Расчет кладки на прочность. Как рассчитать стены из кладки на устойчивость. Ниже приведён пример подобного вычисления

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – <1>). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:


В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 <1>);
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=(3-4Ш1В1)(h+0,02)Мyf = (*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

Нд=(30+1,26+215*3)*6 = 4,094МН

Н2=215*6 = 1,290МН,

в том числе Н2l=(1,26+215*3)*6= 3,878МН

  1. Собственный вес простенков

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  1. Площадь простенка (П)
  1. По таблице 15 <1> необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 <1> нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения

Псж = П*(1-2 е0/Т)

  1. Определение гибкости сжатой части простенка

Гсж=Вэт/Всж

  1. Определение по табл. 18 <1> коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср

Фср=(ф+фсж)/2

  1. Определение коэффициента ω (таблица 19 <1>)

ω =1+э/Т<1,45

  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

У=Кдв*фср*R*Псж* ω

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 <1>, в МПа

  1. Сверка

Пример расчета прочности кладки

— Вэт — 3,3 м

— Чэт — 2

— Т — 640 мм

— Ш — 1300 мм

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

  1. Площадь (П)

П=0,64*1,3=0,832

  1. По таблице 15 <1> определяем коэффициент а.
  1. Гибкость (Г)

Г =3,3/0,64=5,156

  1. Коэффициент изгиба (таблица 18 <1>).
  1. Высота сжатой части

Всж=0,64-2*0,045=0,55 м

  1. Площадь сжатой части сечения

Псж = 0,832*(1-2*0,045/0,64)=0,715

  1. Гибкость сжатой части

Гсж=3,3/0,55=6

  1. фсж=0,96
  2. Расчет фср

Фср=(0,98+0,96)/2=0,97

  1. По табл. 19 <1>

ω =1+0,045/0,64=1,07<1,45


Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

У=1*0,97*1,5*0,715*1,07=1,113 МН

  1. Сверка

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

k=У1/У=1,5/1,113=1,348,

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

Ш_1=1300+2*60=1,42

Т_1=640+2*60=0,76

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена , нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях - остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (М рз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Выбор расчетного сечения .

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II , так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты m g и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P 1 =1,8т и вышележащих этажей G=G п +P 2 +G 2 = 3,7т:

N = G + P 1 = 3,7т +1,8т = 5,5т

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P 1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P 1) приложена не по центру сечения, а на расстоянии от него равном:

e = h/2 - a/3 = 250мм/2 - 150мм/3 = 75 мм = 7,5 см,

то она будет создавать изгибающий момент (М) в сечении I-I. Момент - это произведение силы на плечо.

M = P 1 * e = 1,8т * 7,5см = 13,5 т*см

Тогда эксцентриситет продольной силы N составит:

e 0 = M / N = 13,5 / 5,5 = 2,5 см

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета e ν =2см, тогда общий эксцентриситет равен:

e 0 = 2,5 + 2 = 4,5 см

y=h/2=12,5см

При e 0 =4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кл адки внецентренно сжатого элемента определяется по формуле:

N ≤ m g φ 1 R A c ω

Коэффициенты m g и φ 1 в рассматриваемом сечении I-I равны 1.

В.В. Габрусенко

Нормы проектирования (СНиП II-22-81) разрешают принимать минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа. При высоте этажа до 5 м в эти ограничения вполне вписывается кирпичная стена толщиной всего 250 мм (1 кирпич), чем и пользуются проектировщики - особенно часто в последнее время.

С точки зрения формальных требований, проектировщики действуют на вполне законном основании и энергично сопротивляются, когда кто-то пытается их намерениям препятствовать.

Между тем тонкие стены наиболее сильно реагируют на всевозможные отклонения от проектных характеристик. Причем даже на такие, которые официально допустимы Нормами правил производства и приемки работ (СНиП 3.03.01-87). В их числе: отклонения стен по смещению осей (10 мм), по толщине (15 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

К чему приводят эти отклонения, рассмотрим на примере внутренней стены высотой 3,5 м и толщиной 250 мм из кирпича марки 100 на растворе марки 75, несущей расчетную нагрузку от перекрытия 10 кПа (плиты пролетом по 6 м с обеих сторон) и веса вышележащих стен. Стена рассчитана на центральное сжатие. Её расчетная несущая способность, определенная по СНиП II-22-81, составляет 309 кН/м.

