

Океанская ГеоТЭС была введена в строй в 2006 г. Построена она на острове Итуруп Курильской гряды Сахалинской области. В настоящее время эта электростанция законсервирована из-за череды аварий, произошедших в 2013 г.

На Курильской гряде, на острове Кунашир, расположена у подножья вулкана Менделеева, ещё одна ГеоТЭС – Менделеевская. Строительство электростанции началось в 1993 г. Задача электростанции обеспечить Южно-Курильск теплом и электричеством. В рамках федеральной программы идет модернизация электростанции по увеличению мощности.

Все геотермальные источники энергии Камчатки обеспечивают её потребности на 25% от общего энергопотребления.

В развитии геотермальной энергетики есть свои отрицательные стороны:

  • В выбросах пара есть вредные вещества, попадающие в воздух;
  • Вода, использованная с глубоких горизонтов, должна быть утилизирована;
  • Строительство ГеоЭС достаточно дорогостоящее;
  • Высокие цены на установки и низкий выход энергии;
  • Потенциал теплоносителя низкий;
  • Нетранспортабельность продукта;
  • Значительные трудности складирования.

Таким образом, в зависимости от типа и возможностей использования геотермальной энергии, в России выделяется три гидроэнергетические зоны:

  1. «Горячие точки» – Камчатка и Курильские острова;
  2. Зона Северного Кавказа и зона, прилегающая к озеру Байкал;
  3. Зона, охватывающая 2/3 России. Это потенциально обширная территория с возможностью использования низкопотенциальной энергии при помощи тепловых насосов.

Замечание 1

Ученые России решили многие важные проблемы с использованием геотермальных ресурсов. Страна имеет патенты и авторские разработки, имеет сохранившийся научный потенциал. Дело остается только за тем, чтобы всё это использовать на благо страны и её народа. Без инвестиций, как и без внимания правительства к этому вопросу, тоже не обойтись.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

на тему: «Геотермальные ресурсы»

1. Понятие и классификация геотермальных ресурсов

2. Этапы и стадии геологического изучения недр

3. Принципы и методы изучения и оценки геотермальных ресурсов

4. Геотермальная станция в Беларуси

Заключение

Список используемой литературы

недра геотермия ресурс станция

1. Понятие и класс ификация геотермальных ресурсов

Геотермальная энергетика -- производство электроэнергии, а также тепловой энергии за счёт энергии, содержащейся в недрах земли.

Преимуществом геотермальной энергетики является ее практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).

Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:

Месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

Источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

Месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой, так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

Сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

Магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.

Опыт, накопленный различными странами относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3-5 км обычно превышает 100 °С.

При сопоставлении с традиционными источниками энергии очевидны следующие преимущества геотермальных ресурсов: неисчерпаемость, повсеместность распространения, близость к потребителю, локальность обеспечения потребителя теплотой и электроэнергией, принадлежность к местным ресурсам, полная автоматизация, безопасность и практическая безлюдность добычи геотермальной энергии, экономическая конкурентоспособность, возможность строительства маломощных установок, экологическая чистота.

Однако специфика геотермальных ресурсов включает и ряд недостатков: низкий температурный потенциал теплоносителя, нетранспортабельность, трудности складирования, рассредоточенность источников, ограниченность промышленного опыта.

В настоящее время принято выделять 2 основных класса геотермальных ресурсов - гидро - и петрогеотермальные. Первые представляют собой ту часть ресурсов геотермальной энергии, которая приурочена к естественным коллекторам и представлена природными теплоносителями: подземными водами, паром или пароводяными смесями. Они промышленно эксплуатируются циркуляционными системами (Франция, США, Германия, Дания, Украина, Польша, Швейцария, Россия и др.). Петрогеотермальные - ту часть тепловой энергии недр, которая связана непосредственно со скелетом водовмещающих пород или с практически непроницаемыми горными породами. Технология извлечения петрогеотермальных ресурсов (глубина бурения до 10 км) находится на экспериментальном уровне. Созданы только единичные опытные циркуляционные системы с искусственными коллекторами в США, Англии, Японии, России (Тырныауз), Германии, Франции.

