Дисахариды виды. Дисахариды

К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.

По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.

При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил.

Мальтоза – резервный олигосахарид – обнаружена во многих растениях в небольших количествах, в больших количествах накапливается в солоде – обычно в семенах ячменя, проросших в определенных условиях. Поэтому мальтозу часто называют солодовым сахаром. Мальтоза образуется в растительных и животных организмах в результате гидролиза крахмала под действием амилаз.

Мальтоза содержит два остатка Д-глюкопиранозы, соединенных между собой a(1®4)гликозидной связью.

Мальтоза обладает восстанавливающими свойствами, что используется при ее количественном определении. Она легко растворима в воде. Раствор обнаруживает мутаротацию.

Под действием фермента a-глюкозидазы (мальтазы) солодовый сахар гидролизуется с образованием двух молекул глюкозы:

Мальтоза сбраживается дрожжами. Эта способность мальтозы используется в технологии бродильных производств при производстве пива, спирта этилового и т.д. из крахмалсодержащего сырья.

Лактоза – резервный дисахарид (молочный сахар) – содержится в молоке (4-5%) и получается в сыроваренной промышленности из молочной сыворотки после отделения творога. Сбраживается лишь особыми лактозными дрожжами, содержащимися в кефире и кумысе. Лактоза построена из остатков b-Д-галактопиранозы и a-Д-глюкопиранозы, соединенных между собой b-(1→4)-гликозидной связью. Лактоза является восстанавливающим дисахаридом, причем свободный полуацетальный гидроксил принадлежит остатку глюкозы, а кислородный мостик связывает первый углеродный атом остатка галактозы с четвертым атомом углерода остатка глюкозы.

Лактоза гидролизуется под действием фермента b-галактозидазы (лактазы):

Лактоза отличается от других сахаров отсутствием гигроскопичности – она не отсыревает. Молочный сахар применяется как фармацевтический препарат и как питательное средство для грудных детей. Водные растворы лактозы мутаротируют, лактоза имеет в 4-5 раз менее сладкий вкус, чем сахароза.

Сахароза (тростниковый сахар, свекловичный сахар) – это резервный дисахарид – чрезвычайно широко распространена в растениях, особенно много ее в корнеплодах свеклы (от 14 до 20%), а также в стеблях сахарного тростника (от 14 до 25%). Сахароза является транспортным сахаром, в виде которого углерод и энергия транспортируются по растению. Именно в виде сахарозы углеводы перемещаются из мест синтеза (листья) к месту, где они откладываются в запас (плоды, корнеплоды, семена).

Сахароза состоит из a-Д-глюкопиранозы и b-Д-фруктофуранозы, соединенных a-1→b-2-связью за счет гликозидных гидроксилов:

Сахароза не содержит свободного полуацетального гидроксила, поэтому она не способна к окси-оксо-таутомерии и является невосстанавливающим дисахаридом.

При нагревании с кислотами или под действием ферментов a-глюкозидазы и b-фруктофуранозидазы (инвертазы) сахароза гидролизуется с образованием смеси равных количеств глюкозы и фруктозы, которая называется инвертным сахаром.

Важнейшие дисахариды - сахароза, мальтоза и лактоза. Все они имеют общую формулу С12Н22О11, но их строение различное.

Сахароза состоит из 2х циклов, связанных между собой за счет гликозидного гидроксида:

Мальтоза состоит из 2х остатков глюкозы:

Лактоза:

Все дисахариды представляют собой бесцветные кристаллы, сладкие на вкус, хорошо растворимы в воде.

Химические свойства дисахаридов.

1)Гидролиз. В результате связь между 2мя циклами рвется и образуются моносахариды:

Восстанавливающие дихариды - мальтоза и лактоза. Они реагируют с аммиачным раствором оксида серебра:

Могут восстанавливать гидроксид меди (II) до оксида меди (I):

Восстановительная способность объясняется цикличностью формы и содержанием гликозидного гидроксила.

В сахарозе нет гликозидного гидроксила, поэтому циклическая форма не может раскрываться и переходить в альдегидную.

Применение дисахаридов.

Самый распространенный дисахарид - сахароза.

Дисахариды (мальтоза, лактоза, сахароза)

Это источник углеводов в пище человека.

Лактоза содержится в молоке и получается из него же.

Мальтоза содержится в проросших семенах хлебных злаков и образуется при ферментативном гидролизе крахмала.

Дополнительные материалы по теме: Дисахариды. Свойства дисахаридов.

