Фотометрическое определение свинца. Определение свинца методом фотоколориметрии. Методические указания на фотометрическое определение свинца в воздухе

1. Определение в виде сульфида. Истоки этого метода и его первой критической оценки приходятся на начало нашего 20 века. Окраска и устойчивость золя PbS зависят от размера частиц дисперсной фазы, на который влияют природа и концентрация растворенных электролитов, реакция среды и способ приготовления. Поэтому необходимо строго соблюдать эти условия.

Метод малоспецифичен, особенно в щелочной среде, но сходимость результатов в щелочных растворах лучше. В кислых растворах чувствительность определения меньше, но ее можно несколько увеличить добавлением электролитов, например NH 4 C1, в анализируемую пробу. Улучшить селективность определения в щелочной среде можно введением маскирующих комплексообразователей.

2. Определение в виде комплексных хлоридов. Уже было указано, что хлоркомплексы РЬ поглощают свет в УФ-области, причем молярный коэффициент погашения зависит от концентрации ионов Cl - В 6 М растворе НС1 максимумы поглощения Bi, Рb и Тl достаточно удалены друг от друга, что дает возможность их одновременного определения по светопоглощению соответственно при 323, 271 и 245 нм. Оптимальный интервал концентраций для определения Pb равен от 4-10*10-4%.

3. Определение примесей Рb в концентрированной серной кислоте основано на использовании характеристического поглощения при 195 нм по отношению к стандартному раствору, который готовят растворением свинца в H2S04 (ос. ч).

Определение с применением органических реагентов.

4. В анализе различных природных и промышленных объектов фотометрическое определение РЬ с применением дитизона благодаря его высокой чувствительности и селективности занимает ведущее место. В различных вариантах существующих методов фотометрическое определение РЬ выполняют при длине волны максимума поглощения дитизона или дитизоната свинца. Описаны другие варианты дитизонового метода: фотометрическое титрование без разделения фаз и безэкстракционный способ для определения свинца в полимерах, в котором в качестве реагента применяют раствор дитизона в ацетоне, перед использованием разбавляемый водой до концентрации органического компонента 70%.

5. Определение свинца по реакции с диэтилдитиокарбаматом натрия. Свинец хорошо экстрагируется CCl4 в виде бесцветного диэтилдитиокарбамата при различных значениях рН. Полученный экстракт используют в косвенном методе определения Рb, основанном на образовании эквивалентного количества желто-коричневого диэтилдитиокарбамата меди в результате обмена с CuS04.

6. Определение по реакции с 4 - (2-пиридилазо) - резорцином (ПАР). Высокая устойчивость красного комплекса Рb с ПАР и растворимость реагента в воде составляют достоинства метода. Для определения Рb в некоторых объектах, например в стали, латуни и бронзе, метод, основанный на образовании комплекса с этим азо-соединением, предпочтительнее дитизонового. Однако он менее селективен и потому в присутствии мешающих катионов требует предварительного разделения методом БХ или экстракции дибензилдитиокарбамата свинца четыреххлористым углеродом.

7. Определение по реакции с 2 - (5-хпорпиридип-2-азо) - 5-диэтиламинофенолом и 2 - (5-бромпиридил-2-азо) - 5-диэтиламинофенолом. Оба реагента образуют с Рb комплексы состава 1:1 с почти тождественными спектрофотометрическими характеристиками.

8. Определение по реакции с сульфарсазеном. В методе использовано образование красновато-коричневого водорастворимого комплекса состава 1: 1 с максимумом поглощения при 505-510 нм и молярным коэффициентом погашения 7,6*103 при этой длине волны и pH 9-10.

9. Определение по реакции с арсеназо 3. Этот реагент в интервале pH 4-8 образует со свинцом синий комплекс состава 1:1с двумя максимумами поглощения - при 605 и 665 нм.

10. Определение по реакции с дифенилкарбазоном. По чувствительности реакции, при экстракции хелата в присутствии KCN и по селективности он приближается к дитизону.