Под эксплуатационными запасами (ресурсами) гидрогеотермальной энергии в целом понимаются количества тепла и воды, которые могут быть получены из оцениваемого водоносного горизонта (комплекса) рациональными в технико-экономическом и экологическом отношениях водозаборными сооружениями при заданном режиме их эксплуатации и соответствующем качестве теплоносителя (температура, химический и газовый состав) в течение всего расчетного срока эксплуатации. Эксплуатационные запасы тепла выражаются либо в единицах мощности, либо в тоннах топлива (условного) в год, эксплуатационные запасы термальных вод имеют размерность объемного расходного расхода для воды (л/с, м3/сут) или весового расхода для пара и пароводяных смесей (кг/с, т/сут).

Наиболее полная классификация ресурсов и запасов геотермальной энергии разработана Э. И. Богуславским.

За нижний предел температуры термальных вод целесообразно принять 20є С с учетом возможного применения тепловых насосов и наличия во многих отраслях народного хозяйства потребности в субтермальных теплоносителях с температурами 20-40є С.

Воды низкопотенциальные (с температурой 20-100є С), в составе которых целесообразно выделение подкласса вод с температурами 20-40є С. Эти воды могут потребляться для теплотехнических нужд в основном с применением тепловых насосов. Также их можно эффективно использовать для оттаивания мерзлых пород и промывки россыпей, интенсификации рыболовства, обогрева открытого грунта, закачки в нефтеносные пласты, технологических процессов, требующих низкопотенциальных теплоносителей. Основное назначение - теплоснабжение, промышленных, сельскохозяйственных и коммунально-бытовых объектов.

Среднепотенциальные (100-150є С) воды могут эффективно использоваться как для теплоснабжения промышленных, сельскохозяйственных и коммунально-бытовых объектов, так и для выработки электроэнергии с применением промежуточных рабочих тел.

Высокопотенциальные (более 150є С) воды могут эффективно применяться для выработки электроэнергии по прямому циклу. В составе таких вод целесообразно выделять перегретые воды (150-250є С), высокоперегретые (250-350є С) и предельно перегретые (более 350є С).

Качество термальных вод, предназначенных для лечебного использования (по температуре, минерализации, ионному и газовому составу, газонасыщенности, содержанию в водах фармакологических активных микроэлементов, радиоактивности, рН) должно оцениваться в соответствии со специальными требованиями к изучению и классификациями минеральных лечебных вод.

2. Этапы и стадии изучения геотермальных ресурсов недр

Источниками геотермальных ресурсов недр являются:

Подземные геотермальные воды;

Тепло горного массива недр.

Геотермальные ресурсы недр могут быть использованы для:

Получения электроэнергии;

Горячего водоснабжения;

Теплоснабжения жилых и производственных помещений;

Лечебных, оздоровительных и иных целей, обусловленных ценностью, полезностью и иными характеристиками геотермальных ресурсов недр.

1) Региональное геологическое изучение недр проводится по следующим стадиям:

Мелкомасштабные геологосъемочные работы;

Среднемасштабные геологосъемочные работы;

Крупномасштабные геологосъемочные работы.

2) Поиск геотермальных ресурсов недр и оценка месторождения проводятся в целях выявления и предварительной оценки месторождения, пригодного для разработки. Поиск геотермальных ресурсов недр и оценка месторождения проводятся по следующим стадиям: - поисковые работы; - оценка месторождения.

3) Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся в целях получения сведений о явлениях и процессах, происходящих в недрах, о геологическом строении месторождения, технологических и иных особенностях месторождения, качестве и количестве находящихся в нем геотермальных ресурсов недр, об условиях разработки месторождения, позволяющих осуществить геолого-экономическую оценку этого месторождения. Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся по следующим стадиям:

Предварительная разведка геотермальных ресурсов недр, проводимая в целях получения достоверных данных для предварительной оценки качества и количества выявленных запасов геотермальных ресурсов недр, получения экономически обоснованной промышленной оценки месторождения, обоснования целесообразности финансирования дальнейших геологоразведочных работ;

Детальная разведка геотермальных ресурсов недр, проводимая в целях подготовки месторождения для разработки. По результатам детальной разведки геотермальных ресурсов недр разрабатываются постоянные разведочные кондиции геотермальных ресурсов недр, по которым проводится подсчет запасов геотермальных ресурсов недр;

Доразведка геотермальных ресурсов недр, проводимая на детально разведанном, но не переданном в разработку месторождении в случае недостаточной изученности этого месторождения, а также на разрабатываемом месторождении при необходимости дополнительного его изучения в связи с пересмотром объемов и технологии добычи, первичной обработки (очистки, обогащения) использования геотермальных ресурсов недр;

Эксплуатационная разведка геотермальных ресурсов недр, проводимая в процессе разработки месторождения для уточнения количества и качества запасов геотермальных ресурсов недр, получения иной геологической информации, необходимой для составления ежегодных планов развития горных работ.

3. Принципы и методы изучения и оценки геотермальных ресурсов

Важным в цикле задач широко вовлечения гидрогеотермальных ресурсов в топливно-энергетическом балансе страны является повышение эффективности поисково-разведочных работ, что, в свою очередь, возможно при условии постоянного совершенствования принципов и методологических основ их планирования и проведения. Методика планирования поисково-разведочных работ на термальные воды, равно как и на другие виды полезных ископаемых, должна исходить из основополагающего принципа эколого-экономической целесообразности. Эффективная его реализация возможна при соблюдении ведущих общих принципов изучения месторождений: полноты исследования, последовательного приближения, равной достоверности, минимизации общественно необходимых трудовых, материальных и временных затрат.

Одним из важнейших является требование стадийности поисково-разведочных работ, позволяющее при минимуме общественно необходимых затрат производить поэтапную геолого-экономическую оценку месторождений и участков.

Конечной задачей всего цикла исследований является обнаружение, геолого-экономическая и экологическая оценка месторождений естественных теплоносителей, т.е. установление величины их эксплуатационных запасов и теплоэнергетического потенциала, а также оценка условий и укрупненных технико-экономических показателей разработки продуктивных водоносных горизонтов, комплексов или трещинных зон.

При изучении геотермальных ресурсов используется достаточно широкий комплекс методов, который определяется в каждом конкретном случае сложностью и особенностями изучаемого объекта и степенью его изученности в предшествующий период.

В общем случае основными видами полевых работ являются: геолого-гидрологическая съемка, специальные съемки (геотермическая, газогидрохимическая и др.), рекогносцировачное обследование участка разведки, бурение и термогидродинамические исследования скважин, геофизические и гидрологические работы, стационарные наблюдения за естественным и нарушенным режимами термальных и холодных вод, обследование ранее пробуренных глубоких скважин и действующих водозаборных сооружений, отбор проб воды и кернового материала, специальные виды исследований (геофизические, гидрогеохимические, геотермические, изотопные, ядерно-физические и др.).

Геолого-гидрогеологическая съемка в зависимости от размеров и сложности изучаемых объектов выполняется в масштабах 1:50 000 - 1:10 000 (в ряде случаев 1:5000), главным образом, при поисках месторождений трещинно-жильного типа. Цель съемки - изучение геологического строения, геотермических и гидрогеологических условий месторождения и прилегающих к нему участков, оконтурирование наиболее продуктивных участков. Особое внимание следует уделять изучению условий разгрузки термальных и холодных вод, парогазовых струй, прогретых площадок и зон измененных пород, а также выделению зон тектонических нарушений.

