Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования). Как рассчитать и нивелировать шум от вентсистем Расчет шума от вентиляции пример

Вентиляционные системы шумят и вибрируют. Интенсивность и область распространения звуков зависит от места расположения основных агрегатов, протяжённости воздуховодов, общей производительности, а также типа здания и его функционального назначения. Расчёт шума от вентиляции призван подобрать механизмы работы и используемые материалы, при которых он не будет выходить за рамки нормативных значений, и входит в проект вентсистем, как один из пунктов.

Вентиляционные системы состоят из отдельных элементов, каждый из которых является источником неприятных звуков:

  • У вентилятора это может быть лопасть или двигатель. Лопасть шумит из-за резкого перепада давления с одной и другой стороны. Двигатель - из-за поломки или неправильной установки. Охлаждающие установки издают шум по тем же причинам, также добавляется неправильная работа компрессора.
  • Воздуховоды. Есть две причины: первая – вихревые образования из воздуха, ударяющиеся о стенки. Подробнее мы об этом говорили в статье . Вторая – гул в местах изменения сечения воздуховода. Проблемы решаются снижением скорости движения газа.
  • Строительные конструкции. Побочные шум от вибраций вентиляторов и других установок, передающиеся на элементы здания. Решение осуществляется за счет монтажа специальных опор или прокладок для гашения вибрации. Наглядный пример - кондиционер в квартире: если внешний блок закреплен не во всех точках, или монтажники забыли поставить защитные прокладки, то его работа может доставлять акустический дискомфорт у хозяев установки или их соседей.

Способы передачи

Существует три пути распространения звука, и, чтобы рассчитать звуковую нагрузку, надо знать, как именно он передаётся всеми тремя способами:

  • Воздушный: шум от работающих установок. Распространяется как внутри, так и снаружи здания. Основной источник нагрузки для людей. Например, крупный магазин, кондиционеры и холодильные установки у которого расположены с тыльной части здания. Звуковые волны распространяются во все стороны до близлежащих домов.
  • Гидравлический: источник шума - трубы с жидкостью. Звуковые волны передаются на большие расстояния по всему зданию. Вызывается изменением размера сечения трубопровода и нарушением работы компрессора.
  • Вибрационный: источник - строительные конструкции. Вызывается неправильной установкой вентиляторов или других частей системы. Передаётся по всему зданию и за его пределы.

Некоторые специалисты в расчётах используют научные изыскания из других стран. Например, есть формула, опубликованная в немецком журнале: с её помощью рассчитывается генерация звука стенками воздуховода, в зависимости от скорости движения потока воздуха.


Способ замера


Часто требуется замерить допустимый уровень шума или интенсивность вибраций в уже смонтированных, работающих системах вентиляции. Классический способ измерения подразумевает использование специального прибора «шумомера»: он определяет силу распространения звуковых волн. Замер ведётся с использованием трёх фильтров, позволяющих отсекать ненужные звуки за границей исследуемой зоны. Первый фильтр – замеряет звук, интенсивность которого не превышает 50 дБ. Второй – от 50 до 85 дБ. Третий – свыше 80 дБ.

Вибрации измеряются в Герцах (Гц) для нескольких точек. Например, в непосредственной близости от источника шума, затем на определенном расстоянии, после этого - в самой отдалённой точке.

Нормы и правила

Правила расчёта шума от работы вентиляции и алгоритмы выполнения вычислений указаны в СНиП 23-03-2003 «Защита от шума»; ГОСТ 12.1.023-80 «Система стандартов безопасности труда (ССБТ). Шум. Методы установления значений шумовых характеристик стационарных машин».

При определении звуковой нагрузки около зданий необходимо помнить, что нормативные значения даны для интервально-работающей механической вентиляции и открытых окнах. Если берутся в расчёт закрытые окна и принудительная система воздухообмена, способная обеспечить проектную кратность, то в качестве норм используются другие параметры. Предельный уровень шума вокруг здания повышается до границы, позволяющей сохранить нормативные параметры внутри помещения.

