Боковой отпор грунта. Расчет с учетом отпора грунта способом Метропроекта

(1) Коэффициент отпора грунта k s может быть определен по формуле

где Dр - выбранный диапазон применяемых контактных давлений;

Ds - изменение суммарной осадки в соответствии с выбранным диапазоном контактных давлений, включая осадки ползучести.

(2) При расчете k s необходимо указывать размеры плит (штампов).

К.4 Пример метода определения осадок ленточных фундаментов на песчаном грунте

(1) Данный пример описывает непосредственное определение осадок. Осадка оснований на песчаных грунтах может быть получена эмпирическими методами в зависимости от коэффициентов, приведенных на рисунке К.3, если грунты оснований под подошвой фундамента расположены на глубине больше двух его ширин, то ширина принимается такой же, как и под штампом (рисунок K.2).

b 1 - ширина штампа; b - ширина фундамента;

s - прогнозируемая осадка фундамента; s 1 - осадка, измеренная при проведении PLT;

1 - штамп; 2 - фундамент; 3 - зона влияния

Рисунок К.2 - Зона влияния под штампом и фундаментом

b /b 1 - отношение ширин; s /s 1 - отношение осадок;

1 - рыхлые грунты; 2 - средней плотности грунты; 3 - плотные грунты

Рисунок К.3 - График для расчета осадки фундаментов по результатам

Штамповых испытаний


Приложение L

(справочное)

Подробная информация о подготовке образцов грунта для испытаний

L.1 Введение

(1) Подробно порядок подготовки образцов изложен в тексте стандарта СEN/TC 341, который основан на методиках испытаний, рекомендованных Европейским техническим комитетом № 5 по лабораторным испытаниям (ETC 5) Международного общества механики грунтов и инженерной геологии. Основные требования изложены в настоящем приложении.

L.2 Подготовка нарушенных грунтов к испытаниям

L.2.1 Сушка грунта



(1) Обычно грунт не следует предварительно сушить для испытаний, кроме специально оговоренных случаев, и он должен использоваться в естественном состоянии. Когда требуется сушка грунта, следует использовать один из следующих способов:

Печную сушку до постоянной массы в вентилируемой камере при температуре (105±5) °С;

Печную сушку в вентилируемой камере при заданной температуре менее 100 °С (т. е. частичная сушка, поскольку при более низкой температуре она не должна быть полной);

Воздушную сушку (частичную) с выдержкой на воздухе при комнатной температуре, с вентилятором или без вентилятора.

L.2.2 Размельчение

(1) Степень необходимого размельчения и обработка какого-либо оставшегося сцементированного материала должны соответствовать конкретным требованиям и условиям, о чем должно быть указано в отчете. В частности, размельчение и обработка материала образца должны производиться при естественной влажности грунта.

(2) Слипшиеся частицы должны быть разъединены без разрушения отдельных частиц. Воздей­ствие должно быть не более сильным, чем при ударе пестом с резиновой головкой. Особую осторожность следует проявлять, когда частички грунта рыхлые и слабокрепкие. Если необходимо приготовить большое количество грунта, то размельчение должно производиться порциями.


Расчёт на гидростатическое давление выполняют, когда обделка тоннеля надёжно герметизирована. Удельный вес грунта определяют с учётом его взвешенности в воде. γ взв =(γ 0 -1)/(1+ε), где ε-коэффициент пористости.

Гидростатическое давление следует учитывать при расчете конструкций тоннеля или его части, расположенных ниже уровня подземных вод. q н = γ w *h w ;

q н в = 1*(2,85) = 2,85 тс/м 2 ; q н н = 1*(13) = 13 тс/м 2 ;

q расч в = q н в *η =2,85*1,1=3,135 тс/м 2 q расч н = q н н *η =13*1,1 = 14,3 тс/м 2

28. Понятие об упругом отпоре породы при совместной работе обделки и окружающего её грунтового массива.

Под действием внешних активных нагрузок тоннельная обделка деформируется, изменяя своё положение относительно контура выработки. На той части контура, где перемещения обделки происходят в сторону выработки, обделка деформируется свободно, не взаимодействуя с грунтом. Эта часть контура носит название безотпорного участка и характеризуется возникновением значительных изгибающих моментов. На остальной части контура тоннельная обделка смещается в сторону грунта, вызывая с его стороны сопротивление – упругий отпор, ограничивающий деформации конструкции и возникающие в ней изгибающие моменты.

В обделках замкнутого очертания стены жестко связаны концами обратного свода, покоящегося на упругом основании. В этом случае упругую среду заменяют упругими опорами на всем контуре взаимодействия обделки с грунтом.


29. Основные положения расчёта тоннельных обделок.

Расчет тоннельных обделок выполняется по методу заданных нагрузок с учетом гипотезы Фаусса-Ванклера местных деформаций.

