Что такое вероятность случайного события. Классическая вероятность и ее свойства. Базовые понятия теории вероятностей. События

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Основы теории вероятности

План:

1. Случайные события

2. Классическое определение вероятности

3. Вычисление вероятностей событий и комбинаторика

4. Геометрическая вероятность

Теоретические сведения

Случайные события.

Случайное явление – явление, исход которого однозначно не определен. Это понятие можно трактовать в достаточно широком смысле. А, именно: все в природе достаточно случайно, появление и рождение любого индивидуума есть случайное явление, выбор товара в магазине также случайное явление, получение оценки на экзамене есть случайное явление, заболевание и выздоровление есть случайные явления и т.д.

Примеры случайных явлений:

~ Производится стрельба из орудия, установленным под заданным углом к горизонту. Попадание его в цель случайно, но попадание снаряда в некоторую "вилку", есть закономерность. Можно указать расстояние, ближе которого и дальше которого, снаряд не полетит. Получится некоторая "вилка рассеивания снарядов"

~ Одно и тоже тело взвешивается несколько раз. Строго говоря, каждый раз будут получаться разные результаты, пусть отличающиеся на ничтожно малую величину, но отличаться.

~ Самолет, летая по одному и тому же маршруту, имеет некоторый полетный коридор, в пределах которого может лавировать самолет, но никогда у него не будет строго одинакового маршрута

~ Спортсмен никогда не сможет пробежать одну и туже дистанцию с одинаковым временем. Его результаты также будут находиться в пределах некоторого численного промежутка.

Опыт, эксперимент, наблюдение являются испытаниями

Испытание – наблюдение или выполнение некоторого комплекса условий, выполняемых неоднократно, причем регулярно повторяющихся в оной и тоже последовательности, длительности, с соблюдением иных одинаковых параметров.

Рассмотрим выполнение спортсменом выстрела по мишени. Чтобы он был произведен, необходимо выполнить такие условия как изготовка спортсмена, зарядка оружия, прицеливание и т.д. "Попал" и "не попал" – события, как результат выстрела.

Событие – качественный результат испытания.

Событие может произойти или не произойти События обозначаются заглавными латинскими буквами. Например: D ="Стрелок попал в мишень". S="Вынут белый шар". K="Взятый наудачу лотерейный билет без выигрыша.".

Подбрасывание монеты – испытание. Падение ее "гербом" – одно событие, падение ее "цифрой" – второе событие.

Любое испытание предполагает наступления нескольких событий. Одни из них могут быть нужными в данный момент времени исследователю, другие – не нужными.

Событие называется случайным , если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальней­шем, вместо того чтобы говорить "совокупность условий S осуществлена", будем говорить кратко: "произведено испытание". Таким образом, событие будет рассматри­ваться как результат испытания.

~ Стрелок стреляет по мишени, разделенной на четыре, области. Выстрел - это испытание. Попадание в определенную область мишени - событие.

~ В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появле­ние шара определенного цвета - событие.

Виды случайных событий

1. События называют несовместными, если появле­ние одного из них исключает появление других событий в одном и том же испытании.

~ Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События € появилась стандартная деталь" и с появилась не­стандартная деталь" - несовместные.

~ Брошена монета. Появление "герба" исключает по­явление надписи. События "появился герб" и "появилась надпись" - несовместные.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие.

В частности, если события, образующие полную группу, попарно несов­местны, то в результате испытания появится одно и только одно из этих событий.Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

~ Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий:

1. "выигрыш выпал на первый билет и не выпал на второй",

2. "выигрыш не выпал на первый билет и выпал на второй",

3. "выигрыш выпал на оба билета",

4. "на оба билета выигрыш не выпал".

Эти события обра­зуют полную группу попарно несовместных событий,

~ Стрелок произвел выстрел по цели. Обязательно прои­зойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события также образуют полную группу.

2. События называют равновозможными, если есть осно­вания считать, что ни одно из них не является более возможным, чем другое.