Требования по уровню звуковой нагрузки для жилы и общественных зданий зависят от их категории:

  1. А – наилучшие условия.
  2. Б - комфортная среда.
  3. В – уровень шума на границе предельного.

Акустический расчёт

Применяется проектировщиками для определения шумопоглащения. Основная задача акустического расчета – вычислить актавный спектр звуковых нагрузок во всех точках, определённых заранее, а полученное значение сравнить с нормативным, максимально допустимыми. При необходимост снизить до установленных стандартов.

Расчёт выполняется по шумовым характеристикам ветиляционного оборудования, они должны указываться в технической документации.

Точки расчёта:

  • непосредственное место установки оборудования;
  • соседние помещения;
  • все помещения, где работает вентсистема, включая подвальные;
  • комнаты транзитного приложения воздушных каналов;
  • места впуска приточки или выпуска вытяжки.

Акустический расчёт выполнятся по двум основным формулам, выбор которых зависит от места расположения точки.

  1. Точка расчёта берётся внутри здания, в непосредственно близости от вентилятора. Звуковое давление зависит от мощности и количества вентиляторов, направленности волн и других параметров. Формула 1 для определения октавных уровней звукового давления от одного или нескольких вентиляторов выглядит так:

где L Pi - мощность звука в каждой октаве;
∆L помi - уменьшение интенсивности шумовой нагрузки, связанное с разнонаправленным движением звуковых волн и потерями мощности от распространения в воздушной среде;

По формуле 2 определяется ∆L помi:

где Фi - безразмерный фактор вектора распространения волн;
S -площадь сферы или полусферы, которая захватывает вентилятор и точку расчёта, м 2 ;
B - неизменное значение акустической постоянной в помещении, м 2 .

  1. Точка расчёта берётся за пределами здания на близлежащей территории. Звук от работы распространяется через стенки вентшахт, решётки и корпус вентилятора. Условно принимается, что источник шума - точечный (расстояние от вентилятора до расчетной позиции на порядок больше, чем размер аппарата). Тогда октавный уровень шумового давления вычисляется по формуле 3:

где L Pоктi - октавная мощность источника шума, дБ;
∆L Pсетиi - потеря мощности звука при его распространение по воздуховоду, дБ;
∆L нi - показатель направленности излучения звука, дБ;
r - длина отрезка от вентилятора до точки расчёта, м;
W - угол излучения звука в пространстве;
b a - снижение интенсивности шума в атмосфере, дБ/км.

Если на одну точку действует несколько источников шума, например, вентилятор и кондиционер, то методика вычислений немного меняется. Нельзя просто взять и сложить все источники, поэтому опытные проектировщики идут по другому пути, убирая все ненужные данные. Вычисляется разница между наибольшим и наименьшим по интенсивности источником, а полученное значение сравнивается с нормативным параметром и плюсуется к уровню наибольшего.

Снижение звуковой нагрузки от работы вентилятора


Существует комплекс мер, позволяющих нивелировать неприятные человеческому уху факторы шума от работы вентилятора:

  • Выбор оборудования. Профессиональный проектировщик, в отличие от дилетанта, всегда обращает внимание на шум от системы и подбирает вентиляторы, обеспечивающие нормативные параметры микроклимата, но, при этом, без большого запаса по мощности. На рынке представлен широкий ассортимент вентиляторов с глушителями, они хорошо защищают от неприятных звуков и вибраций.
  • Выбор места установки. Мощное вентиляционное оборудование монтируется только за пределами обслуживаемого помещения: это может быть крыша или специальная камера. Например, если поставить вентилятор на чердак в панельном доме, то жильцы на последнем этаже сразу почувствуют дискомфорт. Поэтому в таких случаях используются только крышные вентиляторы.
  • Подбор скорости движения воздуха по каналам. Проектировщики исходят из акустического расчёта. Например, для классического воздуховода 300×900 мм она не более 10 м/с.
  • Виброизоляция, звукоизоляция и экранирование. Виброизоляция предполагает установку специальных опор, которые гасят вибрации. Звукоизоляция осуществляется оклейкой корпусов специальным материалом. Экранирование включает в себя отсечение источника звука от здания или помещения с помощью щита.