Под действием внешних активных нагрузок, тоннельная обделка деформируется, изменяя свое положение относительно контура выработки.

На той части контура, где перемещения обделки происходит в сторону выработки, обделка деформируется свободно, не взаимодействуя с грунтом. Эта часть контура носит название безотпорного участка и характеризуется возникновением значительных изгибающих моментов. На остальной части контура тоннельная обделка смещается в сторону грунта, вызывая с его стороны сопротивление – упругий отпор, ограничивающий деформации конструкции и возникающие в ней изгибающие моменты.

Согласно гипотезе Фаусса - Ванклера напряжения и местные деформации связаны прямой пропорциональностью:

где k- коэффициент упругого отпора грунта (коэффициент Постели), кН/м 3

Согласно этой гипотезе нагрузка вызывает осадки поверхности лишь в точке ее приложения (местные деформации). В действительности же при рассмотрении среды как линейно-деформируемой нагрузка, приложенная на любой площадке, вызывает осадку всей поверхности упругого массива (общие деформации).

Коэффициент упругого отпора не является физико-механической характеристикой грунта, т.к. зависит не только от его свойств, но и от целого ряда трудно учитываемых факторов (форм и размеров площади основания, интенсивности нагрузки, условий залегания грунтов, жесткости конструкции).


30. Расчётная схема метода Метрогипротранса (метод сил).

Для статического расчета системы, обладающей большой степенью подвижности узлов (опоры не жесткие, а упругие), наиболее целесообразно применять метод сил, дающий наименьшее количество лишних неизвестных. В качестве основной системы принимают шарнирную цепь, получающуюся в результате введения шарниров в местах упругих опор и в замковом сечении обделки с одновременным приложением неизвестных усилий – пары изгибающих моментов М 1 , М 2 , …, М n .

При симметрии обделки и действующих на нее нагрузок относительно вертикальной оси в качестве лишних неизвестных рассматривают парные изгибающие моменты в симметричных шарнирах.

Неизвестные определяют решением канонических уравнений, каждое из которых отрицает возможность перемещения по направленно удаленной связи (равенство 0 угла взаимного поворота сечений стержней, сходящихся в шарнире).

Канонические уравнения имеют вид:

……………………………………………………

где и - перемещения основной системы по направлению неизвестных от действия соответственно парных единичных моментов, приложенных в точках К, и от нагрузок;

Угол поворота подошвы стены под действием единичного момента;

Момент инерции подошвы стены, - высота сечения подошвы; - коэффициент упругого отпора в основании стены.

Перемещения по методу сил определяются:

Первый член формулы учитывает влияние на размер перемещений изгиба стержней, второй член – влияние обжатия стержней нормальными силами. Обжатию подвергаются как стержни, входящие в многоугольник, так и упругие опоры. Поэтому второй член необходимо преобразовать для возможности учета осадок упругих опор.

Входящие = продольной деформации стержня сечением и длиной от действия единичной силы.

Единичная сила вызывает напряжение грунта под опорой , так как опора воспринимает отпор грунта с площади, равной произведению ширины в кольца обделки на длину постели опоры, которая равна полусумме расстояний до соседних опор.

Осадку опоры ,

где - коэффициент упругого отпора (может быть переменным по контуру обделки), - характеристика жесткости, которая может быть различной для разных опор в связи с изменением коэффициента упругого отпора

Где и - усилия в опоре основной системы.

Для определения грузовых перемещений , усилия заменяют усилиями в основной системе от действия нагрузок.

Усилия в основной системе от нагрузки и единичных моментов определяют путем последовательного вырезания узлов шарнирно-стержневой цепи, на которую опирается трехшарнирная арка, с рассмотрением условий их равновесий.

31. Расчётная схема по методу перемещений.

Тоннельная обделка, работающая совместно с окружающей упругой средой, представляет собой сложную многократно статически неопределимую конструкцию. Для определения усилий в сечениях обделки обычно пользуются приближенными методами, возможности, применения которых сильно возросли с внедрением в практику проектирования ЭВМ.

Наибольшее распространение имеет способ, предложенный в 1936 году инженерами Метропроекта, основанный на преобразовании заданной системы в расчетную схему введением следующих допущений:

Плавное очертание обделки заменяют ломаным (вписанный многоугольник), непрерывное изменение жесткости обделки – ступенчатым, причем на протяжении каждой из сторон многоугольника жесткость обделки принимают постоянной;

Распределенные активные нагрузки, действующие на обделку, заменяют усилиями, приложенными в вершинах многоугольника;

Сплошную упругую среду заменяют отдельными упругими опорами, помещенными в вершинах вписанного многоугольника и расположенными перпендикулярно наружной поверхности обделки. При учете сил трения между обделкой и грунтом опоры отклоняются вниз на угол трения. Это равносильно допущению, что интенсивность упругого отпора на участке, соответствующем длине упругой опоры (расстоянию между серединами сторон вписанного многоугольника, примыкающих к опоре), является постоянной, т. е. эпюра упругого отпора имеет ступенчатую форму.