Специальные съемки проводятся, как правило, в комплексе с геолого-гидрогеологической съемкой, либо как самостоятельный вид работ на стадии поисков (обычно, когда геолого-гидрогеологическая съемка проведена ранее). Задачи этих съемок - картирование отдельных (или комплекса) параметров, являющихся прямыми или косвенными поисковыми показателями (критериями): температуры, компонентов химического и изотопного состава газов, подземных и поверхностных вод. эти исследования реализуются путем проведения термометрических (шпуровых или в неглубоких скважинах), аэрокосмических (ИК-съемка) и газогидрохимических съемок (апробирование всех паро -, газо - и водопроявлений, отбор проб подпочвенного газа и др.).

Рекогносцировочное обследование участков разведки выполняется, главным образом, в начале разведочных работ (застроенность, залесенность, проходимость, наличие коммуникаций, энергообеспеченность и т.д.).

Буровые работы включают в себя бурение поисковых, разведочных, разведочно-эксплуатационных, наблюдательных и (при необходимости) нагнетательных скважин. Основным видом исследований с целью получения информации, необходимой для оценки эксплуатационных запасов теплоносителя, являются специальные опытно-фильтрационные работы. Методика проведения этих работ определяется их целевым назначением, стадийностью исследований, сложностью гидрогеологической и гидрогеотермической обстановок. Опытно-фильтрационные работы по способу их проведения подразделяются на выпуски, осуществляемые за счет использования упругой энергии пласта (трещинной зоны), термолифта (парлифта), газлифта, откачки, выполняемые с применением специального водоподъемного оборудования, и нагнетания.

В зависимости от целевого назначения выпуски (откачки) подразделяются на пробные, опытные и опытно-эксплуатационные.

Пробные выпуски (откачки) производятся на стадии поисковых работ; в отдельных случаях - на стадиях предварительной и детальной разведки. На поисковой стадии задачей пробных выпусков (откачек) является получение предварительной информации о фильтрационных и емкостных свойствах пород, их водообильности, качестве и температуре термальных вод, пароводяных смесей и пара.

Опытные выпуски (откачки) проводят на стадиях предварительной и детальной разведки и подразделяют на одиночные, кустовые и групповые. Задачами их являются: определение расчетных гидрогеологических параметров продуктивных горизонтов и фильтрационных особенностей трещинных зон, выявление закономерностей их изменения в плане и разрезе; установление зависимости между расходом скважин и понижением уровня воды; определение величин срезок уровней при оценке запасов гидравлическим методом и др.

Опытно-эксплуатационные выпуски (откачки) проводятся на месторождениях трещинно-жильного типа с целью получения исходной информации для оценки эксплуатационных запасов термальных вод гидравлическим методом. Основная задача сводится к выявлению зависимости снижения уровня во времени при заданном проектном расходе. Они проводятся до получения устойчивых закономерностей изменения уровней и (или) качества воды в наблюдательных скважинах во времени, позволяющих осуществить прогноз сработки их на конец расчетного срока эксплуатации месторождения (участка).

Перед проведением пробных, опытных и опытно-эксплуатационных выпусков (откачек) обязательно замеряют положения уровней подземных вод в естественной обстановке (или пластовые и избыточные давления), температуру воды в устье скважины и в пластовых условиях и отбирают пробы воды на общий анализ.

Гидрологические исследования проводятся при поисках и разведке месторождений термальных вод трещинно-жильного типа, находящихся в той или иной степени в связи с поверхностными водами. В процессе исследований должны быть получены данные о режиме стока, уровенном, температурном и химическом режиме рек, холодных источников на площади месторождения и на примыкающих участках выше и ниже по течению водной артерии.

Стационарные наблюдения за естественным режимом термальных вод ведутся как на скважинах, так и на источниках термальной воды. Они включают наблюдения за режимом расходов источников, парогазовых струй, химического (в том числе газового) состава и температуры. Задачи:

Уточнение условий взаимосвязи подземных термальных и поверхностных холодных вод;

Определение сезонных и многолетних изменений родникового стока термальных вод;

Изучение характера изменения минерализации, химического и газового состава, температуры термальных вод в годовом и многолетнем разрезах;

Определение параметров взаимосвязи термальных вод отдельных трещинных зон.