~ Появление "герба" и появление надписи при бросании монеты - равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму, и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

~ Появление того или иного числа очков на брошенной игральной кости - равновозможные события. Действительно, предпо­лагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника, и наличие очков не оказы­вает влияния на выпадение любой грани.

3. Событие называется достоверным, если оно не может не произойти

4. Событие называется не достоверным , если оно не может произойти.

5. Событие называются противоположным к некоторому событию, если оно состоит из не появления данного события. Противоположные события не совместимые, но одно из них должно обязательно произойти. Противоположные события принято обозначать как отрицания, т.е. над буквой пишется черточка. События противоположные: А и Ā; U и Ū и т.д. .

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей.

Существует несколько определений этого понятия. Приведем определение, которое называют клас­сическим. Далее укажем слабые стороны этого определе­ния и приведем другие определения, позволяющие пре­одолеть недостатки классического определения.

Рассмотрим ситуацию: В ящике содержится 6 оди­наковых шаров, причем 2 - красные, 3- синие и 1-белый. Очевидно, возмож­ность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Эту возможность можно охарактеризовать числом, которое и называют вероятностью события (появления - цветного шара).

Вероятность - число, характеризующее степень воз­можности появления события.

В рассматриваемой ситуации обозначим:

Событие А ="Вытаскивание цветного шара".

Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным (возможным) исходом и событием. Элементарные исходы можно обозначать буквами с индексами внизу, например: k 1 , k 2 .

В нашем примере 6 шаров, поэтому 6 возможных исходов: появился белый шар; появился красный шар; появился синий шар и т.д. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможные (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими исходами этому событию. В нашем примере благоприятствуют со­бытию А (появлению цветного шара) следующие 5 исхо­дов:

Таким образом, событие А наблюдается, если в испы­тании наступает один, безразлично какой, из элементар­ных исходов, благоприятствующих А. Это появление любого цветного шара, которых в ящике 5 штук

В рассмат­риваемом примере элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, Р(А)= 5/6. Это число дает ту количественную оценку степени возможности появления цветного шара.

Определение вероятности:

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Р(А)=m/n или Р(А)=m: n, где:

m -число элементарных исходов, благоприятствую­щих А;

п - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы не­совместные, равновозможные и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае m = n следовательно, p=1

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m=0, следовательно, p=0.

3.Вероятность случайного события есть положительное число, заключенное между нулем и еди­ницей. 0т < n.

В последующих темах будут приведены теоремы, которые позволяют по из­вестным вероятностям одних событий находить вероятно­сти других событий.

Промер. В группе студентов 6 девушек и 4 юношей. Какова вероятность того, что наудачу выбранный студент будет девушка? будет юноша?

p дев = 6 / 10 =0,6 p юн = 4 / 10 = 0,4

Понятие "вероятность" в современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Рассмотрим некоторые моменты такого подхода.

Пусть в результате испытания наступает одно и только одно из событий: w i (i=1, 2, .... п). События w i ,- называется элементарными событиями (элементарными исходами). О тсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называют пространством элементарных событий Ω (греческая буква омега заглавная), а сами элементарные собы­тия - точками этого пространства. .

Событие А отождествляют с подмножеством (пространства Ω), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество Ω , элементы которого есть исходы, благоприятствующие В, и т, д. Таким образом, множества всех со­бытий, которые могут наступить в испытании, есть множество всех подмножеств Ω, Само Ω наступает при любом исходе испытания, поэтому Ω - достоверное событие; пустое подмножество пространства Ω- -невозможное событие (оно не наступает ни при каком исходе испытания).

Элементарные события выделяются из числа всех событий тем, "по каждое из них содержит только один элемент Ω

Каждому элементарному исходу w i ставят в соответствие поло­жительное число р i - вероятность этого исхода, причем сумма всех р i равна 1 или со знаком суммы этот факт запишется в виде выражения:

По определению, вероятность Р(А) события А равна сумме вероят­ностей элементарных исходов, благоприятствующих А. Поэтому вероятность события достоверного равна единице, не­возможного - нулю, произвольного - заключена между нулем и еди­ницей.