При преобладании вертикальных нагрузок силы трения, возникающие в подошве обделки, обычно превышают усилия, стремящиеся сместить низ стены в горизонтальном направлении. Невозможность этого смещения учитывается введением горизонтальной жесткости опоры в уровне подошвы стены.

Увеличение числа упругих опор уменьшает отклонение расчетной схемы от действительной и повышает точность расчета.

При расчёте по методу перемещений число неизвестных увеличивается в три раза по сравнению с методом сил, так как в каждой вершине многоугольника необходимо определить три смещения по направлению вводимых закреплений: угловое, горизонтальное и вертикальное. Однако применение ЭВМ позволяет этому методу успешно конкурировать с методом сил. Простота и стандартность определения реакций в закреплениях и, следовательно, коэффициентов канонических уравнений значительно облегчают программирование, а совместное решение большого числа уравнений на ЭВМ может быть выполнено с большой быстротой и точностью.

Расчётная схема подковообразной обделки на упругих опорах с жесткой заделкой в пятах представляет собой вписанных многоугольник, по концам сторон которого расположены упругие пружины, характеризующие взаимодействие конструкции с грунтом. Программа предусматривает автоматическое выключение пружин, попавших в безотпорный участок.

Основная система без упругих пружин получена из расчётной введением в каждом узле, кроме жесткой заделки, трёх связей, препятствующих угловому Dj, горизонтальному Dх и вертикальному Dу смещениям.

Неизвестными являются перемещения узловых точек, обращающиеся в нуль усилия во введенных связях.

Для каждой вершины многоугольника можно составить три канонических уравнения, содержащих для точек 1 и 5 шесть неизвестных, а для промежуточных точек девять неизвестных.

Для точки 1:

r 11 z 1 + r 12 z 2 + r 13 z 3 + r 14 z 4 + r 15 z 5 + r 16 z 6 = 0

r 21 z 1 + r 22 z 2 + r 23 z 3 + r 24 z 4 + r 25 z 5 + r 26 z 6 = 0

r 31 z 1 + r 32 z 2 + r 33 z 3 + r 34 z 4 + r 35 z 5 + r 36 z 6 = 0

где z 1 = Dj 1 , z 2 = Dх 1 , z 3 = Dу 1 , z 4 = Dj 2 , z 5 = Dх 2 , z 6 = Dу 2.

Зная значения векторов перемещений концов стержней, входящих в расчётную схему, можно определить внутренние усилия в стержнях, загруженных лишь по концам, по формулам строительной механики.

Обычно подошва обделки – точка 6 – может перемещаться по вертикали и поворачиваться, но жестко закреплена в горизонтальном направлении.

Реакции, возникающие в подошве пяты при единичных повороте и вертикальной осадке, равны соответственно k п I п и k п h п (l п и h п – момент инерции и высота сечения пяты; k п – коэффициент упругого отпора грунта в подошве).

Введение поправок в матрицы реакций позволяет учесть влияние податливости опорных реакций обделки.

При этом контур и прилегающие к нему слои в радиусе r = (3-5)d получают деформации (смещения), а напряжения в этих слоях перераспределяются.

Когда деформирующийся контур выработки вступает в контакт с крепью, последняя включается в работу и начинает препятствовать деформациям. С этого момента к гравитационным силам добавляется действие напряжений, возникающих на поверхностях контакта массива с крепью.

В дальнейшем приконтурный массив и крепь деформируются совместно до момента стабилизации деформаций.

Установившееся к этому моменту давление на контакте массива с крепью рассматривается как .

В такой постановке задачи горное давление определяется не только свойствами горного массива и геометрией выработок, но и совместными деформациями массива и крепи .

Взаимодействие грунтового массива и крепи: а) схема нагружения модели; б) диаграмма взаимодействия: 1 – график равновесных состояний; 2 - график сопротивления крепи; 3 – развитие смещении во времени.

В реальных условиях крепь не сразу вступает в работу. К моменту ее установки контур получает смещение, а к моменту достижения равновесия – дополнительное смещение (кривая 2 на рис. б ).

Этот момент изображен на рисунке точкой k пересечения кривых 1 и 2. Теперь крепь несет нагрузку, а контур получил смещение .

В случае применения более жесткой крепи (пунктирная линия на рис. б ) нагрузка на крепь будет больше, а смещение – меньше, чем в предыдущем случае.

Таким образом, используя принципы взаимодействия массива и крепи, можно управлять горным давлением.

На этом и основаны положения новоавстрийского способа проходки: применение податливых крепей (набрызгбетон, анкера) и доведение деформаций почти до критической величины, благодаря чему максимально используется несущая способность приконтурных слоев массива, а крепь получается более экономичной .

