Основные элементы приспособлений. Виды зажимных устройств и их расчет Виды зажимных усилий

Зажимные элементы - это механизмы, непосредственно используемые для закрепления заготовок, или промежуточные звенья более сложных зажимных систем.

Наиболее простым видом универсальных зажимов являются , которые приводят в действие насаженными на них ключами, рукоятками или маховичками.

Чтобы предотвратить перемещение зажимаемой заготовки и образование на ней вмятин от винта, а также уменьшить изгиб винта при нажиме на поверхность, не перпендикулярную его оси, на концы винтов помещают качающиеся башмаки (рис.68, α).

Комбинации винтовых устройств с рычагами или клиньями называются комбинированными зажимам и, разновидностью которых являются винтовые прихваты (рис. 68, б), Устройство прихватов позволяет отодвигать или поворачивать их, чтобы можно было удобнее устанавливать обрабатываемую заготовку в приспособлении.

На рис. 69 показаны некоторые конструкции быстродействующих зажимов . Для небольших зажимных сил применяют штыковое (рис. 69, α), а для значительных сил - плунжерное устройство (рис. 69, б). Эти устройства позволяют отводить зажимающий элемент на большое расстояние от заготовки; закрепление происходит в результате поворота стержня на некоторый угол. Пример зажима с откидным упором показан на рис. 69, в. Ослабив гайку-рукоятку 2, отводят упор 3, вращая его вокруг оси. После этого зажимающий стержень 1 отводят вправо на расстояние h. На рис. 69, г приведена схема быстродействующего устройства рычажного типа. При повороте рукоятки 4 штифт 5 скользит по планке 6 с косым срезом, а штифт 2 - по заготовке 1, прижимая ее к упорам, расположенным внизу. Сферическая шайба 3 служит шарниром.

Большие затраты времени и значительные силы, требующиеся для закрепления обрабатываемых заготовок, ограничивают область применения винтовых зажимов и в большинстве случаев делают предпочтительными быстродействующие эксцентриковые зажимы . На рис. 70 изображены дисковый (α), цилиндрический с Г-образным прихватом (б) и конический плавающий (в) зажимы.

Эксцентрики бывают круглые, эвольвентные и спиральные (по спирали Архимеда). В зажимных устройствах применяются две разновидности эксцентриков: круглые и криволинейные.

Круглые эксцентрики (рис. 71) представляют собой диск или валик с осью вращения, смещенной на размер эксцентриситета е; условие самоторможения обеспечивается при соотношении D/е≥ 4.

Достоинство круглых эксцентриков заключается в простоте их изготовления; основной недостаток - непостоянство угла подъема α и сил зажима Q. Криволинейные эксцентрики , рабочий профиль которых выполняется по эвольвенте или спирали Архимеда, имеют постоянный угол подъема α, а, следовательно, обеспечивают постоянство силы Q, при зажиме любой точки профиля.

Клиновой механизм применяют как промежуточное звено в сложных зажимных системах. Он прост в изготовлении, легко размещается в приспособлении, позволяет увеличивать и изменять направление передаваемой силы. При определенных углах клиновой механизм обладает свойствами самоторможения. Для односкосного клина (рис. 72, а) при передаче сил под прямым углом может быть принята следующая зависимость (при ϕ1 = ϕ2 = ϕ3 = ϕ где ϕ1…ϕ3 -углы трения):

P = Qtg (α ± 2ϕ),

где Р - осевая сила; Q - сила зажима. Самоторможение будет иметь место при α <ϕ1 + ϕ2.

Для двухскосного клина (рис. 72, б) при передаче сил под углом β>90 зависимость между Р и Q при постоянном угле трения (ϕ1 = ϕ2 = ϕ3 = ϕ) выражается следующей формулой:

P = Qsin(α + 2ϕ)/cos (90° + α — β + 2ϕ).

Рычажные зажимы применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. С помощью рычага можно изменять величину и направление передаваемой силы, а также осуществлять одновременное и равномерное закрепление заготовки в двух местах. На рис. 73 приведены схемы действия сил в одноплечих и двуплечих прямых и изогнутых зажимах. Уравнения равновесия для этих рычажных механизмов имеют следующий вид; для одноплечего зажима (рис. 73, α):

прямого двуплечего зажима (рис. 73, б):

изогнутого зажима (для l1

где р - угол трения; ƒ - коэффициент трения.

В качестве установочных элементов для наружных или внутренних поверхностей тел вращения применяют центрирующие зажимные элементы: цанги, разжимные оправки, зажимные втулки с гидропластом, а также мембранные патроны.

Цанги представляют собой разрезные пружинящие гильзы, конструктивные разновидности которых показаны на рис. 74 (α - с натяжной трубкой; 6 - с распорной трубкой; в - вертикального типа). Их выполняют из высокоуглеродистых сталей, например, У10А, и термически обрабатывают до твердости НRС 58…62 в зажимной и до твердости НRС 40…44 в хвостовых частях. Угол конуса цанги α = 30…40°. При меньших углах возможно заклинивание цанги.

Угол конуса сжимающей втулки делают на 1° меньше или больше угла конуса цанги. Цанги обеспечивают эксцентричность установки (биение) не более 0,02…0,05 мм. Базовую поверхность заготовки следует обрабатывать по 9…7-му квалитетам точности.

Разжимные оправки различных конструкций (включая конструкции с применением гидропласта) относятся к установочно-зажимным приспособлениям.

Мембранные патроны используют для точного центрирования заготовок по наружной или внутренней цилиндрической поверхности. Патрон (рис. 75) состоит из круглой, привертываемой к планшайбе станка мембраны 1 в форме пластины с симметрично расположенными выступами-кулачками 2, количество которых выбирают в пределах 6…12. Внутри шпинделя проходит шток 4 пневмоцилиндра. При включении пневматики мембрана прогибается, раздвигая кулачки. При отходе штока назад мембрана, стремясь вернуться в исходное положение, сжимает своими кулачками заготовку 3.

Реечно-рычажный зажим (рис. 76) состоит из рейки 3, зубчатого колеса 5, сидящего на валу 4, и рычага рукоятки 6. Вращая рукоятку против часовой стрелки, опускают рейку и прихватом 2 закрепляют обрабатываемую заготовку 1. Зажимная сила Q зависит от значения силы Р, приложенной к рукоятке. Устройство снабжается замком, который, заклинивая систему, предупреждает обратный поворот колеса. Наиболее распространены следующие виды замков. Роликовый замок (рис. 77, а) состоит из поводкового кольца 3 с вырезом для ролика 1, соприкасающегося со срезанной плоскостью валика. 2 зубчатого колеса. Поводковое кольцо 3 скреплено с рукояткой зажимного устройства. Вращая рукоятку по стрелке, передают вращение на вал зубчатого колеса через ролик 1*. Ролик заклинивается между поверхностью расточки корпуса 4 и срезанной плоскостью валика 2 и препятствует обратному вращению.