Рассмотрим важный частный случай, когда все исходы равновоз­можные, Число исходов равно л, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1/п. Пусть событию А благоприятствует m исходов.

Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

Р(А)=1/n + 1/n+…+1/n = n·1/n=1

Получено классическое определение вероятности.

Существует еще аксиоматический подход к понятию "вероятность". В системе аксиом, предложенной. Колмогоровым А. Н, неопре­деляемыми понятиями являются элементарное событие и вероятность. Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятно­сти.

Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицатель­ное действительное число Р(А). Это число называется вероятностью события А.

2. Вероятность достоверного события равна единице:

3. Вероятность наступления хотя бы одного из попарно несов­местных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей к зависимости между ними выводят в качестве теорем.

Для практической деятельности важно уметь сравнивать события по степени возможности их наступления. Очевидно, события - «выпадение дождя» и «выпадение снега» в первый день лета в данной местности, «выигрыш по одному билету» и «выигрыш по каждому из 5 приобретенных билетов» денежно-вещевой лотереи обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная мера.

Для количественной оценки степени возможности появления случайного события пользуются термином вероятность.

Поставим задачу дать количественную оценку возможности того, что при бросании игральной кости выпадет 4 очка. Выпадение четырех очков будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание – бросание игральной кости) назовем элементарным исходом (элементарным событием).В нашем примере возможны следующие 6 элементарных исходов: выпало 1 очко, 2 очка, 3 очка, 4 очка, 5 очков, 6 очков. Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере из шести элементарных исходов событию А благоприятствует один. Следовательно, вероятность того, что выпавшее количество очков окажется равным 4, равна 1/ 6. Это число и дает ту количественную оценку степени возможности появления четырех очков, которую мы и хотели найти.

Согласно классическому определению, вероятность события А равна отношению числа благоприятствующих этому событию исходов к общему числу равновозможных элементарных исходов.

Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1.Вероятность достоверного события равна единице.

Р(А) = т/п = п/п = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Р(А) = т/п = 0/п = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

0 Р(А) 1.

Пример 1. На территории предприятия произошла авария водопровода. Общая длина водопровода 150 м. В том числе 50 м. трубы приходится на труднодоступные места. Какова вероятность того, что ремонт придется производить именно на труднодоступном участке?

Р(А) = 50/150 = 1/3

Пример 2. В урне лежат т белых шаров и п черных. Чему равна вероятность вытащить белый шар (событие А) ?

3. Статистическое определение вероятности.

Пользуясь классическим определением вероятности, можно вычислить вероятность какого-либо случайного события, не прибегая к опыту. Однако это не всегда выполнимо, ибо на практике не всегда можно соблюдать условие равновозможности, лежащее в основе классического определения.

Например, если монета сплющена, то события «появление герба» и «появление цифры» нельзя считать равновозможными и формула (1) окажется неприменимой для подсчета вероятности любого из них. По этой причине наравне с классическим определением пользуются статистическим определением вероятности.

При изучении массовых явлений какое-либо случайное событие или случайная величина могут появляться несколько раз в процессе испытаний. Пусть, например, при п испытаниях событие А появилось т раз. Число т носит название частоты появления события А. Отношение частоты события А к общему числу испытаний п носит название частоты события или относительной частоты, которую обозначают

Если случайное событие имеет устойчивую частоту в серии испытаний, т.е. в каждой серии испытаний частота этого события изменяется незначительно и колеблется около некоторого положительного числа, то это число и принимается за вероятность данного события. Вычисленную таким образом вероятность называют статистической вероятностью.

(2)

Пример 1. Подбросим монету 10 раз и получим, например, такие результаты:

Г,

Г,

Ц,

Г,

Ц,

Г,

Ц,

Г,

Ц,

10) Ц,

С увеличением числа испытаний колебания частоты уменьшаются и частота становится практически устойчивой. Такую устойчивую частоту и принимают равной вероятности интересующего нас события.

В примере с подбрасыванием монеты число опытов взято произвольно. На самом деле для получения достоверного значения вероятности число опытов должно быть значительно больше.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.