11. Активные нагрузки и реакции грунта. Гипотезы общих и местных деформаций.

В специальной тоннельной литературе употребляют термины:

активные и реактивные нагрузки.

Теперь мы говорим:

нагрузки и

реакции опор конструкции.

Нагрузки и воздействия подразделяются

на постоянные и временные (длительные, кратковременные и особые).

относятся:

1 -горное давление;

2 -гидростатическое давление;

3 -собственный вес конструкций;

4 -вес зданий и сооружений, находящихся в зоне их воздействия на обделку;

5 -сохраняющиеся усилия от предварительно обжатой обделки.

Нагрузки от внутритоннельного и наземного транспорта;

Нагрузки от нагнетания раствора за обделку в процессе ее возведения;

От усилий, возникающих при монтаже сборных обделок;

от веса и воздействия проходческого и другого стационарного оборудования.

и воздействиям относят:

Силы морозного пучения;

Вес стационарного оборудования;

Температурные климатические воздействия;

воздействия усадки и ползучести бетона.

относят: сейсмические и взрывные воздействия.

Сочетания нагрузок:

Основные сочетания нагрузок (постоянные + длительные + кратковременные);

Особые сочетания нагрузок (постоянные + длительные + некоторые кратковременные + 1 особая).

Таким образом, если на сооружение действуют какие-то постоянные нагрузки и две особые, то расчет делают 3 раза (пояснить!).

Нагрузки вводят в расчет в наиболее неблагоприятных для конструкции сочетаниях.

а) Гипотеза общих деформаций : совместные деформации конструкции и окружающей среды под действием гравитационных сил

В основе Теория упругости. (обобщенный модуль упругости Ео, коэф-т попер. деф. (ню))

б) Гипотеза местных деформаций : рассматривает деформации конструкции под действием активных сил и упругих реакций (коэфф. постели):


12. Коэффициенты упругого отпора: удельный, за стенами и под фун­даментом конструкции.

Взаимодействие обделки с окружающим грунтом может быть описано с помощью теории общих деформаций или теории местных деформаций . (см. лекцию 4).

Если среда рассматривается, как упругая (или пластичная, вязкоупругая и т.п.) и характеризуется модулем общей деформации и коэффициентом поперечной деформации, взаимодействия описываются формулами: (теория общих деформаций)

Проще использовать теорию местных деформаций (гипотезу Фусса-Винклера).

В ее основе – прямая пропорцио-нальность между напряжениями и перемещениями на контуре:

где - коэффициент упругого отпора грунта, .

(Аналог: в теории общих деформаций)

Главный недостаток метода местн. деф. – это то, что «» зависит от размеров площадок, контактирующих с грунтом, и это необходимо учитывать в расчетах.

Определение коэффициентов упругого отпора

1) - удельный коэффициент отпора для выработки одиночного радиуса ()

или полупролета выработки ;

2) с его помощью вычисляют коэффициент отпора за стенами обделки и под обратным сводом:

Или ;

Где - средний радиус выработки, F – площадь поперечного сечения,м 2 ; В – пролет выработки, м.

3) под пятами разомкнутой обделки коэффициент отпора вычисляют по формуле: , где В П – ширина пяты, м.

Связь между К и Е устанавливает

формула Б.Г. Галеркина :

Значения в зависимости от коэффициента крепости приведены в СНиПе «Туннели гидротех-нические».

Для сложных и дорогостоящих объектов определяют экспериментально.

Находят:

13.Расчетные схемы обделки по методу конечных элементов (програм­ма МИИТа).

Расчетной схемой называется условное изображение конструкции осевыми линиями с указанием основных размеров, условий закрепления опор и нагрузок.

Расчетная схема устанавливается в зависимости от конструкции обделки, крепости грунтов, условий работы конструкций и способов ее возведения.

Метод расчета конструкции выбирают, исходя из ее схемы. До появления соврем. выч. техники на методы расчета накладывались ограничения в части объемов вычислительной работы, что вынуждало вводить в методику расчета упрощающие предпосылки и снижало точность результата.

Метод конечных элементов

5.9. Определение величины горного давления, а также естественного напряженного состояния грунтового массива необходимо выполнять согласно пп.5.10 - 5.15, а также на основании опыта строительства и эксплуатации туннелей в аналогичных инженерно-геологических условиях.

Для безнапорных туннелей I класса и напорных туннелей I и II классов значения горного давления должны быть уточнены на стадии рабочей документации на основании натурных исследований на участках с характерными инженерно-геологическими условиями.

Горное давление допускается принимать равным весу грунта в объеме нарушенной зоны, определенной геофизическими измерениями.