Роликовый замок с прямой передачей момента от поводка на валик показан на рис. 77, б. Вращение от рукоятки через поводок передается непосредственно на вал 6 колеса. Ролик 3 через штифт 4 поджат слабой пружиной 5. Так как зазоры в местах касания ролика с кольцом 1 и валом 6 при этом выбирают, система мгновенно заклинивается при снятии силы с рукоятки 2. Поворотом рукоятки в обратную сторону ролик расклинивается и вращает вал по часовой стрелке.

Конический замок (рис. 77, в) имеет коническую втулку 1 и вал с конусом 3 и рукояткой 4. Спиральные зубья на средней шейке вала находятся в зацеплении с рейкой 5. Последняя связана с исполнительным зажимающим механизмом. При угле наклона зубьев 45° осевая сила на валу 2 равна (без учета трения) зажимной силе.

* Замки этого типа выполняют с тремя роликами, расположенными под углом 120°.

Эксцентриковый замок (рис. 77, г) состоит из вала 2 колеса, на котором заклинен эксцентрик 3. Вал приводится во вращение кольцом 1, скрепленным с рукояткой замка; кольцо вращается в расточке корпуса 4, ось которой смещена от оси вала на расстояние е. При обратном вращении рукоятки передача на вал происходит через штифт 5. В процессе закрепления кольцо 1 заклинивается между эксцентриком и корпусом.

Комбинированные зажимные устройства представляют собой сочетание элементарных зажимов различного типа. Их применяют для увеличения зажимной силы и уменьшения габаритов приспособления, а также для создания наибольших удобств управления. Комбинированные зажимные устройства могут также обеспечивать одновременное крепление заготовки в нескольких местах. Виды комбинированных зажимов приведены на рис. 78.

Сочетание изогнутого рычага и винта (рис. 78, а) позволяет одновременно закреплять заготовку в двух местах, равномерно повышая зажимные силы до заданного значения. Обычный поворотный прихват (рис, 78, б) представляет собой сочетание рычажного и винтового зажимов. Ось качания рычага 2 совмещена с центром сферической поверхности шайбы 1, которая разгружает шпильку 3 от изгибающих усилий, Показанный на рис, 78, в прихват с эксцентриком является примером быстродействующего комбинированного зажима. При определенном соотношении плеч рычага можно увеличить зажимную силу или ход зажимающего конца рычага.

На рис. 78, г показано устройство для закрепления в призме цилиндрической заготовки посредством накидного рычага, а на рис. 78, д - схема быстродействующего комбинированного зажима (рычаг и эксцентрик), обеспечивающего боковое и вертикальное прижатие заготовки к опорам приспособления, так как сила зажима приложена под углом. Аналогичное условие обеспечивается устройством, изображенным на рис. 78, е.

Шарнирно-рычажные зажимы (рис. 78, ж, з, и) являются примерами быстродействующих зажимных устройств, приводимых в действие поворотом рукоятки. Для предотвращения самооткрепления рукоятку переводят через мертвое положение до упора 2. Сила зажима зависит от деформации системы и ее жесткости. Желаемую деформацию системы устанавливают регулировкой нажимного винта 1. Однако наличие допуска на размер Н (рис. 78, ж) не обеспечивает постоянства зажимной силы для всех заготовок данной партии.

Комбинированные зажимные устройства приводятся в действие вручную или от силовых узлов.

Зажимные механизмы для многоместных приспособлений должны обеспечивать одинаковую силу зажима на всех позициях. Простейшим многоместным приспособлением является оправка, на которую устанавливают пакет заготовок «кольца, диски), закрепляемых по торцевым плоскостям одной гайкой (последовательная схема передачи зажимной силы). На рис. 79, α показан пример зажимного устройства, работающего по принципу параллельного распределения зажимной силы.

Если необходимо обеспечить концентричность базовой и обрабатываемой поверхностей и предотвратить деформирование обрабатываемой заготовки, применяют упругие зажимные устройства, где зажимное усилие посредством заполнителя или другого промежуточного тела равномерно передается на зажимный элемент приспособления в пределах упругих деформаций).

В качестве промежуточного тела применяют обычные пружины, резину или гидропласт. Зажимное устройство параллельного действия с использованием гидропласта показано на рис. 79, б. На рис. 79, в приведено устройство смешанного (параллельно-последовательного) действия.

На станках непрерывного действия (барабанно-фрезерные, специальные многошпиндельные сверлильные) заготовки устанавливают и снимают, не прерывая движения подачи. Если вспомогательное время перекрывается машинным, то для закрепления заготовок можно применять зажимные устройства различных типов.

В целях механизации производственных процессов целесообразно использовать зажимные устройства автоматизированного типа (непрерывного действия), приводимые в действие механизмом подачи станка. На рис. 80, α приведена схема устройства с гибким замкнутым элементом 1 (трос, цепь) для закрепления цилиндрических заготовок 2 на барабанно-фрезерном станке при обработке торцевых поверхностей, а на рис. 80, 6 - схема устройства для закрепления заготовок поршней на многошпиндельном горизонтально-сверлильном станке. В обоих устройствах операторы только устанавливают и снимают заготовку, а закрепление заготовки происходит автоматически.

Эффективным зажимным устройством для удержания заготовок из тонколистового материала при их чистовой обработке или отделке является вакуумный прижим. Сила зажима определяется по формуле:

где А - активная площадь полости устройства, ограниченной уплотнением; р= 10 5 Па - разность атмосферного давления и давления в полости устройства, из которого удаляется воздух.

Электромагнитные зажимные устройства применяются для закрепления обрабатываемых заготовок из стали и чугуна с плоской базовой поверхностью. Зажимные устройства обычно выполняют в виде плит и патронов, при конструировании которых в качестве исходных данных принимают размеры и конфигурацию обрабатываемой заготовки в плане, ее толщину, материал и необходимую удерживающую силу. Удерживающая сила электромагнитного устройства в значительной степени зависит от толщины обрабатываемой детали; при малых толщинах не весь магнитный поток проходит через поперечное сечение детали, и часть линий магнитного потока рассеивается в окружающее пространство. Детали, обрабатываемые на электромагнитных плитах или патронах, приобретают остаточные магнитные свойства - их размагничивают, пропуская их через соленоид, питаемый переменным током.