11. Косвенный метод определения Рb с применением дифенилкарбазида. Метод основан на осаждении хромата свинца, его растворении в 5%-ной НС1 и фотометрическом определении двухромовой кислоты по реакции с дифенилкарбазидом при использовании фильтра с максимумом пропускания при 536 нм. Метод длителен и не очень точен.

12. Определение по реакции с ксиленоловым оранжевым. Ксиленоловый оранжевый (КО) образует со свинцом комплекс состава 1:1, оптическая плотность которого достигает предела при рН 4,5-5,5.

13. Определение по реакции с бромпирогалполовым красным (БПК) в присутствии сенсибилизаторов. В качестве сенсибилизаторов, повышающих интенсивность окраски, но не влияющих на положение максимума поглощения при 630 нм, при рН 6,5 применяют хлориды дифе-нилгуанидиния, бензилтиурония и тетрафенилфосфония, а при рН 5,0 - бромиды цетилтриметиламмония и цетилпиридиния.

14. Определение по реакции с глицинтимоловым синим. Комплекс с глицинтимоловым синим (ГТС) состава 1: 2 имеет максимум поглощения при 574 нм и соответствующий ему молярный коэффициент погашения 21300 ± 600.

15. Определение с метилтимоловым синим выполняют в условиях, как для образования комплекса с ГТС. По чувствительности обе реакции приближаются друг к другу. Светопоглощение измеряют при рН 5,8-6,0 и длине волны 600 нм, которая отвечает положению максимума поглощения. Молярный коэффициент погашения равен 19 500. Помехи со стороны многих металлов устраняют маскированием.

16. Определение по реакции с ЭДТА. ЭДТА применяют в качестве титранта в безиндикаторном и в индикаторном фотометрическом титровании (ФТ). Как и в визуальной титриметрии, надежное ФТ растворами ЭДТА возможно при рН > 3 и концентрации титранта не менее 10-5 М.

Люминисцентный анализ

1. Определение РЬ с применением органических реагентов

Предложен метод, в котором измеряется интенсивность излучения хемилюминесценции в присутствии Рb за счет каталитического окисления люминола пероксидом водорода. Метод использован для определения от 0,02 до 2 мкг Рb в 1 мл воды с точностью 10%. Анализ длится 20 мин и не требует предварительной подготовки проб. Кроме Рb, реакцию окисления люминола катализируют следы меди. Значительно сложнее в аппаратурном оформлении метод, основанный на использовании эффекта тушения флуоресценции производных флуорес-132 ценна при образовании хелатов со свинцом. Более селективным в присутствии многих геохимических спутников Рb, хотя и менее чувствительным, является довольно простой метод, основанный на увеличении интенсивности флуоресценции люмогена водно-голубого в смеси диоксан-вода (1: 1) в присутствии Рb.

2. Методы низкотемпературной люминесценции в замороженных растворах. Замораживание раствора проще всего решено в методе определения свинца в НС1, основанном на фотоэлектрической регистрации зеленой флуоресценции хлоридных комплексов при -70°С.

3. Анализ по всплеску люминесценции при размораживании проб. Методы этой группы основаны на смещении спектров люминесценции при размораживании анализируемой пробы и измерении наблюдаемого при этом повышения интенсивности излучения. Длина волны максимума спектра люминесценции при -196 и - 70° С соответственно равна 385 и 490 нм.

4. Предложен метод, основанный на измерении аналитического сигнала при 365 нм в квазилинейчатом спектре люминесценции кристаллофосфора СаО-Рb, охлажденного до температуры жидкого азота. Это наиболее чувствительный из всех люминесцентных методов: если наносить активатор на поверхность таблеток (150 мг СаО, диаметр 10 мм, давление при прессовании 7-8 МН/м2), то предел определения на спектрографе ИСП-51 равен 0,00002 мкг. Метод характеризуется хорошей избирательностью: 100-кратный избыток Со, Cr(III), Fe (III), Mn(II), Ni, Sb (III) и T1 (I) не мешает определению Pb. Одновременно с Рb можно определять и Bi.

5. Определение свинца по люминесценции хлоридного комлекса, сорбированного на бумаге. В этом методе люминесцентный анализ комбинируют с отделением РЬ от мешающих элементов с помощью кольцевой бани. Определение ведется при обычной температуре.