5.10. Нормативное вертикальное горное давление в грунтах с < 4 при расстоянии от кровли выработки до дневной поверхности больше удвоенной высоты свода обрушения следует принимать равным весу грунтов в объеме, ограниченном сводом обрушения. При меньшем заглублении туннеля горное давление принимается равным весу всей толщи грунта над ним.

5.11. Нормативное вертикальное горное давление , кН/кв.м, при сводообразовании в грунтах с коэффициентом крепости < 4 определяется по формуле

коэффициент, принимаемый в зависимости от пролета выработки

Равным: 0,7 при 5,5 м; 1,0 при 7,5 м; по интерполяции

между 0,7 и 1,0 при 5,5< <7,5 м;

плотность грунта, т/куб.м;

высота свода обрушения, м; определяется по формуле

пролет свода обрушения, м; определяется по формуле

;

высота выработки, м;

кажущийся угол внутреннего трения .

Распределение вертикального горного давления принимается равномерным по пролету обделки.

5.12. Нормативное вертикальное горное давление , кН/кв.м, в грунтах с 4 следует принимать равным весу грунтов в объеме нарушенной зоны, установленной по данным натурных исследований, а при их отсутствии- по формуле

Таблица 4

Коэффициент крепости

Коэффициент при грунтах

слаботрещино-

среднетрещи-

сильнотрещи-

10 и более

Распределение вертикального горного давления по пролету обделки принимается с учетом напластования, систем трещин и других особенностей грунтового массива.

В слаботрещиноватых грунтах при глубине нарушенной зоны более 1,5 м нормативное вертикальное горное давление следует уменьшать на 20%.

При комбайновой проходке значение допускается уменьшать на 30%.

5.13. Нормативное горизонтальное горное давление , кН/кв.м, определяется:

при сводообразовании в грунтах < 4 - по формуле

; (3)

при заглублении кровли менее удвоенной высоты свода обрушения в грунтах с < 4 - по формуле (3) с заменой численного значения на расстояние от кровли выработки до дневной поверхности.

Распределение горизонтального горного давления должно быть равномерным по высоте обделки.

5.14. Нормативное горизонтальное горное давление в слабо- и среднетрещиноватых грунтах с при высоте туннеля менее 6 м допускается не учитывать, а при высоте более 6 м - определять из условия предельного равновесия отдельных скальных блоков, отсеченных трещинами.

Нормативное горизонтальное горное давление в сильнотрещиноватых грунтах с допускается учитывать по формуле

5.15. Для выработок глубокого заложения (свыше 500 м) величину горного давления следует определять с учетом пластического состояния грунтов и других специфических явлений.

При отсутствии необходимых данных допускается на начальных стадиях проектирования выработок глубокого заложения определять горное давление на основе опыта строительства туннелей в аналогичных инженерно-геологических и гидрогеологических условиях.

5.16. В выработках глубокого заложения, расположенных в глинистых и других слабых грунтах с < 4, оказывающих значительное равномерное давление на конструкцию туннеля, нагрузку на обделку следует определять с учетом ожидаемых смещений грунта до устройства временной крепи и податливости этой крепи в соответствии с требованиями СНиП II-94-80, а также податливости самой обделки.

5.17. При расчете обделки горное давление необходимо определять по характеристикам грунтов с учетом условий эксплуатации (изменения свойств массива грунтов при их водонасыщении).

5.18. При расчете обделок напорных туннелей, располагаемых в водопроницаемых грунтах, включение в одно сочетание нагрузок от внутреннего давления воды и наружного давления подземных вод не допускается. В исключительных случаях, когда во всех возможных (включая аварийные) эксплуатационных ситуациях гарантировано всестороннее равномерное наружное давление воды непосредственно на обделку, допускается включать в одно сочетание с внутренним давлением минимальное значение наружного давления подземных вод с коэффициентом надежности по нагрузкам, равным 1.

5.19. Давление подземных вод следует определять при установившемся уровне воды в водохранилище с учетом снижения давления подземных вод, предусмотренными для этих целей дренажными устройствами и цементационными завесами.

5.20. При проектировании гидротехнических туннелей, располагаемых в вечномерзлых грунтах, необходимо учитывать влияние изменений температурного режима грунтов на их несущую способность, а также устойчивость и сопротивляемость грунтов внешним нагрузкам.

6. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ОБДЕЛОК

6.1. Обделки гидротехнических туннелей, согласно СТ СЭВ 1406-78, следует рассчитывать по методу предельных состояний:

по несущей способности на прочность и в необходимых случаях с проверкой устойчивости формы конструкции (предельные состояния первой группы) в соответствии с обязательным приложением 1;

по образованию трещин (трещиностойкости), если трещины не допускаются, или по раскрытию трещин, если раскрытие их допустимо по условиям долговечности обделки туннеля, сохранности грунтового массива, а также по значению фильтрационного расхода воды из туннеля (предельные состояния второй группы) в соответствии с обязательными приложениями 2 и 3.