Наблюдения за нарушенным режимом термальных вод в районах действующих водозаборных сооружений должны включать в себя наблюдения за уровнями воды в эксплуатационных и специально оборудованных наблюдательных скважинах, за химическим и газовым составом термальных вод, за температурой вод а излив и по стволу скважин, дебитом водозаборных скважин.

Специальные методы исследований (гидрогеохимические, геотермические, изотопные, ядерно-физические) предназначены для выяснения условий формирования эксплуатационных запасов термальных вод, выявления и локализации областей питания и разгрузки, изучения условий взаимодействия между водоносными горизонтами через разделяющие слабопроницаемые слои и взаимодействием между трещинными зонами, а также для изучения процессов продвижения закачиваемых вод в пласты, его охлаждения и др. Сюда же относятся и геоботанические исследования, которые проводятся на поисковой стадии на месторождениях трещинно-жильного типа. Они заключаются в изучении растительных сообществ, которые используются для выявления и оконтурирования площадей прогрева и скрытых термопроявлений.

Геофизические методы. При изучении месторождений термальных вод применяются практически все виды геофизических методов: скважинные, наземные, аэрографические и др. С их помощью уточняется геологическое строение изучаемой территории (особенно глубинное), осуществляются гидрогеологическая стратификация и корреляция разрезов, изучаются гидрогеодинамические, гидрогеохимические и гидрогеотермические характеристики исследуемых толщ.

Наземные, аквальные (морские) и аэрографические методы обеспечивают практически сплошное изучение территории. Они включают электро-, сейсмо-, грави- магниторазведку, радио- и термометрию, наиболее часто выполняются в наземном варианте, но могут производится на дне водоемов или с водной поверхности: эти же методы, за исключением сейсморазведки, реализуются с помощью летательных аппаратов. Как и геофизические исследования скважин (ГИС), наземные и аэрографические работы осуществляются путем постановки специальных полевых наблюдений, либо на основе повторной интерпретации имеющихся разноцелевых материалов.

Ландшафтно-индикационные методы по отношению к объекту исследований подразделяют на наземные и дистанционные.

Наземные методы используют при геотермических исследованиях весьма ограниченно, лишь для геологической привязки и расшифровки аномалий, выявленных дистанционными методами. При этом решаются задачи общего геолого-гидрогеологического плана и специального геотермического направления.

При поисках термальных вод и других видах геологических работ широко используются дистанционные (аэрокосмические) методы. С их помощью производят съемку земной поверхности, регистрируя световые, инфракрасные и дециметровые электромагнитные поля, т.е. имеющие длину от 0,3 мкм до 1,0 м. современные дистанционные методы представляют собой по существу комплекс методов электроразведки, термометрии, ландшафтоведения, использующих как перечисленные методы, так и визуальные наблюдения.

При дистанционном изучении поверхности Земли используют как воздушные аппараты (самолеты, вертолеты), так и космические (пилотируемые космические корабли, искусственные спутники Земли, орбитальные научные станции). Высота аэронаблюдений варьирует от нескольких десятков метров до нескольких километров, а космических - от 300 до 3000 км.

Особенно важное значение при прогнозировании, поисках и разведке термальных вод имеют аэрокосмофотосъемка (АФС и КФС) и ИК-съемка.

Аэрокосмофотосъемка является в настоящее время основным видом дистанционных наблюдений. При съемках с космических аппаратов охватывается огромная площадь, измеряемая сотнями тысяч квадратных километров, в то время как с самолетов - лишь десятками квадратных километров. В целом АФС и КФС позволяют решить серию геологических и гидрогеологических задач, однако для гидрогеотермических исследований этой информации не всегда достаточно.

Инфракрасная съемка основана на способности природных тел испускать ИК-лучи. Интенсивность их определяется температурой и излучательной способностью этих тел. ИК-съемка является наиболее важным дистанционным методом при геотермических исследованиях, особенно при изучении вулканизма гидротермальной деятельности, проявляющейся в приповерхностной части разреза. В условиях дымки и туманов ИК-съемка имеет существенное преимущество перед АФС и КФС и позволяет получить изображение хорошего качества. С помощью ИК-съемки можно решить серию гидрогеологических задач: оценить влажность грунтов, определить уровень грунтовых вод, выявить зоны разгрузки подземных вод в пределах акваторий, проследить обводнены тектонические нарушения, оконтурить таликовые зоны, обнаружить разогретые участки земной поверхности, выявить выходы термальных вод.