Восстанавливающие дисахариды

К числу восстанавливающих дисахаридов относится мальтоза или солодовый сахар. Получается мальтоза при частичном гидролизе крахмала в присутствии ферментов или водным раствором кислоты. Мальтоза построена из двух молекул глюкозы (т.е. это глюкозид). Глюкоза присутствует в мальтозе в форме циклического полуацеталя. Причем связь между двумя циклами образуют гликозидный гидроксил одной молекулы и гидроксил четвертого тетраэдра другой. Особенность строения молекулы мальтозы в том, что она построена из α-аномеров глюкозы:

Наличие свободного гликозидного гидроксила обуславливает основные свойства мальтозы:

Дисахариды

Способность к таутомерии и мутаротации:

Мальтоза может окисляться и восстанавливаться:

Для восстанавливающего дисахарида можно получить фенилгидразон и озазон:

Восстанавливающий дисахарид можно алкилировать метиловым спиртом в присутствии хлористого водорода:

Независимо от того восстанавливающий или не восстанавливающий — дисахарид может быть алкилирован йодистым метилом в присутствии влажной окиси серебра или ацетилирован уксусным ангидридом. При этом в реакцию вступают все гидроксильные группы дисахарида:

Другим продуктом гидролиза высшего полисахарида является дисахарид целлобиоза:

Целлобиоза, также как и мальтоза построена из двух остатков глюкозы. Принципиальное отличие в том, что в молекуле целлобиозы остатки связаны β-гликозидным гидроксилом.

Судя по строению молекулы целлобиозы она должна быть восстанавливающим сахаром. Ей также присущи все химические свойства дисахаридов.

Еще одним восстанавливающим сахаром является лактоза – молочный сахар. Этот дисахарид содержится в каждом молоке и придает вкус молока, хотя является менее сладким, чем сахар. Построен из остатков β-D-галактозы и α-D-глюкозы. Галактоза является эпимером глюкозы и отличается конфигурацией четвертого тетраэдра:

Лактозе присущи все свойства восстанавливающих сахаров: таутомерия, мутаротация, окисление до лактобионовой кислоты, восстановление, образование гидразонов и озазонов.

ПОСМОТРЕТЬ ЕЩЕ:

Вопрос 2. Дисахариды

Образование гликозидов

Гликозидная связь имеет важное биологическое значение, потому что именно с помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов. При образовании гликозидной связи аномерная ОН-группа одного моносахарида взаимодействует с ОН-группой другого моносахарида или спирта. При этом происходит отщепление молекулы воды и образование О-гликозидной связи . Все линейные олигомеры (кроме дисахаридов) или полимеры содержат мономерные остатки, участвующие в образовании двух гликозидных связей, кроме концевых остатков. Некоторые гликозидные остатки могут образовывать три гликозидные связи, что характерно для разветвленных олиго- и полисахаридов. Олиго- и полисахариды могут иметь концевой остаток моносахарида со свободной аномерной ОН-группой, не использованной при образовании гликозидной связи. В этом случае при размыкании цикла возможно образование свободной карбонильной группы, способной окисляться. Такие олиго- и полисахариды обладают восстанавливающими свойствами и поэтому называются восстанавливающими или редуцирующими.

Рисунок — Строение полисахарида.

А. Образование a-1,4- и a-1,6-гликозидных связей.

Б. Строение линейного полисахарида:

1 – a-1,4-гликозидные связи между маномерами;

2 – не восстанавливающий конец (не возможно образование свободной карбонильной группы у аномерного углевода);

3 – восстанавливающий конец (возможно размыкание цикла с образованием свободной карбонильной группы у аномерного углерода).

Аномерная ОН-группа моносахарида может взаимодействовать с NH2-группой других соединений, что приводит к образованию N-гликозидной связи. Подобная связь присутствует в нуклеотидах и гликопротеинах.

Рисунок — Структура N-гликозидной связи

Вопрос 2. Дисахариды

Олигосахариды содержат от двух до десяти остатков моносахаридов, соединённых гликозидной связью. Дисахариды – наиболее распространённые олигомерные углеводы, встречающиеся в свободной форме, т.е. не связанной с другими соединениями. По химической природе дисахариды представляют собой гликозиды, которые содержат 2 моносахарида, соединённые гликозидной связью в a- или b-конфигурации. В пище содержатся в основном такие дисахариды, как сахароза, лактоза и мальтоза.

Рисунок — Дисахариды пищи

Сахароза – дисахарид, состоящий из a-D-глюкозы и b-D-фруктозы, соединенных a,b-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. Следовательно, сахароза не относится к восстанавливающим сахарам . Сахароза – растворимый дисахарид со сладким вкусом.

Дисахариды. Свойства дисахаридов.

Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Последнее объясняет возникновение тривиального названия сахарозы – «тростниковый сахар».

Лактоза – молочный сахар. Лактоза гидролизуется с образованием глюкозы и галактозы. Важнейший дисахарид молока млекопитающих. В коровьем молоке содержится до 5% лактозы, в женском – до 8%. В лактозе аномерная ОН-группа первого углеродного атома остатка D-галактозы связана b-гликозидной связью с четвёртым углеродным атомом D-глюкозы (b-1,4-связь). Поскольку аномерный атом углерода остатка глюкозы не участвует в образовании гликозидной связи, следовательно, лактоза относится к восстанавливающим сахарам .