6.2. Сечения обделок по предельным состояниям первой и второй групп необходимо рассчитывать в соответствии со СНиП II-56-77 и СНиП II-23-81.

6.3. При расчетах сечений туннельных обделок необходимо вводить следующие коэффициенты:

коэффициенты надежности по назначению сооружения и сочетаний нагрузок , принимаемые согласно СНиП II-50-74;

коэффициент условий работы , принимаемый для бетонных, железобетонных и сталежелезобетонных обделок по табл.5, для стальных оболочек - по табл.6.

Таблица 5

Коэффициент условий работы

При расчете

по предельным состояниям

первой группы

второй группы

Бетонные (в том числе из набрызг-бетона и прессованного бетона)

Железобетонные (в том числе предварительно напряженные, из армированного набрызг-бетона и железоторкретные)

Сталежелезобетонные (при расчете на внутреннее давление)

Примечание. Значения коэффициентов, указанные в скобках,

следует принимать при коэффициенте удельного отпора

<2000 Н/куб.см (200 кгс/куб.см), в грунтах, подверженных суффозии, выщелачиванию, а также при гидрокарбонатной щелочности воды-среды менее 0,25 мг·экв/л.

Таблица 6

Давление

Участки стальных

оболочек

Коэффициент условий работы

При сочетании нагрузок

основных

Внутреннее

Фасонные эле-

менты (колена и разветвления)

Наружное

Все участки

Примечания: 1. Значения коэффициента , указанные в скобках, должны приниматься:

а) для комбинированных обделок с наружным монолитным

железобетоном (сталежелезобетонных);

б) для комбинированных обделок с наружным монолитным

бетоном при одновременном выполнении следующих условий:

Внутреннее давление воды в напорном туннеле, МПа;

Кратчайшее расстояние от оси туннеля до поверхности земли, м;

коэффициент трения грунта по грунту;

Угол между нормалью к поверхности земли и горизонтом, град;

Коэффициент удельного отпора грунта, Н/куб.см, определяемый по п.6.13;

в) при расчете на внутреннее давление, если отпор грунта не учитывается.

2. При использовании коэффициента по данной таблице коэффициент сочетаний нагрузок следует принимать равным 1.

6.4. Расчет обделок по несущей способности следует выполнять на возможные наиболее неблагоприятные основные и особые сочетания расчетных нагрузок с применением расчетных характеристик материалов обделок.

6.5. Расчет обделок по образованию и раскрытию трещин должен осуществляться на основные сочетания нормативных нагрузок без учета гидравлического удара с применением нормативных характеристик материалов обделок.

6.6. Расчет обделок гидротехнических туннелей всех типов (включая фасонные части комбинированных обделок) следует выполнять с учетом отпора грунтов. Исключения допускаются при расположении туннелей в слабых неустойчивых грунтах. При расположении туннелей на глубине менее трех диаметров (пролетов) над шелыгой свода величина давления, передаваемого на грунт обделкой туннеля, не должна превышать веса толщи грунта над туннелем.

6.7. Расчет обделок произвольного очертания на любые внешние и внутренние нагрузки или их сочетания при изменяющихся по контуру деформационных характеристиках грунтов следует выполнять методами строительной механики.

Расчет необходимо выполнять в соответствии с пп.6.4. и 6.5 на каждое из сочетаний нагрузок. Сложение эпюр усилий от отдельных нагрузок для получения суммарной эпюры не допускается.

6.8. Бетонные обделки безнапорных туннелей следует рассчитывать на прочность в предположении образования в обделке пластических шарниров и проверять на трещиностойкость по предельным состояниям второй группы.

6.9. При расчете обделок по предельному состоянию второй группы предельную ширину раскрытия трещин обделок напорных и безнапорных туннелей I класса следует принимать по табл.7.

Таблица 7

Градиент напора

Предельная ширина раскрытия трещин,

мм, из условия

долговечности бетона при гидрокарбонатной щелочности воды-среды,

сохранности арматуры при суммарной концентрации

2,5 и более

Напорные туннели и незатопляемые части безнапорных туннелей

при наличии подземных вод

Незатопляемые части обделок безнапорных туннелей

при отсутствии подземных вод

Не ограничивается

Примечания: 1. Водой-средой, определяющей долговечность бетона и

арматуры в обделке, являются:

при - вода внутри туннеля;

при - подземная вода.

2. Для туннелей II, III и IV классов предельные значения раскрытия

трещин следует принимать соответственно в 1,3, 1,6 и 2 раза большими,

чем значения, приведенные в таблице, но не более 0,5 мм.

6.10. Градиент напора в обделках принимают в зависимости от коэффициента фильтрации грунта:

толщина обделки, м.

В интервале значение определяется по интерполяции.