В магнитных зажимных устройствах основными элементами являются постоянные магниты, изолированные один от другого немагнитными прокладками и скрепленные в общий блок, а заготовка представляет собой якорь, через который замыкается магнитный силовой поток. Для открепления готовой детали блок сдвигают с помощью эксцентрикового или кривошипного механизма, при этом магнитный силовой поток замыкается на корпус устройства, минуя деталь.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Донбасская государственная академия строительства

и архитектуры

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений"

Утверждена на заседании кафедры "Автомобили и автомобильное хозяйство" протокол №_ от 2005

Макеевка 2005

Методические указания к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений" (для студентов специальности 7.090258 Автомобили и автомобильное хозяйство) / Сост. Д.В. Попов, Э.С. Савенко. - Макеевка: ДонГАСА, 2002. -24с.

Изложены основные сведения о станочных приспособлениях, конструкция, основные элементы, представлена методика расчета приспособлений.

Составители: Д.В. Попов, ассистент,

Э.С. Савенко, ассистент.

Ответственный за выпуск С.А. Горожанкин, доцент

Приспособления4

Элементы приспособлений5

    Установочные элементы приспособлений6

    Зажимные элементы приспособлений9

    Расчет сил для закрепления заготовок12

    Устройства для направления и определения положения 13 режущих инструментов

    Корпуса и вспомогательные элементы приспособлений14

Общая методика расчета приспособлений15

Расчет кулачковых патронов на примере точения16

Литература19

Приложения20

ПРИСПОСОБЛЕНИЯ

Все приспособления по технологическому признаку возможно разделить на следующие группы:

1. Станочные приспособления для установки и закрепления обрабатываемых заготовок в зависимости от вида механической обработки подразделяют на приспособления для токарных, сверлильных, фрезерных, шлифовальных, многоцелевых и других станков. Эти приспособления осуществляют связь заготовки со станком.

2. Станочные приспособления для установки и закрепления рабочего инструмента (их называют также вспомогательным инструментом) осуществляют связь между инструментом и станком. К ним относятся патроны для сверл, разверток, метчиков; многошпиндельные сверлильные, фрезерные, револьверные головки; инструментальные державки, блоки и т. п.

С помощью приспособлений указанных выше групп осуществляют наладку системы станок - заготовка - инструмент.

    Сборочные приспособления используют для соединения сопрягаемых деталей изделия, применяют для крепления базовых деталей, обеспечения правильной установки соединяемых элементов изделия, предварительной сборки упругих элементов (пружин, разрезных колец) и др.;

    Контрольные приспособления применяют для проверки отклонения размеров, формы и взаимного расположения поверхностей, сопряжении сборочных единиц и изделий, а также для контроля конструктивных параметров, получающихся в процессе сборки.

    Приспособления для захвата, перемещения и переворота тяжелых, а в автоматизированном производстве и ГПС и легких обрабатываемых заготовок и собираемых изделий. Приспособления являются рабочими органами промышленных роботов, встраиваемых в автоматизированных производствах и в ГПС.

К захватным приспособлениям предъявляют ряд требований:

надежность захвата и удержание заготовки; стабильность базирования; универсальность; высокая гибкость (легкая и быстрая переналадка); малые габаритные размеры и масса. В большинстве случаев применяют механические захватные устройства. Примеры схем схватов различных захватных устройств показаны на рис. 18.3. Широкое применение также находят захватные приспособления магнитные, вакуумные и с эластичными камерами.

Все описанные группы приспособлений в зависимости от типа производства могут быть ручными, механическими, полуавтоматическими и автоматическими, а в зависимости от степени специализации - универсальными, специализированными и специальными.

В зависимости от степени унификации и стандартизации в машиностроении и приборостроении в соответствии с требованиями Единой системы технологической подготовки производства (ЕСТПП) утверждено

семь стандартных систем станочных приспособлений.

В практике со временного производства сложились следующие системы приспособлений.

Универсально-сборные приспособления (УСП) компонуют из окончательно обработанных взаимозаменяемых стандартных универсальных элементов. Их используют в качестве специальных обратимых приспособлений кратковременного действия. Они обеспечивают установку и фиксацию различных деталей в пределахгабаритных возможностей комплекта УСП.

Специальные сборно-разборные приспособления (СРП) компонуют из стандартных элементов в результате дополнительной их механической обработки и используют как специальные необратимые приспособления долгосрочного действия из обратимых элементов.

Неразборные специальные приспособления (НСП) компонуют с применением стандартных деталей и узлов общего назначения как необратимые приспособления долгосрочного действия из необратимых деталей и узлов. Они состоят из двух частей: унифицированной базовой части и сменной насадки. Приспособления этой системы используют при ручной обработке деталей.

Универсально-безналадочные приспособления (УБП)-наиболее распространенная система в условиях серийного производства. Эти приспособления обеспечивают установку и фиксацию обрабатываемых деталей любых изделий малых и средних габаритов. При этом установка детали связана с необходимостью контроля и ориентации в пространстве. Такие приспособления обеспечивают выполнение широкой номенклатуры операций обработки.

Универсально-наладочные приспособления (УНП) обеспечиваютустановку при помощи специальных наладок, фиксацию обрабатываемых деталей малых и средних габаритов и выполнение широкой номенклатуры операций обработки.

Специализированные наладочные приспособления (СНП) обеспечивают по определенной схеме базирования при помощи специальных наладок и фиксацию родственных по конструкциям деталей для осуществления типовой операции. Все перечисленные системы приспособлений относятся к категории унифицированных.

ЭЛЕМЕНТЫ ПРИСПОСОБЛЕНИЙ

Основными элементами приспособлений являются установочные, зажимные, направляющие, делительные (поворотные), крепежные детали, корпуса и механизированные приводы. Их назначение следующее:

    установочные элементы - для определения положения обрабатываемой заготовки относительно приспособления и положения обрабатываемой поверхности относительно режущего инструмента;

    зажимные элементу - для закрепления обрабатываемой заготовки;

направляющие элементы - для осуществления требуемого направления движения инструмента;

    делительные или поворотные элементы - для точного изменения положения обрабатываемой поверхности заготовки относительно режущего инструмента;

    крепежные элементы - для соединения отдельных элементов между собой;

    корпуса приспособлений (как базовых деталей) - для размещения на них всех элементов приспособлений;

    механизированные приводы - для автоматического закрепления обрабатываемой заготовки.

К элементам приспособлений относятся также захватные устройства различных устройств (роботов, транспортных устройств ГПС) для захвата, зажима (разжима) и перемещения обрабатываемых заготовок или собираемых сборочных единиц.

1 Установочные элементы приспособлений

Установка заготовок в приспособлениях или на станках, а также сборка деталей включает в себя их базирование и закрепление.