Мальтоза поступает с продуктами, содержащими частично гидролизованный крахмал, например, солод, пиво. Мальтоза образуется при расщеплении крахмала в кишечнике и частично в ротовой полости. Мальтоза состоит из двух остатков D-глюкозы, соединенных a-1,4-гликозидной связью . Относится к восстанавливающим сахарам.

Вопрос 3. Полисахариды:

Классификация

В зависимости от строения остатков моносахаридов полисахариды можно разделить на гомополисахариды (все мономеры идентичны) и гетерополисахариды (мономеры различны). Оба типа полисахаридов могут иметь как линейное расположение мономеров, так и разветвленное.

Различают следующие структурные различия между полисахаридами:

  • строение моносахаридов, составляющих цепь;
  • тип гликозидных связей, соединяющих мономеры в цепи;
  • последовательность остатков моносахаридов в цепи.

В зависимости от выполняемых ими функций (биологическая роль) полисахариды можно разделить на 3 основные группы:

  • резервные полисахариды, выполняющие энергетическую функцию. Эти полисахариды служат источником глюкозы, используемым организмом по мере необходимости. Резервная функция углеводов обеспечивается их полимерной природой. Полисахариды труднее растворимы , чем моносахариды, следовательно, они не влияют на осмотическое давление и поэтому могут накапливаться в клетке , например, крахмал – в клетках растений, гликоген – в клетках животных;
  • структурные полисахариды, обеспечивающие клеткам и органам механическую прочность;
  • полисахариды, входящие в состав межклеточного матрикса , принимают участие в образовании тканей, а также в пролиферации и дифференцировке клеток. Полисахариды межклеточного матрикса водорастворимы и сильно гидратированы.

ПОСМОТРЕТЬ ЕЩЕ:

Структурная формула

Молекулярная масса: 342,297

Мальтоза (от англ. malt - солод) - солодовый сахар, 4-О-α-D-глюкопиранозил-D-глюкоза, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений.
Биосинтез мальтозы из β-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах мальтоза образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы).
Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости мальтозы - тяжёлому заболеванию, требующему исключения из рациона мальтозы, крахмала и гликогена или добавления к пище фермента мальтазы.

Химическое название

α-Мальтоза — (2R,3R,4S,5R,6R)-5-[(2R,3R,4S,5R,6R)-2,3,4-тригидрокси-6-(гидроксиметил)оксанил]окси-6-(гидроксиметил)оксан-2,3,4-триол
β-Мальтоза — (2S,3R,4S,5R,6R)-5-[(2R,3R,4S,5R,6R)-2,3,4-тригидрокси-6-(гидроксиметил)оксанил]окси-6-(гидроксиметил)оксан-2,3,4-триол

Физические свойства

Мальтоза является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу.
При кипячении мальтозы с разбавленной кислотой и при действии фермента мальтоза гидролизуется (образуются две молекулы глюкозы C6H12O6).
C12H22O11 + H2O → 2C6H12O6

(от англ. malt ≈ солод), солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. М. легко растворима в воде, имеет сладкий вкус; является восстанавливающим сахаром, так как имеет незамещённую полуацетальную гидроксильную группу. Биосинтез М. из b-D-глюкопиранозилфосфата и D-глюкозы известен только у некоторых видов бактерий. В животном и растительном организмах М.

образуется при ферментативном расщеплении крахмала и гликогена (см. Амилазы). Расщепление М. до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах. Генетически обусловленное отсутствие этого фермента в слизистой оболочке кишечника человека приводит к врождённой непереносимости М. ≈ тяжёлому заболеванию, требующему исключения из рациона М., крахмала и гликогена или добавления к пище фермента мальтазы.

Лит.: Химия углеводов, М., 1967; Харрис Г., Основы биохимической генетики человека, перевод с английского, М., 1973.

Так же, как и моносахариды , широкое распространение в природе имеют и дисахариды – всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар).

Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия двух гидроксильных групп.

В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

или для сахарозы:

Поэтому молекулярная формула дисахаридов С 12 H 22 O 11 .

Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р. Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии».

В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%), сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде.

Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром.

Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы. Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году.

Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в. Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение полисахаридами .

Полисахариды – высокомолекулярные углеводы, молекулы которых состоят из множества моносахаридов.

В упрощенном виде общая схема может быть представлена так:

Теперь сравним строение и свойства крахмала и целлюлозы – важнейших представителей полисахаридов.

Структурное звено полимерных цепей этих полисахаридов, формула которых (С 6 H 10 O 5) n , – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С 6 H 10 O 5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации.

Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный.

При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание.
Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Наименование параметра Значение
Тема статьи: Дисахариды
Рубрика (тематическая категория) Химия

Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

По своему строению дисахариды представляют из себягликози-ды. Учитывая зависимость оттого, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всœего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

лактоза лактоза

Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собой l-4-α-гликозидной связью.

Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причинœе в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

мальтоза мальтоза

(полуацетальная форма) (гидроксикарбонильная форма)

По такому принципу построены всœе восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды - ϶ᴛᴏ кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

мальтоза (альдегидная форма) мальтобионовая кислота

Эта группа дисахаридов способна восстанавливать Ag + до Ag 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, в связи с этим они и называются восстанавливающими дисахаридами. Как всœе сложные углеводы, дисахариды способны гидролизоваться под действием минœеральных кислот или ферментов.

С 12 Н 22 О 11 +Н 2 О2С 6 Н 12 О 6

мальтоза глюкоза

Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, в связи с этим они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.

трегалоза сахароза

Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остатка α-D-глюкопиранозы и остатка β-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в т.ч. и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, в связи с этим их называют невосстанавливающими дисахаридами. Οʜᴎ проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как всœе сложные углеводы гидролизуются в присутствии минœеральных кислот или под действием ферментов.

Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделœена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

Молекулярный состав сахарозы С 12 Н 22 О 11 .

Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы в β-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, в связи с этим она не может таутомерно переходить в гидроксикарбонильную форму.

При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минœеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы принято называть инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др.
Размещено на реф.рф
В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.

Дисахариды - понятие и виды. Классификация и особенности категории "Дисахариды" 2017, 2018.

  • - Моносахариды Дисахариды Полисахариды

    Многообразие углеводов Глюкоза Сахароза Крахмал Фруктоза Лактоза Гликоген Галактоза Мальтоза Хитин Дезоксирибоза Целлюлоза (клетчатка) Рибоза Моносахариды – это простые сахара. Из них наиболее важны глюкоза,... .


  • - Дисахариды. Отдельные представители

    Олигосахариды. Строение, физико-химические свойства отдельных представителей Олигосахариды представляют собой углеводы, построенные из небольшого (от 2 до 10) количества моносахаридов. Олигосахариды делят на ди-, три-, тетрасахариды и т.д. по числу остатков... .

  • Дисахариды – это сахароподобные сложные углеводы, молеку­лы которых при гидролизе распадаются на две молекулы моносахаридов. Молекулярная формула С 12 Н 22 О 11 . Дисахариды содержатся в продуктах природного происхождения: сахароза (свекловичный сахар) в большом количестве, до 28%, – в сахарной свёкле; лактоза (молочный сахар) – в молоке; трегалоза (грибной сахар) – в грибах; мальтоза (солодовый сахар) образуется при частичном гидролизе крахмала и др.

    По своему строению дисахариды представляют собой гликози-ды. В зависимости от того, какой гидроксил второго моносахарида участвует в образовании связи с первым моносахаридом, различают дисахариды двух типов: восстанавливающие (редуцирующие); невосстанавливающие.

    Восстанавливающие дисахариды называют гликозил-гликозами; связь между моносахаридными молекулами у этих дисахаридов образована за счёт полуацетального гидроксила одной молекулы и спиртового гидроксила (чаще всего при четвёртом атоме углерода) второй молекулы. Важнейшие представители: мальтоза, лактоза, целлобиоза. В растворе они находятся в таутомерных формах: циклической (полуацетальной) и гидроксикарбонильной (альдегидной).

    лактоза лактоза

    Строение. В состав дисахаридов могут входить два одинаковых или различных моносахарида в полуацетальной (циклической) форме.

    Так, молекула мальтозы (солодовый сахар) состоит из двух мо­лекул α-D-глюкозы в пиранозной форме, связанных между собойl-4-α-гликозидной связью.

    Во втором моносахаридном остатке молекулы мальтозы сохра­няется свободный полуацетальный гидроксил. По этой причине в растворе мальтоза может существовать в таутомерных формах: циклической и гидроксикарбонильной, находящихся между собой в динамическом равновесии.

    мальтоза мальтоза

    (полуацетальная форма) (гидроксикарбонильная форма)

    По такому принципу построены все восстанавливающие диса­хариды (лактоза, целлобиоза и др.).

    Свойства восстанавливающих (редуцирующих) дисахаридов. Восстанавливающие дисахариды – это кристаллические вещества, хорошо растворимые в воде, имеют сладкий вкус, гигроскопичны. Растворы этих дисахаридов нейтральны, обладают оптической активностью. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, восстанавливают жидкость Фелинга, реагируют с реактивами на карбонильную группу (с фенилгидразином, гидроксиламином). За счёт полуацетального гидроксила дисахариды образуют гликозиды, а также проявляют свойства многоатомных спиртов: вступают в реакции алкилирования, ацилирования, дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН) 2).

    мальтоза (альдегидная форма) мальтобионовая кислота

    Эта группа дисахаридов способна восстанавливать Ag + доAg 0 в реакции серебряного зеркала, Сu 2+ до Сu + в реакции с раствором Фелинга, поэтому они и называются восстанавливающими дисахаридами. Как все сложные углеводы, дисахариды способны гидролизоваться под действием минеральных кислот или ферментов.