4 . Г еотермальная станция в Беларуси

В республике обнаружены две территории в Гомельской и Брестской областях с запасами геотермальных вод плотностью более 2 т усл. т./мІ и температурой 50°С на глубине 1,4-1,8 км и 90-100°С на глубине 3,8-4,2 км. Но температурные условия недр территории республики изучены недостаточно. Большая глубина залегания термальных вод, сравнительно низкая их температура, высокая минерализация и низкий дебет скважин (100-1150 куб.м/сутки) не позволяют в настоящее время рассматривать термальные воды республики в качестве заслуживающего внимания источника энергии.

На брестском предприятии в феврале 2010 г. запущена первая в Беларуси геотермальная станция.

Дан старт работе первой в стране геотермальной станции. Пилотный проект осуществлен тепличным комбинатом "Берестье". По сути это новое слово в использовании альтернативных источников энергии.

На территории комбината пробурили скважину глубиной 1520 метров, где температура воды превышает 40 градусов. Правда, объем источника оказался небольшой. В процессе дальнейшей работы было установлено, что на глубине 1000-1100 метров имеются очень мощные пласты достаточно теплой, около 30 градусов, воды, пригодной для промышленного использования. Она несоленая, высокого качества. Следующим этапом стала покупка тепловых насосов и другого специального оборудования.

Геотермальная станция - это электронно-механическая система, которая позволяет, условно говоря, из 1000 литров воды при температуре 30 градусов получить, например, 300 литров воды с температурой 65 градусов и 700 литров - с температурой 4 градуса. Горячая вода идет для обогрева теплиц. А холодная, согласно проекту, будет очищаться и поставляться в питьевую сеть города в пределах полутора тысяч тонн в сутки. Ее будут бутилировать и продавать.

Система пока обеспечивает 1,5 гектара теплиц и завязана в общий цикл с котельным хозяйством. Природное тепло распределяется на часть площадей, занятых цветами, салатной линией, огурцами и томатами. Сделано так, что, если температура воздуха резко снизится, сразу подключится центральная котельная. По расчетам, в год заменится 1 миллион кубических метров газа, а это экономия более 200 тысяч долларов. Для примера, сэкономленным топливом можно обогреть более полутора сотен двухэтажных коттеджей. Мощность станции - одна гигакалория в час. Станция дает тепла больше, чем рассчитано по проекту.

Вся система управления работает в автоматическом режиме, и все нужные параметры выводятся на монитор в центральную котельную.

Основная сложность была и еще остается в том, что практически нет специалистов по проектированию и наладке таких систем.

Бурение скважины производила Белгеология с целью поиска нефти, газа и других полезных ископаемых. Работы финансировало Министерство природных ресурсов и охраны окружающей среды РБ. Два мощных тепловых насоса стоят около 100 тысяч евро. Помогал облисполком, использовали собственные средства. По большому счету, проект обошелся недорого. К тому же он должен окупиться за 5 лет.

Если вода откачивается из глубины, то там ни в коем случае не создается вакуум. Пласты песка, насыщенные водой, постоянно возобновляются. А обогрев идет за счет температуры земли.

Заключение

Геотермальные ресурсы - количество теплоты, содержащееся в литосфере или ее участках, до глубины, технически достижимой средствами бурения на прогнозируемый период.

Основными этапами изучения геотермальных ресурсов недр являются:

Региональное геологическое изучение недр;

Поиск геотермальных ресурсов недр и оценка месторождения;

Разведка геотермальных ресурсов недр (включая пробную эксплуатацию месторождений углеводородов или отдельных буровых скважин), подготовка месторождения для разработки.