Допустим, что нижняя стена смещена от оси на 10 мм влево, а верхняя стена - на 10 мм вправо (рисунок). Кроме того, на 6 мм вправо от оси смещены плиты перекрытия. То есть, нагрузка от перекрытия N 1 = 60 кН/м приложена с эксцентриситетом 16 мм, а нагрузка от вышележащей стены N 2 - с эксцентриситетом 20 мм, тогда эксцентриситет равнодействующей составит 19 мм. При таком эксцентриситете несущая способность стены снизится до 264 кН/м, т.е. на 15%. И это - при наличии всего двух отклонений и при условии, что отклонения не превышают допустимые Нормами значения.

Если добавить сюда несимметричное нагружение перекрытий временной нагрузкой (справа больше, чем слева) и «допуски», которые позволяют себе строители, - утолщение горизонтальных швов, традиционно плохое заполнение вертикальных швов, некачественная перевязка, искривление или наклон поверхности, «подмолаживание» раствора, чрезмерное использование половняка и т. д. и т. п., - то несущая способность может снизиться еще не менее чем на 20…30%. В итоге перегрузка стены превысит величину 50…60%, за которой начинается необратимый процесс разрушения. Процесс этот проявляется не всегда сразу, бывает - спустя годы после завершения строительства. Причем надо иметь в виду, что чем меньше сечение (толщина) элементов, тем сильнее отрицательное влияние перегрузок, поскольку с уменьшением толщины уменьшается возможность перераспределения напряжений в пределах сечения за счет пластических деформаций кладки.

Если добавить ещё неравномерные деформации оснований (вследствие замачивания грунтов), чреватые поворотом подошвы фундамента, «зависанием» наружных стен на внутренних несущих стенах, образованием трещин и снижением устойчивости, то речь уже пойдет не просто о перегрузке, а о внезапном обрушении.

Сторонники тонких стен могут возразить, что для всего этого нужно слишком большое сочетание дефектов и неблагоприятных отклонений. Ответим им: подавляющее большинство аварий и катастроф в строительстве происходит именно тогда, когда в одном месте и в одно время собирается несколько негативных факторов - в этом случае «слишком много» их не бывает.

Выводы

    Толщина несущих стен должна составлять не менее 1,5 кирпичей (380 мм). Стены толщиной в 1 кирпич (250 мм) допускается применять только для одноэтажных или для последних этажей многоэтажных зданий.

    Это требование следует внести в будущие Территориальные нормы проектирования строительных конструкций и зданий, необходимость в разработке которых давно назрела. Пока же можно только порекомендовать проектировщикам избегать применения несущих стен толщиной менее 1,5 кирпичей.

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 .

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 .

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).



Пустошовка Растрескивание кирпича Искривление рядов кладки

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с , несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.

РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 ):

Nс=mg×φ×R×A×Kтр ≥ N (1)

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2 .
Упругая характеристика кладки согласно п.9 Таблицы 15(К) равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N .

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена , нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях - остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (М рз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Выбор расчетного сечения .

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II , так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты m g и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P 1 =1,8т и вышележащих этажей G=G п +P 2 +G 2 = 3,7т:

N = G + P 1 = 3,7т +1,8т = 5,5т

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P 1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P 1) приложена не по центру сечения, а на расстоянии от него равном:

e = h/2 - a/3 = 250мм/2 - 150мм/3 = 75 мм = 7,5 см,

то она будет создавать изгибающий момент (М) в сечении I-I. Момент - это произведение силы на плечо.

M = P 1 * e = 1,8т * 7,5см = 13,5 т*см

Тогда эксцентриситет продольной силы N составит:

e 0 = M / N = 13,5 / 5,5 = 2,5 см

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета e ν =2см, тогда общий эксцентриситет равен:

e 0 = 2,5 + 2 = 4,5 см

y=h/2=12,5см

При e 0 =4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кл адки внецентренно сжатого элемента определяется по формуле:

N ≤ m g φ 1 R A c ω

Коэффициенты m g и φ 1 в рассматриваемом сечении I-I равны 1.