    С 12 Н 22 О 11 +Н 2 О
    2С 6 Н 12 О 6

    мальтоза глюкоза

    Невосстанавливающие дисахариды называют гликозил-гликозидами; связь между моносахаридами у этих дисахаридов образована с участием обоих полуацетальных гидроксилов, поэтому они не могут переходить в другие таутомерные формы. Важнейшими их представителями являются сахароза и трегалоза.


    трегалоза сахароза

    Молекула трегалозы состоит из двух остатков α-D-глюкопи-ранозы, молекула сахарозы – из остаткаα-D-глюкопиранозы и остаткаβ-D-фруктофуранозы. Так как у дисахаридов этой группы связь между моносахаридами осуществляется за счёт обоих полуацетальных гидроксилов, они не могут таутомерно переходить в оксикарбонильную форму, следовательно, не могут давать реакции на карбонильную группу, в том числе и на альдегидную группу (не дают реакцию серебряного зеркала, не реагируют с раствором Фелинга). Такие дисахариды не способны проявлять восстанавливающие свойства, поэтому их называют невосстанавливающими дисахаридами. Они проявляют свойства многоатомных спиртов (растворяют гидроксид меди, вступают в реакции алкилирования и ацилирования), как все сложные углеводы гидролизуются в присутствии минеральных кислот или под действием ферментов.

    Строение и свойства сахарозы. Сахароза (свекловичный са­хар) – один из наиболее давно известных человеку пищевых продуктов. Первоначально сахароза была выделена из сахарного тростника, а затем – из сахарной свеклы. Сахароза содержится и во многих других растениях (кукуруза, клён, пальма и др.).

    Молекулярный состав сахарозы С 12 Н 22 О 11 .

    Молекула сахарозы состоит из двух моносахаридов: глюкозы в α-D-пиранозной форме и фруктозы вβ-D-фуранозной форме, свя­занных между собой 1-2-гликозидной связью с участием двух полуацетальных (гликозидных) гидроксилов. В молекуле сахарозы нет свободных полуацетальных гидроксилов, поэтому она не может таутомерно переходить в гидроксикарбонильную форму.

    При нагревании выше 160°С сахароза частично разлагается, выделяя воду и превращаясь в бурую массу – карамель.

    Водный раствор сахарозы растворяет гидроксид меди, образуя раствор сахарата меди, проявляет при этом свойства многоатомных спиртов. При нагревании раствора сахарозы в присутствии минеральных кислот сахароза гидролизуется, в результате образуется смесь глюкозы и фруктозы в равных количествах (искусственный мёд). Процесс гидролиза сахарозы называется инверсией, так как при этом наблюдается изменение правого вращения раствора на левое.

    Сахароза широко используется как пищевой продукт, в произ­водстве кондитерских, хлебобулочных изделий, варенья, компотов, джемов и др. В фармакологии используется для приготовления сиропов, микстур, порошков и т.п.

    Эфиры сахарозы и высших жирных кислот обладают высокой моющей способностью и используются как промышленные детергенты. Эти продукты не имеют запаха, совершенно неядовиты и полностью разрушаются бактериями при биологической самоочистке воды.

    Диэфиры высших жирных кислот и сахарозы используются как эмульгаторы при получении маргарина, лекарственных препаратов и в косметике.

    Октаметилсахароза применяется в промышленности пластмасс как пластификатор.

    Октаацетат сахарозы используется в качестве промежуточного слоя при получении стекла триплекс.

    Отходы сахарного производства (патока) употребляются для производства этилового спирта и в кондитерской промышленности.


    Углеводы при сахарном диабете

    Сахара (сахариды, углеводы) это распостраненные в природе органические соединения. Они являются производными многоатомных спиртов. По размеру и структуре молекул они делятся на две группы: простые сахара (моносахариды) и сложные (к ним относятся дисахариды и полисахариды).

    По наличиню характерных функциональных групп, кроме многоатомных (гидроксиловых) групп, которые входят в состав всех сахаридов, отличают: альдозы – имеющие альдегидные группы, и – имеющие кетоновые группы.

    Подробнее о различных типах углеводов читайте ниже в собранных мною статьях по этой тематике.

    Углеводы - органические соединения, чаще всего природного происхождения, состоящие только из углерода, водорода и кислорода. Углеводы играют огромную роль в жизнедеятельности всех живых организмов. Свое название данный класс органических соединений получил за то, что первые изученные человеком углеводы имели общую формулу вида Cx(H2O)y .

    Т.е. их условно посчитали соединениями углерода и воды. Однако позднее оказалось, что состав некоторых углеводов отклоняется от этой формулы. Например, такой углевод как дезоксирибоза имеет формулу С5Н10О4. В то же время существуют некоторые соединения, формально соответствующие формуле Cx(H2O)y, однако к углеводам не относящиеся, как, например, формальдегид (СН2О) и уксусная кислота (С2Н4О2).

    Тем не менее, термин «углеводы» исторически закрепился за данным классом соединений, в связи с чем повсеместно используется и в наше время.