Необходимость закрепления (силового замыкания) при обработке заготовки в приспособлениях очевидна. Для точной обработки заготовок необходимо: осуществлять ее правильное расположение по отношению к устройствам оборудования, определяющим траектории движения инструмента или самой заготовки;

обеспечивать постоянство контакта баз с опорными точками и полную неподвижность заготовки относительно приспособления в процессе ее обработки.

Для полной ориентации во всех случаях при закреплении заготовка должна быть лишена всех шести степеней свободы (правило шести точек в теории базирования); в некоторых случаях возможно отступление от этого правила.

С этой целью применяют основные опоры, число которых должно быть равно числу степеней свободы, которых лишается заготовка. Для повышения жесткости и виброустойчивости обрабатываемых заготовок в приспособлениях применяют вспомогательные регулируемые и самоустанавливающиеся опоры.

Для установки заготовки в приспособлении плоской поверхностью применяют стандартизованные основные опоры в виде штырей со сферической, насеченной и плоской головками, шайб, опорных пластин. Если невозможно установить заготовку только на основные опоры, применяют вспомогательные опоры. В качестве последних могут быть использованы стандартизованные регулируемые опоры в виде винтов со сферической опорной поверхностью и самоустанавливающиеся опоры.

Рисунок 1 Стандартизованные опоры:

а -е - постоянные опоры (штыри): а - плоская поверхность; б - сферическая; в - насеченная; г - плоская с установкой в переходную втулку; д - опорная шайба; е - опорная пластина; ж - регулируемая опора з -самоустанавливающаяся опора

Сопряжения опор со сферической, насеченной и плоской головками скорпусом приспособления выполняют по посадкеили . Применяютустановку таких опор и через промежуточные втулки, которые сопрягаются сотверстиями корпуса по посадке.

Примеры стандартизованных основных и вспомогательных опор приведены на рисунке 1.

Для установки заготовки по двум цилиндрическим отверстиям и перпендикулярной к их осям плоской поверхности применяют


Рисунок 2. Схема базирования по торцу и отверстию:

а – на высокий палец; б – на низкий палец


стандартизованные плоские опоры и установочные пальцы. Чтобы избежать заклинивания заготовок при установке их на пальцы по точным двум отверстиям (Д7) один из установочных пальцев должен быть срезанным, а другой - цилиндрическим.

Установка деталей на два пальца и плоскость нашла широкое применение при обработке заготовок на автоматических и поточных линиях, многоцелевых станках и в ГПС.

Схемы базирования по плоскости и отверстиям с применением установочных пальцев можно разделить на три группы: по торцу и отверстию (рис. 2); по плоскости, торцу и отверстию (рис. 3); по плоскости и двум отверстиям (рис. 4).

Рис. 19.4. Схема базирования по плоскости и двум отверстиям

Рекомендуется установка заготовки на один палец по посадке или , а на два пальца – по.

И
з рис.2 следует, что установка заготовки по отверстию на длинный цилиндрический несрезаный палец лишает еечетырех степеней свободы (двойная направляющая база), а установка на торец-одной степени свободы (опорная база). Установка заготовки на короткий палец лишает ее двух степеней свободы (двойная опорная база), но торец в этом случае является установочной базой и лишает заготовку трех степеней свободы. Для полного базирования необходимо создать силовое замыкание, т. е. приложить силы зажима. Из рис.3 следует, что плоскость основания заготовки является установочной базой, длинное отверстие, в которое входит срезанный палец с параллельной относительно плоскости осью, - направляющей базой (заготовка лишается двух степеней) и торец заготовки - опорной базой.

Рисунок.3. Схема базирования по плоскости, Рисунок 4 Схема базирования по

торцу и отверстию плоскости и двум отверстиям

На рис. 4 показана заготовка, которую устанавливают по плоскости и двум отверстиям. Плоскость является установочной базой. Отверстия, центрируемые цилиндрическим пальцем, являются двойной опорной базой, а срезанным - опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Пальцем, являются двойной опорной базой, а срезанным – опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Для установки заготовок наружной поверхностью и перпендикулярной к ее оси торцовой поверхностью применяют опорные и установочные призмы (подвижные и неподвижные), а также втулки и патроны.

К элементам приспособлений относятся установи и щупы для настройки станка на необходимый размер. Так, стандартизованные установы для фрез на фрезерных станках могут быть:

высотные, высотные торцовые, угловые и угловые торцовые.

Плоские щупы изготовляют толщиной 3-5 мм, цилиндрические - диаметром 3-5 мм с точностью по 6-му квалитету (h 6) и подвергают закалке 55-60 HRC 3 , шлифуют (параметр шероховатости Ra = 0,63 мкм).

Исполнительные поверхности всех установочных элементов приспособлений должны обладать большой износостойкостью и высокой твердостью. Поэтому их изготовляют из конструкционных и легированных сталей 20, 45, 20Х, 12ХНЗА с последующей цементацией и закалкой до 55-60 HRC3 (опоры, призмы, установочные пальцы, центры) и инструментальных сталей У7 и У8А с закалкой до 50-55 HRG, (опоры с диаметром меньше 12 мм; установочные пальцы с диаметром менее 16 мм; установы и щупы).

Зажимные устройства станков


К атегория:

Металлорежущие станки

Зажимные устройства станков

Процесс питания станков-автоматов заготовками осуществляется при тесном взаимодействии загрузочных устройств и автоматических зажимных приспособлений. Во многих случаях автоматические зажимные устройства являются элементом конструкции станка или его неотъемлемой принадлежностью. Поэтому, несмотря на наличие специальной литературы, посвященной зажимным приспособлениям, представляется необходимым вкратце остановиться на некоторых характерных конструкциях,

Подвижные элементы автоматических зажимных приспособлений получают движение от соответствующих управляемых приводов, в качестве которых могут быть использованы механические управляемые приводы, получающие движение от основного привода рабочего органа или от независимого электродвигателя, кулачковые приводы, гидравлические, пневматические и пневмогидравлические приводы. Отдельные подвижные элементы зажимных приспособлений могут получать движение как от общего, так и от нескольких независимых приводов.

Рассмотрение конструкций специальных приспособлений, которые в основном определяются конфигурацией и размерами конкретной обрабатываемой детали, не входит в задачи настоящей работы, и мы ограничимся ознакомлением с некоторыми зажимными приспособлениями широкого назначения.

Зажимные патроны. Имеется большое число конструкций самоцентрирующих патронов в большинстве случаев с поршневым гидравлическим и пневматическим приводом, которые применяются на токарных, револьверных и шлифовальных станках. Эти патроны, обеспечивая надежный зажим и хорошее центрирование обрабатываемой детали, имеют небольшой расход кулачков, из-за чего при переходе от обработки одной партии деталей к другой патрон необходимо перестраивать и для обеспечения высокой точности центрирования обрабатывать центрирующие поверхности кулачков на месте; при этом закаленные кулачки шлифуются, а сырые - обтачиваются или растачиваются.