Расчёт шума от вентиляционных систем предполагает нахождение таких технических решений, когда работа оборудования не будет мешать людям. Это сложная задача, требующая навыков и опыта в этой области.


В компании «Мега.ру» давно занимаются вопросами вентилирования и создания оптимальных условий микроклимата. Наши специалисты решают проблемы любой сложности. Мы работаем в Москве и граничащих с ней регионах. Служба технической поддержки ответит на все вопросы по телефонам, указанным на странице . Возможно удалённое сотрудничество. Обращайтесь!

Расчет вентиляции

В зависимости от способа перемещения воздуха вентиляция бывает естественная и принудительная.

Параметры воздуха, поступающего в приемные отверстия и проемы местных отсосов технологических и других устройств, которые расположены в рабочей зоне, следует принимать в соответствии с ГОСТ 12.1.005-76. При размерах помещения 3 на 5 метров и высоте 3 метра, его объем 45 куб.м. Следовательно, вентиляция должна обеспечивать расход воздуха в 90 куб.м/час. В летнее время следует предусмотреть установку кондиционера с целью избежания превышения температуры в помещении для устойчивой работы оборудования. Необходимо уделить должное внимание количеству пыли в воздухе, так как это непосредственно влияет на надежность и ресурс эксплуатации ЭВМ.

Мощность (точнее мощность охлаждения) кондиционера является главной его характеристикой, от неё зависит на какой объем помещения он рассчитан. Для ориентировочных расчетов берется 1 кВт на 10 м 2 при высоте потолков 2,8 - 3 м (в соответствии со СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование").

Для расчета теплопритоков данного помещения использована упрощенная методика:

где:Q - Теплопритоки

S - Площадь помещения

h - Высота помещения

q - Коэффициент равный 30-40 вт/м 3 (в данном случае 35 вт/м 3)

Для помещения 15 м 2 и высотой 3 м теплопритоки будут составлять:

Q=15·3·35=1575 вт

Кроме этого следует учитывать тепловыделение от оргтехники и людей, считается (в соответствии со СНиП 2.04.05-86 "Отопление, вентиляция и кондиционирование") что в спокойном состоянии человек выделяет 0,1 кВт тепла, компьютер или копировальный аппарат 0,3 кВт, прибавив эти значения к общим теплопритокам можно получить необходимую мощность охлаждения.

Q доп =(H·S опер)+(С·S комп)+(P·S принт) (4.9)

где:Q доп - Сумма дополнительных теплопритоков

C - Тепловыделение компьютера

H - Тепловыделение оператора

D - Тепловыделение принтера

S комп - Количество рабочих станций

S принт - Количество принтеров

S опер - Количество операторов

Дополнительные теплопритоки помещения составят:

Q доп1 =(0,1·2)+(0,3·2)+(0,3·1)=1,1(кВт)

Итого сумма теплопритоков равна:

Q общ1 =1575+1100=2675 (Вт)

В соответствии с данными расчетами необходимо выбрать целесообразную мощность и количество кондиционеров.

Для помещения, для которого ведется расчет, следует использовать кондиционеры с номинальной мощностью 3,0 кВт.

Расчет уровня шума

Одним из неблагоприятных факторов производственной среды в ИВЦ является высокий уровень шума, создаваемый печатными устройствами, оборудованием для кондиционирования воздуха, вентиляторами систем охлаждения в самих ЭВМ.

Для решения вопросов о необходимости и целесообразности снижения шума необходимо знать уровни шума на рабочем месте оператора.