    Классификация углеводов

    В зависимости от способности углеводов расщепляться при гидролизе на другие углеводы с меньшей молекулярной массой их делят на простые (моносахариды) и сложные (дисахариды, олигосахариды, полисахариды). Как легко догадаться, из простых углеводов, т.е. моносахаридов, нельзя гидролизом получить углеводы с еще меньшей молекулярной массой.

    При гидролизе одной молекулы дисахарида образуются две молекулы моносахарида, а при полном гидролизе одной молекулы любого полисахарида получается множество молекул моносахаридов.

    Химические свойства моносахаридов на примере глюкозы и фруктозы

    Как можно заметить, и в молекуле глюкозы, и в молекуле присутствует по 5 гидроксильных групп, в связи с чем их можно считать многоатомными спиртами. В составе молекулы глюкозы имеется альдегидная группа, т.е. фактически глюкоза является многоатомным альдегидоспиртом. В случае фруктозы можно обнаружить в ее молекуле кетонную группу, т.е. фруктоза является многоатомным кетоспиртом.

    Химические свойства глюкозы и фруктозы как карбонильных соединений

    Все моносахариды могут реагировать в присутствии катализаторов с водородом. При этом карбонильная группа восстанавливается до спиртовой гидроксильной. Молекула глюкозы содержит в своем составе альдегидную группу, в связи с чем логично предположить, что ее водные растворы дают качественные реакции на альдегиды.

    Внимание!

    И действительно, при нагревании водного раствора глюкозы со свежеосажденным гидроксидом меди (II) так же, как и в случае любого другого альдегида, наблюдается выпадение из раствора кирпично-красного осадка оксида меди (I). При этом альдегидная группа глюкозы окисляется до карбоксильной – образуется глюконовая кислота. Также глюкоза вступает и в реакцию «серебряного зеркала» при действии на нее аммиачного раствора оксида серебра.

    Однако, в отличие от предыдущей реакции вместо глюконовой кислоты образуется ее соль – глюконат аммония, т.к. в растворе присутствует растворенный аммиак. Фруктоза и другие моносахариды, являющиеся многоатомными кетоспиртами, в качественные реакции на альдегиды не вступают.

    Химические свойства глюкозы и фруктозы как многоатомных спиртов

    Поскольку моносахариды, в том числе глюкоза и фруктоза, имеют в составе молекул несколько гидроксильных групп. Все они дают качественную реакцию на многоатомные спирты. В частности, в водных растворах моносахаридов растворяется свежеосажденный гидроксид меди (II). При этом вместо голубого осадка Cu(OH)2 образуется темно-синий раствор комплексных соединений меди.

    Дисахариды. Химические свойства

    Дисахаридами называют углеводы, молекулы которых состоят из двух остатков моносахаридов, связанных между собой за счет конденсации двух полуацетальных гидроксилов либо же одного спиртового гидроксила и одного полуацетального. Связи, образующиеся таким образом между остатками моносахаридов, называют гликозидными. Формулу большинства дисахаридов можно записать как C12H22O11.

    Наиболее часто встречающимся дисахаридом является всем знакомый сахар, химиками называемый сахарозой. Молекула данного углевода образована циклическими остатками одной молекулы глюкозы и одной молекулы фруктозы. Связь между остатками дисахаридов в данном случае реализуется за счет отщепления воды от двух полуацетальных гидроксилов.

    Поскольку связь между остатками моносахаридов образована при конденсации двух ацетальных гидроксилов, для молекулы сахара невозможно раскрытие ни одного из циклов, т.е. невозможен переход в карбонильную форму. В связи с этим сахароза не способна давать качественные реакции на альдегиды.

    Подобного рода дисахариды, которые не дают качественные реакции на альдегиды, называют невосстанавливающими сахарами. Тем не менее, существуют дисахариды, которые дают качественные реакции на альдегидную группу. Такая ситуация возможна, когда в молекуле дисахарида остался полуацетальный гидроксил из альдегидной группы одной из исходных молекул моносахаридов.

    В частности, в реакцию с аммиачным раствором оксида серебра, а также гидроксидом меди (II) подобно альдегидам вступает мальтоза.

    Дисахариды как многоатомные спирты

    Дисахариды, являясь многоатомными спиртами, дают соответствующую качественную реакцию с гидроксидом меди (II), т.е. при добавлении их водного раствора ко свежеосажденному гидроксиду меди (II) нерастворимый в воде голубой осадок Cu(OH)2 растворяется с образованием темно-синего раствора.

    Полисахариды. Крахмал и целлюлоза

    Полисахариды - сложные углеводы, молекулы которых состоят из большого числа остатков моносахаридов, связанных между собой гликозидными связями. Есть и другое определение полисахаридов. Полисахаридами называют сложные углеводы, молекулы которых образуют при полном гидролизе большое число молекул моносахаридов.

    В общем случае формула полисахаридов может быть записана как (C6H11O5)n. Крахмал – вещество, представляющее собой белый аморфный порошок, не растворимый в холодной воде и частично растворимый в горячей с образованием коллоидного раствора, называемого в быту крахмальным клейстером.