Одна из распространенных конструкций зажимного патрона с пневматическим поршневым приводом представлена на рис. 1. Пневматический цилиндр закрепляется с помощью промежуточного фланца на конце шпинделя. Подвод воздуха к пневматическому цилиндру осуществляется через буксу, сидящую на подшипниках качения на хвостовике крышки цилиндра. Поршень цилиндра связан штоком с зажимным механизмом патрона. Пневматический патрон прикрепляется к фланцу, установленному на переднем конце шпинделя. Головка, закрепленная на конце штока, имеет наклонные пазы, в которые входят Г-образные выступы кулачков. При перемещении головки вместе со штоком вперед кулачки сближаются, при движении назад - расходятся.

На основных кулачках, имеющих Т-образные пазы, закрепляются накладные кулачки, которые устанавливаются в соответствии с диаметром зажимаемой поверхности обрабатываемой детали.

Благодаря небольшому числу промежуточных звеньев, передающих движение кулачкам, и значительным размерам трущихся поверхностей патроны описанной конструкции обладают сравнительно высокой жесткостью и долговечностью.

Рис. 1. Пневматическии зажимный патрон.

В ряде конструкций пневматических патронов используются рычажные передачи. Такие патроны обладают меньшей жесткостью и вследствие наличия ряда шарнирных соединений изнашиваются быстрее.

Вместо пневматического цилиндра может быть использован пневмо-мембранный привод или гидравлический цилиндр. Вращающиеся вместе со шпинделем цилиндры, особенно при высоком числе оборотов шпинделя, требуют тщательной балансировки, что является недостатком данного варианта конструкции.

Поршневой привод может быть установлен неподвижно соосно со шпинделем, а шток цилиндра связан с зажимным штоком муфтой, обеспечивающей свободное вращение зажимного штока вместе со шпинделем. Шток неподвижного цилиндра может быть связан с зажимным штоком также системой промежуточных механических передач. Такие схемы применимы при наличии самотормозящихся механизмов в приводе зажимного приспособления, так как в ином случае шпиндельные подшипники будут нагружаться значительными осевыми усилиями.

Наряду с самоцентрирующими патронами применяются также двух-кулачковые патроны со специальными кулачками, получающими движение от указанных выше приводов, и специальные патроны.

Подобные же приводы используются при закреплении деталей на различных разжимных оправках.

Цанговые зажимные устройства. Цанговые зажимные устройства являются элементом конструкции револьверных станков и токарных автоматов, предназначенных для изготовления деталей из прутка. Вместе с тем они находят широкое применение и в специальных зажимных приспособлениях.

Рис. 2. Цанговые зажимные устройства.

В практике встречаются цанговые зажимные устройства трех типов.

Цанга, имеющая несколько продольных надрезов, центрируется задним цилиндрическим хвостом в отверстии шпинделя, а передним коническим - в отверстии колпака. При зажиме труба перемещает цангу вперед и ее передняя коническая часть входит в коническое отверстие колпака шпинделя. При этом цанга сжимается и зажимает пруток или обрабатываемую деталь. Зажимное устройство данного типа имеет ряд существенных недостатков.

Точность центрирования обрабатываемой детали в значительной мере определяется соосностью конической поверхности колпака и оси вращения шпинделя. Для этого необходимо достигнуть соосности конического отверстия колпака и его цилиндрической центрирующей поверхности, соосности центрирующего буртика и оси вращения шпинделя и минимального зазора между центрирующими поверхностями колпака и шпинделя.

Так как выполнение указанных условий представляет значительные трудности, то цанговые устройства данного типа не обеспечивают хорошего центрирования.

Кроме того, в процессе зажима цанга, перемещаясь вперед, захватывает пруток, который перемещается при этом вместе с цангой, что может

привести к изменению размеров обрабатываемых деталей по длине и к появлению больших давлений на упор. В практике имеют место случаи, когда вращающийся пруток, прижатый с большой силой к упору, приваривается к последнему.

Достоинством данной конструкции является возможность использования шпинделя малого диаметра. Однако, поскольку диаметр шпинделя в значительной мере определяется другими соображениями и в первую очередь его жесткостью, то данное обстоятельство в большинстве случаев не имеет существенного значения.

Вследствие указанных недостатков данный вариант цангового зажимного устройства находит ограниченное применение.

Цанга имеет обратный конус, и при зажиме материала труба втягивает цангу в шпиндель. Данная конструкция обеспечивает хорошее центрирование, так как центрирующий конус расположен непосредственно в шпинделе. Недостатком конструкции является перемещение материала вместе с цангой в процессе зажима, что приводит к изменению размеров обрабатываемой детали, однако не вызывает никаких осевых нагрузок на упор. Некоторым недостатком является также слабость сечения в месте резьбового соединения. Диаметр шпинделя увеличивается незначительно по сравнению с предыдущим вариантом.

Вследствие отмеченных достоинств и простоты конструкции данный вариант находит широкое применение на револьверных станках и многошпиндельных токарных автоматах, шпиндели которых должны иметь минимальный диаметр.

Вариант, показанный на рис. 2, в, отличается от предыдущего тем, что в процессе зажима цанга, упирающаяся передней торцовой поверхностью в колпак, остается неподвижной, а под действием трубы перемещается гильза. Коническая поверхность гильзы надвигается на наружную коническую поверхность цанги, и последняя сжимается. Поскольку цанга в процессе зажима остается неподвижной, то при данной конструкции не происходит смещения обрабатываемого прутка. Гильза имеет хорошее центрирование в шпинделе, а обеспечение соосности внутренней конической и наружных центрирующих поверхностей гильзы не представляет технологических трудностей, благодаря чему данная конструкция обеспечивает достаточно хорошее центрирование обрабатываемого прутка.

При освобождении цанги труба отводится влево и гильза перемещается под действием пружины.

Для того чтобы силы трения, возникающие в процессе зажима на торцовой поверхности лепестков цанги, не уменьшали бы усилие зажима, торцовой поверхности придается коническая форма с углом, несколько превышающим угол трения.

Данная конструкция сложнее предыдущей и требует увеличения диаметра шпинделя. Однако вследствие отмеченных достоинств она находит широкое применение на одношпиндельных автоматах, где увеличение диаметра шпинделя не имеет существенного значения, и на ряде моделей револьверных станков.