6.11. Для затопляемых частей обделок безнапорных туннелей по условиям долговечности бетона и сохранности арматуры ширина раскрытия трещин не ограничивается.

6.12. Статические расчеты обделок следует выполнять с учетом трещинообразования и пластических деформаций:

обделки безнапорных туннелей и опорожненных напорных туннелей по предельным состояниям первой и второй групп рассчитывают с учетом жесткости бетонного сечения при модуле упругости бетона в конструкции ;

обделки напорных туннелей на эксплуатационные нагрузки по предельным состояниям первой группы рассчитывают с учетом жесткости арматурного сечения .

По предельным состояниям второй группы обделки напорных туннелей следует рассчитывать:

нетрещиностойкие - с учетом жесткости арматурного сечения ;

трещиностойкие - с учетом жесткости бетонного сечения при .

6.13. Расчет обделок туннелей следует выполнять с учетом взаимодействия их с грунтовым массивом. Деформационные свойства грунта характеризуются коэффициентом удельного отпора или приведенным (эффективным) модулем деформации грунта и коэффициентом Пуассона . Приведенный модуль деформации необходимо определять с учетом неоднородности свойств грунта от естественных и техногенных причин (закрепление грунтов цементацией или иными способами, появление нарушенной проходкой зоны и др.). Значения характеристик грунтов следует определять с учетом их свойств при водонасыщении на основании натурных исследований.

Наружный радиус обделки, см.

Для туннелей, располагаемых в анизотропных грунтах с отношением модулей деформации в разных направлениях более 1,4, расчеты необходимо выполнять с учетом анизотропии.

6.14. Деформационные характеристики грунтов или для туннелей I и II классов следует определять на характерных инженерно-геологических участках по данным натурных исследований, выполненных методом напорных выработок, с помощью установки центрального нагружения (УЦН) и цилиндрического гидравлического штампа (ЦГШ), а также штампов в сочетании с сейсмоакустическими и прессиометрическими методами.

Для туннелей III и IV классов надлежит предусматривать натурные исследования сейсмоакустическими и прессиометрическими методами. Допускается также использовать значения физико-механических характеристик грунтов, выявленных при проходке туннелей в аналогичных инженерно-геологических условиях.

6.15. Для проектирования гидротехнических туннелей, располагаемых в вечномерзлых грунтах, необходимо определять значения физико-механических характеристик грунтов в мерзлом и талом состоянии.

6.16. Для предварительных расчетов значения коэффициентов удельного отпора для среднетрещиноватых грунтов допускается определять по черт.2 или по аналогам.

Примечание. В слаботрещиноватых грунтах с а также при комбайновой проходке туннеля значения , полученные по черт.2, следует увеличивать на 30%.

6.17. В расчетах обделок туннелей необходимо учитывать совместную работу устанавливаемой при проходке туннеля крепи с обделкой.

6.18. При назначении расчетной схемы обделки туннеля и грунтового массива следует учитывать последовательность разработки грунта и возведения элементов обделки.

Черт.2. График зависимости коэффициента удельного отпора

от коэффициента крепости грунта для трещиноватых грунтов

6.19. При параллельном расположении нескольких туннелей в расчете обделки на прочность необходимо учитывать изменения напряженного состояния и прочностных свойств грунтового массива, вызванных проходкой соседних туннелей.

6.20. Расчет бетонных и железобетонных обделок туннелей на температурные воздействия следует выполнять при расчетной разности температур более 30°С с учетом набухания и ползучести бетона.

6.21. При расчете обделок напорных и безнапорных туннелей противодавление воды в швах бетонирования и в сечениях между швами бетонирования не учитывается.

6.22. Толщину лотка туннеля, подверженного воздействию влекомых наносов, следует назначать с учетом возможности истирания лотка.

Приложение 1

Обязательное

РАСЧЕТ ОБДЕЛОК ТУННЕЛЕЙ

ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

1. Расчет бетонных и железобетонных обделок

произвольного очертания

В расчетной схеме, как правило, предполагается, что нагрузки, в том числе и горное давление, заданы, а отпор грунта определяется как реакция упругого основания. Возможные простейшие расчетные схемы обделок как стержневых систем в упругой среде с односторонними связями показаны на черт.1.

Черт.1. Расчетные схемы обделок туннелей

Расчет прочности следует выполнять на расчетные нагрузки (с учетом коэффициентов надежности по нагрузкам) в соответствии с разд.5, жесткость принимать в соответствии с п.6.12, коэффициенты отпора грунта - в соответствии с пп.6.13-6.16.

Расчет сечений обделок и определение необходимой площади сечения арматуры следует производить по СНиП II-56-77.