    Крахмал образуется из углекислого газа и воды в процессе фотосинтеза в зеленых частях растений под действием энергии солнечного света. В наибольших количествах крахмал содержится в картофельных клубнях, пшеничных, рисовых и кукурузных зернах. По этой причине указанные источники крахмала и являются сырьем для его получения в промышленности.

    Целлюлоза – вещество, в чистом состоянии представляющее собой белый порошок, не растворимый ни в холодной, ни в горячей воде. В отличие от крахмала целлюлоза не образует клейстер. Практически из чистой целлюлозы состоит фильтровальная бумага, хлопковая вата, тополиный пух.

    И крахмал, и целлюлоза являются продуктами растительного происхождения. Однако, роли, которые они играют в жизни растений, различны. Целлюлоза является в основном строительным материалом, в частности, главным образом ей образованы оболочки растительных клеток. Крахмал же несет в основном запасающую, энергетическую функцию.

    Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/uglevody

    Виды углеводов

    Выделяют три основных вида углеводов:

    • Простые (быстрые) углеводы или сахара: моно- и дисахариды
    • Сложные (медленные) углеводы: олиго- и полисахариды
    • Неусваиваемые, или волокнистые, углеводы определяются как пищевая клетчатка.

    Сахара

    Различают два вида сахаров:

    • моносахариды – моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза.
    • дисахариды – дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

    Сложные углеводы

    Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

    Источник: http://sportwiki.to/%D0%92%D0%B8%D0%B4%D1%8B_%D1%83%D0%B3%D0%BB%D0%B5%D0%B2%D0%BE%D0%B4%D0%BE%D0%B2

    Углеводы, моносахариды, полисахариды, мальтоза, глюкоза, фруктоза

    Углеводы

    Углеводы – это обширная группа органических соединений, которые играют большую роль в жизнедеятельности организма. Распространены углеводы главным образом в растительном мире. Организму человека требуется 400-500 г углеводов в сутки (в том числе не менее 80 г сахаров). Они являются важным источником энергии.

    Усвояемость углеводов, содержащихся в фруктах, составляет 90 %; в и молочных продуктах – 98; в столовом сахаре – 99 %. Примерами углеводов могут служить глюкоза (С6Н2О6), или виноградный сахар, названный так из-за его большого содержания в ; тростниковый или свекловичный сахар (С6Н22011); крахмал и целлюлоза (СбН10О5).

    Эти вещества состоят из углерода, водорода и кислорода. Причем соотношение двух последних элементов такое же, как в воде, т. е. на два атома водорода приходится один атом кислорода. Таким образом, углеводы как бы построены из углерода и воды, отсюда и произошло их название. Углеводы делятся на моносахариды (например, глюкоза) и полисахариды.

    Полисахариды в свою очередь разделяются на низкомолекулярные, или олигосахариды (представителем их является свекловичный сахар), и высокомолекулярные, например крах – мал и целлюлоза. Молекулы полисахаридов построены из остатков молекул моносахаридов и при гидролизе расщепляются на более простые углеводы.

    Моносахариды

    Из моносахаридов наибольшее значение для организма человека – имеют глюкоза, фруктоза, галактоза и др. Все они кристаллические вещества, растворимые в воде. Глюкоза в свободном состоянии распространена в плодах многих растений. В связанном состоянии она находится в растениях в виде полисахаридов (сахарозы, мальтозы, крахмала, декстрина, целлюлозы и др.). В промышленности глюкозу получают из крахмала.

    Безводная глюкоза плавится при температуре 146 С, она хорошо растворима в воде Глюкоза примерно в 2 раза менее сладкая, чем сахароза. При действии на глюкозу сильных окислителей образуется сахарная кислота. При восстановлении она переходит в шестиатомный спирт – .

    Внимание!

    Существует три вида углеводов:

    • моносахариды;
    • дисахариды;
    • полисахариды.

    Основными моносахаридами являются глюкоза и фруктоза, состоящие из одной молекулы, благодаря чему эти углеводы быстро расщепляются, моментально поступая в кровь. Клетки мозга “подпитываются” энергией благодаря глюкозе: так, суточная норма глюкозы, необходимой для мозга, равна 150 г, что составляет одну четвертую всего объема данного углевода, получаемого в день с пищей.

    Особенность простых углеводов в том, что они, быстро перерабатываясь, не трансформируются в жиры, тогда как сложные углеводы (при условии чрезмерного их употребления) могут откладываться в организме в виде жира. Моносахариды присутствуют в большом количестве во многих фруктах и овощах, а также в меде.

    Данные углеводы, к которым относятся сахароза, лактоза и мальтоза, нельзя назвать сложными, так как в состав их входят остатки двух моносахаридов. Для переваривания дисахаридов требуется более длительное время по сравнению с моносахаридами.