Основными видами полевых работ являются: геолого-гидрологическая съемка, специальные съемки (геотермическая, газогидрохимическая и др.), рекогносцировачное обследование участка разведки, бурение и термогидродинамические исследования скважин, геофизические и гидрологические работы, стационарные наблюдения за естественным и нарушенным режимами термальных и холодных вод, обследование ранее пробуренных глубоких скважин и действующих водозаборных сооружений, отбор проб воды и кернового материала, специальные виды исследований (геофизические, гидрогеохимические, геотермические, изотопные, ядерно-физические и др.).

Температурные условия недр территории Республики Беларусь изучены недостаточно. Большая глубина залегания термальных вод, сравнительно низкая их температура, высокая минерализация и низкий дебет скважин (100-1150 куб.м/сутки) не позволяют в настоящее время рассматривать термальные воды республики в качестве заслуживающего внимания источника энергии.

Список используемой литературы

1. А.А.Шпак, И.М. Мелькановицкий, А.И. Сережников «Методы изучения и оценки геотермальных ресурсов». М.: Недра, 1992. - 316 с.

3. www.baltfriends.ru

4. www.news.tut.by

Размещено на Allbest.ru

Подобные документы

    Понятие и структура геотермальных ресурсов как запасов глубинного тепла Земли, эксплуатация которых экономически целесообразна современными техническими средствами. Их источники и разновидности. Принципы и этапы утилизации "сухого" глубинного тепла.

    презентация , добавлен 30.09.2014

    Разработка и оценка эффективности мероприятий по усовершенствованию технологии производства йода (брома) из геотермальных и попутных промышленных вод нефтегазовых месторождений. Направления и значение упрощения механизма извлечения йода и брома.

    статья , добавлен 30.11.2015

    Стадийность геологоразведочных работ, определяемая степенью изученности объектов, которая оценивается категориями запасов и прогнозных ресурсов твердых полезных ископаемых. Сравнительный анализ геологического изучения недр Казахстана и мировой практики.

    реферат , добавлен 01.11.2016

    Распределение активных вулканов, геотермальных систем, районов землетрясений и известных векторов миграции плит. Вулканические породы и малоглубинные интрузии. Донные магнитные реверсные структуры. Химия первичных пород, диагностика главных разломов.

    реферат , добавлен 06.08.2009

    Разведка золотых месторождений. Максимальные изменения температуры и давлений. Флуктуации давлений и гидравлическое дробление, кипение и изменения гидрогеологических условий системы. Концентрации металлов в осадках из геотермальных скважин и источников.

    реферат , добавлен 04.08.2009

    Изучение угленосности осадочного чехла Беларуси. Анализ строения и состава палеоген-неогеновой угленосной формации. Характеристика разведанных месторождений неогенового возраста. Рассмотрение ресурсов и дальнейших перспектив использования бурых углей.

    курсовая работа , добавлен 28.04.2014

    Геотермальная энергетика: современное состояние и перспективы развития. Гидрогеотермические исследования; основные месторождения термальных и минеральных вод. Прогнозная оценка ресурсов Республики Дагестан, методы газонефтяных поисков и разведки.

    курсовая работа , добавлен 15.01.2011

    Общее представление о ресурсах и запасах нефти и газа. Экономические критерии в новой классификации запасов и прогнозных ресурсов. Пример переоценки запасов месторождений участков нераспределенного фонда недр Сибирской платформы по новой классификации.

    реферат , добавлен 19.04.2011

    Сферическое строение планеты по Э. Вихерту и Э. Зюссу. Современные программы изучения недр с помощью бурения сверхглубоких скважин и сейсмических волн. Особенности земной коры, литосферы, астеносферы, мантии и земного ядра, гравитационная дифференциация.

    реферат , добавлен 20.05.2010

    Методика изучения склонов и склоновых отложений. Схема описания оползней. Методика изучения флювиального рельефа и аллювиальных отложений. Овражный и балочный аллювий. Изучение надпойменных террас. методика изучения карстового рельефа местности.