Размеры наиболее распространенных цанг нормируются соответствующим ГОСТ . Цанги больших размеров выполняются со сменными губками, что позволяет уменьшить количество цанг в комплекте и при износе губок заменять их новыми.

Поверхность губок цанг, работающих при больших нагрузках, имеет насечку, что обеспечивает передачу больших усилий зажимаемой детали.

Зажимные цанги изготовляются из сталей У8А, У10А, 65Г, 9ХС. Рабочая часть цанги закаливается до твердости HRC 58-62. Хвостовая

часть подвергается отпуску до твердости HRC 38-40. Для изготовления цанг применяются также цементируемые стали, в частности сталь 12ХНЗА.

Труба, перемещающая зажимную цангу, сама получает движение от одного из перечисленных видов приводов через ту или иную систему промежуточных передач. Некоторые конструкции промежуточных передач для перемещения зажимной трубы представлены на рис. IV. 3.

Зажимная труба получает движение от сухарей, представляющих собой часть втулки с выступом, заходящим в паз шпинделя. Сухари опираются на хвостовые выступы зажимной трубы, которые удерживают их в требуемом положении. Сухари получают движение от рычагов, Г-образные концы которых заходят в торцовую выточку втулки 6, сидящей на шпинделе. При зажиме цанги втулка перемещается влево и, воздействуя внутренней конической поверхностью на концы рычагов, поворачивает их. Поворот происходит относительно точек контакта Г-образных выступов рычагов с выточкой втулки. При этом пятки рычагов нажимают на сухари. На чертеже механизмы показаны в положении, соответствующем окончанию зажима. В этом положении механизм оказывается замкнутым, а втулка разгружена от осевых усилий.

Рис. 3. Механизм перемещения зажимной трубы.

Регулирование усилия зажима осуществляется гайками, с помощью которых перемещается втулка. Чтобы избежать необходимости увеличения диаметра шпинделя, на него посажено резьбовое кольцо, которое упирается в полукольца, заходящие в канавку шпинделя.

В зависимости от диаметра зажимной поверхности, который может колебаться в пределах допуска, зажимная труба будет занимать различное положение в осевом направлении. Отклонения в положении трубы компенсируются деформацией рычагов. В других конструкциях вводятся специальные пружинные компенсаторы.

Данный вариант находит широкое применение на одношпиндельных токарных автоматах. Имеются многочисленные конструктивные модификации, отличающиеся формой рычагов.

В ряде конструкций рычаги заменяются расклинивающими шариками или роликами. На конце зажимной трубы на резьбе сидит фланец. При зажиме цанги фланец вместе с трубой перемещается влево. Фланец получает движение от гильзы, воздействующей через ролик на диск. При перемещении гильзы влево, ее внутренняя коническая поверхность заставляет бочкообразные ролики перемещаться к центру. При этом ролики, двигаясь по конической поверхности шайбы, смещаются влево, перемещая в этом же направлении диск и фланец с зажимной трубой. Все детали смонтированы на втулке, установленной на конце шпинделя. Усилие зажима регулируется навинчиванием фланца на трубу. В требующемся положении фланец застопоривается с помощью фиксатора. Механизм может быть снабжен упругим компенсатором в виде тарельчатых пружин, что позволяет использовать его для зажима прутков с большими допусками на диаметр.

Подвижные гильзы, осуществляющие зажим, получают движение от кулачковых механизмов токарных автоматов или от поршневых приводов. Зажимная труба может быть также непосредственно связана с поршневым приводом.

Приводы зажимных приспособлений многопозиционных станков. Каждое из зажимных приспособлений многопозиционного станка может иметь свой, обычно поршневой привод, либо подвижные элементы зажимного приспособления могут получать движение от привода, установленного в загрузочной позиции. В последнем случае механизмы зажимного приспособления, попадающие в загрузочную позицию, связываются с механизмами привода. По окончании зажима эта связь прекращается.

Последний вариант широко используется на многошпиндельных токарных автоматах. В позиции, в которой происходит подача и зажим прутка, установлен ползун с выступом. При повороте шпиндельного блока выступ входит в кольцевую канавку подвижной гильзы зажимного механизма и в соответствующие моменты перемещает гильзу в осевом направлении.

Подобный принцип может быть в ряде случаев использован для перемещения подвижных элементов зажимных приспособлений, установленных на многопозиционных столах и барабанах. Серьга зажимается между неподвижной и подвижной призмами зажимного приспособления, установленного на многопозиционном столе. Призма получает движение от ползуна с клиновым скосом. При зажиме плунжер, на котором нарезана зубчатая рейка, перемещается вправо. Через зубчатую шестерню движение передается ползуну, который клиновым скосом перемещает призму к призме. При освобождении зажатой детали вправо перемещается плунжер, который шестерней также связан с ползуном.

Плунжеры могут получать движение от поршневых приводов, установленных в загрузочной позиции, или от соответствующих звеньев кулачковых механизмов. Зажим и освобождение детали может производиться также в процессе поворота стола. При зажиме плунжер, снабженный роликом, набегает на неподвижный кулак, установленный между загрузочной и первой рабочей позициями. При освобождении плунжер набегает на кулак, расположенный между последней рабочей и загрузочной позициями. Плунжеры располагаются в разных плоскостях. Для компенсации отклонений в размерах зажимаемой детали вводятся упругие компенсаторы.

Следует заметить, что подобные простые решения недостаточно используются при проектировании зажимных приспособлений для многопозиционных станков при обработке некрупных деталей.

Рис. 4. Зажимное приспособление многопозиционного станка, работающее от привода, установленного в загрузочной позиции.

При наличии индивидуальных поршневых двигателей у каждого из зажимных приспособлений многопозиционного станка к поворотному столу или барабану должен быть подведен сжатый воздух или масло под давлением. Устройство для подвода сжатого воздуха или масла аналогично описанному выше устройству вращающегося цилиндра. Применение подшипников качения в данном случае излишне, так как скорость вращения мала.

Каждое из приспособлений может иметь индивидуальный распределительный кран или золотник, либо для всех зажимных приспособлений может быть использовано общее распределительное устройство.

Рис. 5. Распределительное устройство поршневых приводов зажимных приспособлений многопозиционного стола.

Индивидуальные краны или распределительные устройства переключаются вспомогательными приводами, установленными в загрузочной позиции.

Общее распределительное устройство последовательно подключает поршневые приводы зажимных приспособлений по мере поворота стола или барабана. Примерная конструкция подобного распределительного устройства изображена на рис. 5. Корпус распределительного устройства, установленный соосно с осью вращения стола или барабана, вращается вместе с последними, а золотники вместе с осью остаются неподвижными. Золотник управляет подачей сжатого воздуха в полости, а золотник в полости зажимных цилиндров.