    Интересный факт! Доказано, что дети и подростки реагируют на увеличенное употребление углеводов, входящих в состав рафинированных (или очищенных) продуктов, так называемым сверхактивным (или гиперактивным) поведением. В случае последовательного исключения из рациона таких продуктов, к которым относятся сахар, белая мука, макаронные изделия и белый рис, поведенческие расстройства существенно уменьшатся.

    При этом важно увеличить потребление свежих овощей и фруктов, бобовых, орехов, сыра. Дисахариды присутствуют в молочных продуктах, макаронах и изделиях, содержащих рафинированный сахар. Молекулы полисахаридов включают десятки, сотни, а иногда и тысячи моносахаридов.

    Полисахариды (а именно крахмал, клетчатка, целлюлоза, пектин, инулин, хитин и гликоген) наиболее важны для организма человека по двум причинам:

    • они долго перевариваются и усваиваются (в отличие от простых углеводов);
    • содержат множество полезных веществ, среди которых витамины, минералы и белки.

    Много полисахаридов присутствует в волокнах растений, вследствие чего один прием пищи, основой которой являются сырые либо вареные овощи, может практически в полном объеме удовлетворить суточную норму организма в веществах, являющихся источниками энергии.

    Благодаря полисахаридам, во-первых, поддерживается необходимый уровень сахара, во-вторых, мозг обеспечивается необходимой ему подпиткой, что проявляется усилением концентрации внимания, улучшением памяти и повышением умственной активности. Полисахариды содержатся в овощах, фруктах, зерновых культурах, а также печени животных.

    Польза углеводов:

    1. Стимулирование перистальтики желудочно-кишечного тракта.
    2. Поглощение и выведение токсических веществ и холестерина.
    3. Обеспечение оптимальных условий для функционирования нормальной микрофлоры кишечника.
    4. Укрепление иммунитета.
    5. Нормализация обмена веществ.
    6. Обеспечение полноценной работы печени.
    7. Обеспечение постоянного поступления сахара в кровь.
    8. Предупреждение развития опухолей в желудке и кишечнике.
    9. Восполнение витаминов и минералов.
    10. Обеспечение энергией мозга, а также центральной нервной системы.
    11. Способствование выработке эндорфинов, которые называют “гормонами радости”.
    12. Облегчение проявления предменструального синдрома.

    Суточная потребность углеводов

    Потребность в углеводах напрямую зависит от интенсивности умственных и физических нагрузок, составляя в среднем 300 – 500 г в день, из которых минимум 20 процентов должны составлять легкоусвояемые углеводы. Пожилые люди должны включать в свой ежедневный рацион не более 300 г углеводов, при этом количество легкоусвояемых должно варьироваться в пределах 15 – 20 процентов.

    При ожирении и иных заболеваниях необходимо ограничить количество углеводов, причем делать это надо постепенно, что позволит организму без особых проблем приспособиться к измененному обмену веществ. Рекомендуется начинать ограничение с 200 – 250 г в день на протяжении недели, после чего объем поступающих с пищей углеводов доводится до 100 г в сутки.

    Резкое снижение употребления углеводов на протяжении длительного времени (как и недостаток их в питании) приводит к развитию следующих нарушений:

    Перечисленные явления проходят после употребления сахара либо иной сладкой пищи, но прием таких продуктов должен быть дозированным, что предохранит организм от набора лишних килограмм. Вреден для организма и избыток углеводов (особенно легкоусвояемых) в рационе, способствующий повышению сахара, вследствие чего часть углеводов не используется, идя на образование жира, что провоцирует развитие атеросклероза, сердечно-сосудистых болезней, метеоризма, сахарного диабета, ожирения, а также кариеса.

    В каких продуктах содержатся углеводы?

    Из приведенного ниже списка углеводов каждый сможет составить вполне разнообразный рацион (с учетом того, что это далеко не полный список продуктов, в состав которых входят углеводы). Углеводы содержатся в нижеприведенных продуктах:

    Лишь сбалансированное питание обеспечит организм энергией и здоровьем. Но для этого необходимо правильно организовать свой рацион. И первым шагом к здоровому питанию станет завтрак, состоящий из сложных углеводов. Так, порция цельнозерновой каши (без заправок, мяса и ) обеспечит организм энергией минимум на три часа.

    В свою очередь, при употреблении простых углеводов (речь идет о сладкой сдобе, различных рафинированных продуктах, сладком кофе и чае) мы испытываем мгновенное чувство насыщения, но при этом в организме происходит резкий подъем сахара в крови, сменяемый быстрым спадом, за которым снова появляется чувство .

    Почему так происходит? Дело в том, что поджелудочная железа очень сильно перегружается, поскольку ей приходится выделять , чтобы переработать рафинированные сахара. Результат такой перегрузки – понижение уровня сахара (иногда ниже нормы) и появление чувства голода.

    Во избежание перечисленных нарушений рассмотрим каждый углевод в отдельности, определив его пользу и роль в обеспечении организма энергией.