расчетное внутреннее давление воды с учетом гидравлического удара в период нормальной эксплуатации, МПа;

расстояние от шелыги свода туннеля до поверхности земли, см;

расчетное сопротивление арматуры на растяжение и модуль упругости арматуры, МПа;

плотность грунта, кг/куб.см;

Если по формулам (2) или (3) < 0 (т.е. расчетной арматуры не требуется и внутреннее давление воды полностью воспринимается грунтом), следует принимать значение по минимальному проценту армирования согласно п.4.19.

Для расчета сооружений с учетом отпора грунта существует несколько различных методов отличающихся положенной в их основу расчетной моделью грунтовой среды и по форме.

Расчет с учетом отпора грунта способом Метропроекта

Сооружение рассматривается как круговое кольцо в сплошной упругой среде, механические свойства которой характеризуются коэффициентом постели: среда способна оказывать только однозначный отпор грунта, направленный в сторону сооружения.

Для расчета кольцо заменяется вписанным в него 16-угольником, а сплошная упругая среда – отдельными упругими опорами, расположенными во всех вершинах 16-угольника, кроме трех верхних, попадающих в безотпорную зону. Направления опорных реакций стержней принимаются по соответствующим радиусам кольца, а при учете сил трения – отклонением на угол трения между грунтом и обделкой.

При переходе к основной системе метода сил во все вершины многоугольника, кроме двух, вводятся шарниры, а в качестве неизвестных принимаются прикладываемые в этих сечениях изгибающие моменты М1, М3 …, М9. При этом моменты М3, М4 …, М8 приложенные в симметричных сечениях, будет групповыми неизвестными (рис 1).

Типовое каноническое уравнение метода сил, составленное для опоры n, имеет следующий вид:

Коэффициентами при неизвестных и свободными членами уравнений является перемещения основной системы по направлению этих неизвестных от единичных моментов и от заданной нагрузки соответственно. Для их определения нужно предварительно найти соответствующие усилия.

Верхняя часть основной системы (рис 2), находящаяся в безотпорной зоне и не подверженная действию упругого отпора грунта, рассматривается как трехшарнирная арка, опорные реакции которой от нагрузки и единичных моментов передаются с обратными знаками на нижележащую шарнирную цепь.

Усилия в звеньях шарнирной цепи определяются из условий равновесия последовательно вырезанных узлов (рис 3). Из условия равновесия n-го узла при действии заданной нагрузки определяются:

Окружная нормальная сила в звене между узлами n и n+1

реакция упругой опоры в узле n

где Yn – сосредоточенная вертикальная сила в узле n от заданной нагрузки; Xn – сосредотоенная сила в узле n от заданной нагрузки; ;- центральный угол, заключенный между вертикалью и радиусом, проведенным через точку n; ;- центральный угол, заключенный между радиусами, проведенными через соединение вершины многоугольника; для 16-угольника

От единичного момента , приложенного в узле n, возникают следующие усилия:

нормальные силы в звеньях

реакции упругих опор

В остальных элементах основной системы этот единичный момент усилий не вызывает. Единичный момент , приложенный на опоре трехшарнирной арки, вызывает следующие усилия:

нормальные силы в звеньях

реакции упругих опор

Определение перемещений основной системы производится с учетом влияния нормальных сил в перемещении упругих опор.

Так, например, перемещение по направлению от единичного неизвестного

Здесь и - изгибающие моменты в произвольном сечении звеньев от соответствующих единичных моментов; и - нормальные силы в звеньях от соответствующих единичных моментов; и - реакции в опорных стержнях от соответствующих единичных моментов; и - жесткости продольных сечений обделки на изгиб и сжатие; а – длина стороны многоугольника; b – выделенная для расчета ширина обделки кольца; k – коэффициент упругого отпора грунта.

После определения восьми неизвестных из системы восьми уравнений окончательные усилия определяются по формуле:

Здесь - усилия в основной системе от заданной нагрузки; - усилия в основной системе от единичных узловых моментов; - найденные значения неизвестных.

Правильность вычислений контролируется выполнением условий равновесия отдельных частей обделки и равенством нулю приведенной площади (т.е. деленной на El) площади окончательной эпюры изгибающих моментов.

Аналогичный метод расчета с использованием в качестве упругих характеристик грунта его модуля упругости L D и коэффициента Пуассона разработан С.А.Орловым.

Для приближенных расчетов трубопроводов обычно используется следующая зависимость между коэффициентом упругого сжатия k и модулем деформации грунта Г гр:

где - коэффициент Пуассона грунта.

Расчет с учетом отпора грунта способом О. Е. Бугаевой

Грунтовая среда, окружающая сооружение, характеризуется коэффициентом упругого отпора грунта k. Отпор принимается радиальным и действующим на нижнюю часть сооружения с центральным углом 270 0 . На протяжении верхней дуги с центральным углом 90 0 принимается безотпорная зона (рис 4).

Упругая линия кольца аппроксимируется уравнениями:

где - угол наклона сечения к вертикали; и - ординаты упругой линии в сечениях А и Б.