Сжатый воздух поступает по каналу в пространство между золотниками и направляется с помощью последних в соответствующие полости зажимных цилиндров. Отработанный воздух уходит в атмосферу через отверстия.

В полости сжатый воздух попадает через отверстие, дуговую канавку и отверстия. Пока отверстия соответствующих цилиндров совпадают с дуговой канавкой, в полости цилиндров поступает сжатый воздух. Когда при очередном повороте стола отверстие одного из цилиндров совместится с отверстием, полость этого цилиндра окажется связанной с атмосферой через кольцевую канавку, канал, кольцевую канавку и канал.

Полости тех цилиндров, в полости которых поступает сжатый воздух, должны быть связаны с атмосферой. Полости соединяются с атмосферой через каналы, дуговую канавку, каналы, кольцевую канавку и отверстие.

В полость цилиндра, находящегося в загрузочной позиции, должен поступать сжатый воздух, который подается через отверстие и каналы.

Таким образом, при повороте многопозиционного стола происходит автоматическое переключение потоков сжатого воздуха.

Аналогичный принцип используется и для управления потоками масла, подаваемого к зажимным приспособлениям многопозиционных станков.

Следует заметить, что подобные же распределительные устройства применяются и на станках для непрерывной обработки с вращающимися столами или барабанами.

Принципы определения усилий, действующих в зажимных приспособлениях. Зажимные приспособления, как правило, проектируются таким образом, чтобы усилия, возникающие в процессе резания, воспринимались бы неподвижными элементами приспособлений. Если те или иные силы, возникающие в процессе резания, воспринимаются подвижными элементами, то величина этих сил определяется на основе уравнений статики трения.

Методика определения сил, действующих в рычажных механизмах цанговых зажимных устройств, аналогична методике, применяемой при определении усилий включения фрикционных муфт с рычажными механизмами.


ЛЕКЦИЯ 3

3.1. Назначение зажимных устройств

Основное назначение зажимных устройств приспособлений - обеспечение надежного контакта (неотрывности) заготовки или собираемой детали с установочными элементами, предупрежде­ние ее смещения в процессе обработки или сборки.

Зажимной механизм создает силу для закрепления заготовки, определяемую из условия равновесия всех сил, приложенных к ней

При механической обработке на заготовку действуют:

1) силы и моменты резания

2) объемные силы - сила тяжести заготовки, центробежные и инерционные силы.

3) силы, действующие в точках контакта заготовки с приспособлением – сила реакции опоры и сила трения

4) второстепенные силы, к которым относятся силы, возника­ющие при отводе режущего инструмента (сверла, метчики, раз­вертки) от заготовки.

При сборке на собираемые детали действуют сборочные силы и силы реакции, возникающие в точках контакта сопрягаемых по­верхностей.

К зажимным устройствам предъявляются следующие требования :

1) при зажиме не должно нарушаться положение заготовки, до­стигнутое базированием. Это удовлетворяется рациональным вы­бором направления и мест приложения сил зажима;

2) зажим не должен вызывать деформации заготовок, закрепля­емых в приспособлении, или повреждения (смятия) их поверх­ностей;

3) сила зажима должна быть минимально необходимой, но дос­таточной для обеспечения фиксированного положения заготовки относительно установочных элементов приспособлений в процессе обработки;

4) сила зажима должна быть постоянной на всем протяжении технологической операции; сила зажима должна быть регулируемой;

5) зажим и открепление заготовки необходимо производить с ми­нимальной затратой сил и времени рабочего. При использовании ручных зажимов усилие не должно превышать 147 Н; Средняя продолжительность закрепления: в трехкулачковом патроне (ключом) - 4 с; винтовым зажимом (клю­чом) - 4,5…5 с; штурвалом - 2,5…3 с; поворотом рукоятки пневмо-, гидрокрана - 1,5 с; нажатием кнопки - менее 1 с.

6) зажимной механизм должен быть простым по конструкции, компактным, максимально удобным и безопасным в работе. Для этого он должен иметь минимальные габаритные размеры и содержать ми­нимальное число съемных деталей; устройство управления зажим­ным механизмом должно располагаться со стороны рабочего.

Необходимость применения зажимных устройств исключается в трех случаях .

1) заготовка имеет большую массу, по сравнению с которой силы резания малы.

2) силы, возникающие при обработке, направлены так, что не могут нарушить положение заготовки, достигнутое при базировании.

3) заготовка, установленная в приспособление, лишена всех сте­пеней свободы. Например, при сверлении отверстия в прямоугольной планке, закладываемой в ящичный кондуктор.



3.2. Классификация зажимных устройств

Конструкции зажимных устройств состоят из трех основных частей: контактного элемента (КЭ), привода (П) и силового механизма (СМ).

Контактные элементы служат для непосредственной передачи зажимного усилия на заготовку. Их конструкция позволяет рассредоточить усилия, предотвращая смятие поверхностей заготовки.

Привод служит для преобразования определенного вида энергии в исходное усилие Р и , передаваемое силовому механизму.

Силовой механизм необходим для преобразования полученного исходного зажимного усилия Р и в усилие зажима Р з . Преобразование производится механически, т.е. по законам теоретической механики.

В соответствии с наличием или отсутствием в приспособлении этих составных частей зажимные устройства приспособлений разделяются на три группы.

К первой группе относятся зажимные устройства (рис. 3.1а), имеющие в своем составе все перечисленные основные части: силовой механизм и привод, который обеспечивает перемещение контактного элемента и создает исходное усилие Р и , преобразуемое силовым механизмом в зажимное усилие Р з .

Во вторую группу (рис. 3.1б) входят зажимные устройства, состоящие лишь из силового механизма и контактного элемента, который приводится в действие непосредственно рабочим, прилагающим исходное усилие Р и на плече l . Эти устройства иногда называют зажимным устройством с ручным приводом (единичное и мелкосерийное производство).

К третьей группе относятся зажимные устройства, которые в своем составе не имеют силового механизма, а используемые приводы лишь условно можно назвать приводами, так как они не вызывают перемещений элементов зажимного устройства и только создают зажимное усилие Р з , которое в этих устройствах является равнодействующей равномерно распределенной нагрузки q , непосредственно действующей на заготовку и создаваемой либо в результате атмосферного давления, либо посредством магнитного силового потока. К этой группе относятся вакуумные и магнитные устройства (рис. 3.1в). Применяются во всех видах производства.

Рис. 3.1. Схемы зажимных механизмов

Элементарным зажимным механизмом называют часть зажимного устройства, состоящую из контактного элемента и силового механизма.

Зажимными элементами называют: винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки. Они являются промежуточными звеньями в сложных зажимных системах.