Электрохимические методы

1. Потенциометрические методы. Используется прямое и косвенное определение свинца - титрованием с кислотно - основными, комплексонометрическими и осадительными реагентами.

2. В электрогравиметрических методах используется осаждение свинца на электродах, с последующим взвешиванием или растворением.

3. Кулонометрия и кулонометрическое титрование. В качестве титрантов используются электрогенерируемые сульфогидрильные реагенты.

4. Вольт-амперометрия. Классическая полярография, сочетающая экспрессность с довольно высокой чувствительностью, считается одним из наиболее удобных методов определения РЬ в интервале концентраций 10-s-10 М. В подавляющем большинстве работ свинец определяют по току восстановления РЬ2+ до РЬ° на ртутном капельном электроде (РКЭ), обычно протекающему обратимо и в диффузионном режиме. Как правило, катодные волны хорошо выражены, а полярографические максимумы особенно легко подавляются желатином и Тритоном Х-100.

5. Амперометрическое титрование

При амперометрическом титровании (AT) точку эквивалентности определяют по зависимости величины тока электрохимического превращения РЬ и (или) титранта при определенном значении потенциала электрода от объема титранта. Амперометрическое титрование точнее обычного полярографического метода, не требует обязательного термостатирования ячейки и в меньшей мере зависит от характеристик капилляра и индифферентного электролита. Следует отметить и большие возможности метода AT, поскольку анализ возможен по электрохимической реакции с участием как самого Рb, так и титранта. Хотя общий расход времени на выполнение AT больше, он вполне компенсируется тем, что отпадает надобность в калибровке. Используется титрование растворами дихромата калия, хлораниловой кислоты, 3,5 - диметилдимеркапто - тиопирона, 1,5-6 ис (бензилиден) - тио - карбогидразона, тиосалициламида.

Физические методы определения свинца

Свинец определяют методами атомной эмиссионной спектроскопии, атомно-флуоресцентной спектрометрии, атомно-абсорбционной спектрометрии, рентгеновскими методами, радиометрическими методами, радиохимическими и многими другими.

Страницы:

УДК 543.(162:543 42:546.815

Е.Е. Костенко, М.Г. Христиаисен, Е.Н. Бутенко

ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛИЧЕСТВ СВИНЦА В ПИТЬЕВОЙ ВОДЕ С ПОМОЩЬЮ СУЛЬФОНАЗО Ш

Изучено комплексообразование РЬ(П) с сулъфоназо III и на основе получен­ных данных разработана методика фотометрического определения свинца и питьевой воде после предварительного экстракционного концентрирова­ния в виде комплекса с дити:юном.

Проблема экологической чистоты сырья имеет большое значение для производства пищевой продукции. Поэтому контроль качества питьевой воды - как одного из основных компонентов различных напитков очень важен, а создание новых селективных, чувствительных и экспрессных ме­тодик фотометрического определения токсичных металлов достаточно актуально. Среди последних одним из наиболее опасных для здоровья че­ловека является свинец . Величина его ПДК в различных пищевых объек­тах составляет 0,1 - 10 мг/кг, а в питьевой воде - 0,03 мг/дм3.

Для фотометрического определения свинца предложено довольно много органических реагентов. Основные характеристики методик при­ведены в табл. J. В большинстве своём эти методики недостаточно изби­рательные. Поэтому стандартный метод определения свинца в питьевой воде предусматривает его предварительное экстракционное выделение в виде комплекса с дитизоном. Затем при проведении реэкстракции добав­ляют сульфарсазен и измеряют оптическую плотность комплекса Pb (II) с этим реагентом ,

Реагент бис-сульфон или сульфоназо III (СФАЗ. HSR) используют для оп­ределения малых количеств галлия, скандия, индия и бария - / .

Молярное соотношение Pb (II) - СФАЗ в комплексе (равное 1:1) под­тверждается постоянством величины константы К в разных условиях её определения (табл. 2).

Необходимые для расчётов значения концентрации комплекса PbH2R: в условиях равновесия определяли по уравнению

= (А- ek C r -0 / (єк - eR) I,

где }