Уровень шума, возникающий от нескольких некогерентных источников, работающих одновременно, подсчитывается на основании принципа энергетического суммирования излучений отдельных источников:

L = 10·lg (Li n), (4.10)

где Li - уровень звукового давления i-го источника шума;

n - количество источников шума.

Полученные результаты расчета сравнивается с допустимым значением уровня шума для данного рабочего места. Если результаты расчета выше допустимого значения уровня шума, то необходимы специальные меры по снижению шума. К ним относятся: облицовка стен и потолка зала звукопоглощающими материалами, снижение шума в источнике, правильная планировка оборудования и рациональная организация рабочего места оператора.

Уровни звукового давления источников шума, действующих на оператора на его рабочем месте представлены в табл. 4.6.

Таблица 4.6 - Уровни звукового давления различных источников

Обычно рабочее место оператора оснащено следующим оборудованием: винчестер в системном блоке, вентилятор(ы) систем охлаждения ПК, монитор, клавиатура, принтер и сканер.

Подставив значения уровня звукового давления для каждого вида оборудования в формулу (4.4) , получим:

L=10·lg(104+104,5+101,7+101+104,5+104,2)=49,5 дБ

Полученное значение не превышает допустимый уровень шума для рабочего места оператора, равный 65 дБ (ГОСТ 12.1.003-83). И если учесть, что вряд ли такие периферийные устройства как сканер и принтер будут использоваться одновременно, то эта цифра будет еще ниже. Кроме того при работе принтера непосредственное присутствие оператора необязательно, т.к. принтер снабжен механизмом автоподачи листов.

Акустический расчет производят для каждой из восьми октавных полос слухового диапазона (для которых нормируются уровни шума) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Для центральных систем вентиляции и кондиционирования воздуха с разветвленными сетями воздуховодов допускается осуществлять акустический расчет только для частот 125 и 250 Гц. Все расчеты выполняют с точностью до 0,5 Гц и округлением конечного результата до целого числа децибел.

При работе вентилятора в режимах КПД большего или равного 0,9 КПД максимума 6 = 0. При отклонении режима работы вентилятора не более 20% максимума КПД принимают 6=2 дБ, а при отклонении более чем на 20% - 4 дБ.

Рекомендуется для снижения уровня звуковой мощности, генерируемой в воздуховодах, принимать следующие максимальные скорости движения воздуха: в магистральных воздуховодах общественных зданий и вспомогательных помещений промышленных зданий 5-6 м/с, а в ответвлениях - 2-4 м/с. Для промышленных зданий эти скорости можно увеличивать в 2 раза.

Для систем вентиляции с разветвленной сетью воздуховодов акустический расчет делают только для ветви к ближайшему помещению (при одинаковых допускаемых уровнях шума), при разных уровнях шума - для ветви с наименьшим допускаемым уровнем. Акустический расчет для воздухоприемных и выбросных шахт делают отдельно.

Для централизованных систем вентиляции и кондиционирования воздуха с разветвленной сетью воздуховодов расчет можно делать только для частот 125 и 250 Гц.

При поступлении шума в помещение от нескольких источников (из приточных и вытяжных решеток, от агрегатов, местных кондиционеров н др.) выбирают несколько расчетных точек на рабочих местах, ближайших к источникам шума. Для этих точек определяют октавные уровни звукового давления от каждого источника шума в отдельности.

При различных в течение суток нормативных требованиях к уровням звукового давления акустический расчет выполняют на наиболее низкие допустимые уровни.

В общем числе источников шума т не учитывают источники, создающие в расчетной точке октавные уровни на 10 и 15 дБ ниже нормативных, при числе их соответственно не более 3 и 10. Не учитывают также дросселирующие устройства у вентиляторов.

Несколько равномерно распределенных по помещению приточных или вытяжных решеток от одного вентилятора можно рассматривать как один источник шума при проникании через них шума от одного вентилятора.

При расположении в помещении нескольких источников одинаковой звуковой мощности уровни звукового давления в выбранной расчетной точке определяют по формуле

Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.