В табл. 2 приведена классификация элементарных зажимных механизмов.

Таблица 2

Классификация элементарных зажимных механизмов

ЭЛЕМЕНТАРНЫЕ ЗАЖИМНЫЕ МЕХАНИЗМЫ ПРОСТЫЕ ВИНТОВЫЕ Зажимные винты
С разрезной шайбой или планкой
Штыковые или плунжерные
ЭКСЦЕНТРИКОВЫЕ Круглые эксцентрики
Криволинейные по эвольвенте
Криволинейные по спирали Архимеда
КЛИНОВЫЕ С плоским односкосым клином
С опорным роликом и клином
С двухскосым клином
РЫЧАЖНЫЕ Одноплечевые
Двухплечевые
Изогнутые двухплечевые
КОМБИНИРОВАННЫЕ ЦЕНТРИРУЮЩИЕ ЗАЖИМНЫЕ ЭЛЕМЕНТЫ Цанги
Разжимные оправки
Зажимные втулки с гидропластом
Оправки и патроны с пластинчатыми пружинами
Мембранные патроны
РЕЕЧНО-РЫЧАЖНЫЕ ЗАЖИМЫ С роликом зажимом и замком
С коническим запирающим устройством
С эксцентриковым запирающим устройством
КОМБИНИРОВАННЫЕ ЗАЖИМНЫЕ УСТРОЙСТВА Сочетание рычага и винта
Сочетание рычага и эксцентрика
Шарнирно-рычажный механизм
СПЕЦИАЛЬНЫЕ Многоместные и непрерывного действия

По источнику энергии привода (здесь говорится не о виде энергии, а именно о местонахождении источника) приводы делятся на ручные, механизирован­ные и автоматизированные. Ручные зажимные механизмы приводит в действие мускульная сила рабо­чего. Механизированные зажимные ме­ханизмы работают от пневматического или гидравлического привода. Автома­тизированные устройства перемещают­ся от движущихся узлов станка (шпин­деля, суппорта или патронов с кулач­ками). В последнем случае зажим заго­товки и разжим обработанной детали производится без участия рабочего.

3.3. Зажимные элементы

3.3.1. Винтовые зажимы

Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

Рис. 3.2. Винтовые зажимы :

а – со сферическим торцом; б – с плоским торцом; в – с башмаком. Условные обозначения: Р и - сила, приложенная на конце рукоятки; Р з - сила зажима;W – сила реакции опоры; l - длина рукоятки; d - диаметр винтового зажима.

Расчет винтового ЭЗМ. При известной си­ле Р 3 вычисляют номинальный диаметр винта

где d - диаметр винта, мм; Р 3 - сила закре­пления, Н; σ р - напряжение растяжения (сжа­тия) материала винта, МПа

Назначение зажимных приспособлений – это обеспечение надежного контакта заготовки с установочными элементами и предотвращение смещения и вибрации ее в процессе обработки. На рис.7.6 представлены некоторые виды зажимных устройств.

Требования к зажимным элементам:

Надежность в работе;

Простота конструкции;

Удобство обслуживания;

Не должны вызывать деформацию заготовок и порчу их поверхностей;

Не должны сдвигать заготовку в процессе ее закрепления с установочных элементов;

Закрепление и открепление заготовок должно производиться с минимальной затратой труда и времени;

Зажимные элементы должны быть износостойкими и по возможности сменными.

Виды зажимных элементов:

Зажимные винты , которые вращают ключами, рукоятками или маховичками (см. рис. 7.6)

Рис.7.6 Виды зажимов:

а – зажимной винт; б – винтовой прихват

Быстродействующие зажимы, показанные на рис. 7.7.

Рис.7.7. Виды быстродействующих зажимов:

а – с разрезной шайбой; б – с плунжерным устройством; в – с откидным упором; г – с рычажным устройством

Экцентрированные зажимы, которые бывают круглые, эвольвентные и спиральные (по спирали Архимеда) (рис.7.8).

Рис.7.8. Виды экцентриковых зажимов:

а – дисковый; б – цилиндрический с Г-образным прихватом; г – конический плавающий.

Клиновые зажимы – используется эффект расклинивания и применяется как промежуточное звено в сложных зажимных системах. При определенных углах клиновой механизм обладает свойством самоторможения. На рис. 7.9 изображена расчетная схема действия сил в клиновом механизме.

Рис. 7.9. Расчетная схема сил в клиновом механизме:

а- односкосном; б – двухскосном

Рычажные зажимы применяются в сочетании с другими зажимами, образуя более сложные зажимные системы. С помощью рычага можно изменить как величину, так и направление усилия зажатия, а также осуществлять одновременное и равномерное закрепление заготовки в двух местах. На рис. 7.10 показана схема действия сил в рычажных зажимах.

Рис. 7.10. Схема действия сил в рычажных зажимах.

Цанги представляют собой разрезные пружинные гильзы, разновидности которых показаны на рис.7.11.

Рис. 7. 11. Виды цанговых зажимов:

а – с натяжной трубкой; б – с распорной трубкой; в – вертикального типа

Цанги обеспечивают концентричность установки заготовки в пределах 0,02…0,05 мм. Базовую поверхность заготовки под цанговые зажимы следует обрабатывать по 2…3 классам точности. Цанги выполняют из высокоуглеродистых сталей типа У10А с последующей термообработкой до твердости HRC 58…62. Угол конуса цанги d = 30…40 0 . При меньших углах возможно заклинивание цанги.

Разжимные оправки , виды которых изображены на рис. 7.4.

Роликовый замок (рис.7.12)

Рис. 7.12. Виды роликовых замков

Комбинированные зажимы – сочетание элементарных зажимов различного типа. На рис. 7.13 представлены некоторые виды таких зажимных устройств.

Рис. 7.13. Виды комбинированных зажимных устройств.

Комбинированные зажимные устройства приводятся в действие вручную или от силовых устройств.

Направляющие элементы приспособлений

При выполнении некоторых операций механической обработки (сверления, растачивания) жесткость режущего инструмента и технологической системы в целом оказывается недостаточной. Для устранения упругих отжимов инструмента относительно заготовки применяют направляющие элементы (кондукторные втулки при расточке и сверлении, копиры при обработке фасонных поверхностей и т.д. (см. рис.7.14).

Рис.7.14. Виды кондукторных втулок:

а – постоянные; б – сменные; в – быстросменные

Направляющие втулки изготавливают из стали марки У10А или 20Х с закалкой до твердости HRC 60…65.

Направляющие элементы приспособлений - копиры – применяются при обработке фасонных поверхностей сложного профиля, задача которых направлять режущий инструмент по обрабатываемой поверхности заготовки для получения заданной точности траектории их движения.