Стабилизатор напряжения для светодиодного фонаря. Характеристики светодиодов для фонариков. Ремонт и увеличение мощности. Сопротивление токоизмерительного резистора, мОм

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

ПРЕОБРАЗОВАТЕЛЬ ДЛЯ СВЕТОДИОДА

На смену лампам накаливания пришли светодиоды, которые во многих случаях успешно заменяют их. Но из-за нелинейной вольт-амперной характеристики, для питания осветительных светодиодов от батареи применяют различные преобразователи напряжения. Как известно, светодиод питается напряжением не менее 2 В, а в зависимости от типа и до 3.5 В. К тому-же необходим хотя-бы простейший стабилизатор тока, ведь в процессе снижения ёмкости батареи падает и яркость светодиода. Поэтому простой резистор по питанию, от батареи с повышенным напряжением, будет работать хуже чем преобразователь. Ниже предлагаются схемы простых преобразователей, которые доступны для сборки даже начинающими.

Схема питается от одной пальчиковой батареи и представляет собой блокинг - генератор. Импульсы повышенного напряжения появляется на коллекторе, выпрямляются диодом шоттки и заряжают конденсатор. Трансформатор T1 наматывается вручную на кольцевом сердечнике. Для этого берётся ферритовое кольцо К10х6х4 и мотается две обмотки по 20 витков проводом ПЭЛ 0.3. Вообще количество витков может составлять и 6:10, и 10:10, и 10:15. Для наилучшего кпд и яркости их надо подобрать экспериментально. Для каркаса используется всё, что есть.

В схеме используется транзистор с низким падением напряжения для достижения максимального КПД. Выходной ток можно регулировать резистором R1.

Далее мы видим несколько усложнённую схему с более стабильной генерацией. Потребляемый ток 15 мА. Преобразователь напряжения тоже выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе и трансформаторе. Данные обмоток те-же самые.

Очередной модернизацией данного преобразователя, стала схема из китайского светодиодного фонаря:

Здесь и в других схемах в качестве диода используется диод Шоттки с малым падением напряжения (всё-таки каждые пол вольта на счету). Применяются диоды IN5817, 1GWJ43, 1SS319, или в крайнем случае советский Д311. Эти диоды можно взять из платы контроллера питания нерабочего литий - ионного аккумулятора от мобильного телефона. Следующие схемы преобразователей выполнены на двух транзисторах и отличаются повышенным выходным током - до 25 мА. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами.

Трансформатор используется аналогичный, но число витков в обмотках составляет по 40. Транзисторы стоят С2458 и С3279. Благодаря обратной связи на транзисторе С2458, получается простая стабилизация тока и соответственно яркости светодиода.

Ещё один вариант преобразователя на двух транзисторах:

Здесь не нужно мотать трансформатор, так как используется готовый дроссель на 300 - 1000 мкГн.

Последняя схема преобразователя тоже была срисована из китайского светодиодного фонаря и прекрасно работает при сборке.

Первое включение правильно собранного устройства необходимо провести в режиме тестирования, при котором питание от батареи подают через резистор сопротивлением 10 Ом, чтоб не сгорели транзисторы при неправильном подключении выводов трансформатора. Если светодиод не светит, необходимо поменять местами выводы первичной или вторичной обмотки трансформатора. Если и это не помогает, проверьте исправность всех элементов и монтажа.

Из личного опыта могу заметить, что во всех приведённых схемах, часто с успехом запускаются и отечественные транзисторы КТ315 - КТ3102. Число обмоток трансформаторов следует подбирать по максимуму яркости и КПД. В качестве дросселей использовались готовые "всё что под руку попадало", от различной аппаратуры. Не рекомендуется ставить самые дешёвые (0.1 Вт) 5-мм светодиоды. Лучше доплатить и приобрести за 0.5 уе 10-мм светодиод. Яркость значительно повысится. Ещё лучшие результаты будут после установки специальных

Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
В заказе было 10 микросхем, 10 и пришло.


Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


Не ожидал, что они настолько маленькие.

Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
Ну а теперь о недостатках.
Питается фонарик от четырёх пальчиковых элементов типа ААА.


Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
Вот, что имеем в итоге.


Странно, что безымянный светодиод оказался живым.


Первым, что сделал – изготовил пустышку из старой батарейки.


Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
И самое основное, вместо сопротивления поставлю драйвер AMC7135.
Вот стандартная схема его подключения.

Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


Кнопку я тоже перебрал и смазал на всякий случай.

Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


Слева – напряжение на светодиоде, справа – ток, через него протекающий.
Что же я добился в результате всех переделок?
1. Яркость фонаря практически не меняется при эксплуатации.
2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
Вот, в общем, и всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

Планирую купить +60 Добавить в избранное Обзор понравился +58 +118

Все светодиоды, независимо от форм-фактора и электрических параметров, питаются током. Правильно заданный ток – это гарантия длительной и стабильной работы осветительного прибора. Так почему же производители светодиодной продукции часто вместо стабилизатора тока устанавливают стабилизатор напряжения? Как это сказывается на работе светодиодных ламп, лент, фонарей и прожекторов? Попробуем разобраться.

Стабилизаторы напряжения

Исходя из названия, эти устройства предназначены для поддержания напряжения в нагрузке на определённом уровне. При этом величина выходного тока зависит от самой нагрузки. Другими словами, сколько потребуется нагрузки, столько она возьмёт, но не более максимально возможного значения. Допустим, стабилизатор напряжения обладает такими выходными параметрами: 12В и 1 А. То есть на выходе всегда будет поддерживаться 12В, а ток потребления может быть в диапазоне от нуля до одного ампера. Существует два вида стабилизаторов напряжения: линейные и импульсные.

Как правило, регулирующим элементом в схеме стабилизатора является биполярный или полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным. Если же регулирующий транзистор работает в ключевом режиме, то стабилизатор называют импульсным.

Наиболее распространенными и недорогими являются линейные стабилизаторы напряжения, однако они имеют ряд недостатков:

  • низкий КПД;
  • при большом токе нагрузки нуждаются в теплоотводе;
  • имеют достаточно высокое падение напряжения.

Чтобы не сталкиваться с подобными недостатками, рекомендуется использовать стабилизаторы напряжения импульсного типа. Они бывают трех типов: повышающие, понижающие и универсальные. Импульсные стабилизаторы имеют высокий КПД, не нуждаются в дополнительном отводе тепла при больших токах нагрузки, но имеют более высокую стоимость.

Стабилизаторы тока

Простейший ограничитель тока – резистор. Его часто называют простейшим стабилизатором, что неверно, так как резистор не способен стабилизировать ток при колебании напряжения на своем входе.

Применение резистора в схеме питании светодиода допустимо только при стабилизированном входном напряжении. В противном случае все скачки напряжения передаются в нагрузку и негативно отражаются на работе светодиода. Эффективность резистивных ограничителей тока очень низкая, так как вся потребляемая ими энергия рассеивается в виде тепла.

Немного выше КПД у конструкций на базе готовых интегральных микросхем (ИМ) линейных стабилизаторов. Схемы линейных стабилизаторов на базе ИМ выделяющиеся минимальным набором элементов, отсутствием помех и простой настройкой.

Чтобы избежать перегрева регулирующего элемента, разность входного и выходного напряжения должна быть небольшой, но достаточной (3-5 вольт). Иначе корпус микросхемы вынужден будет рассеивать невостребованную энергию, тем самым снижая КПД.

Драйверы для светодиодов на основе готовых ИМ линейных стабилизаторов выделяются дешевизной и доступностью элементов для сборки своими руками.

Наиболее эффективными принято считать токовые драйверы с широтно-импульсной модуляцией (ШИМ). Их конструируют на базе специализированных микросхем с цепью обратной связи и элементами защиты, что в несколько раз повышает надёжность всего устройства. Наличие в них импульсного трансформатора ведет к удорожанию схемы, но оправдано высоким КПД и сроком службы. Токовые ШИМ стабилизаторы с питанием от источника 12В несложно сделать своими руками, используя специализированную микросхему. Например, ИМС PT4115 от компании PowTech, которая разработана специально для схем питания светодиодов мощностью от 1 до 10 Вт.

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт - амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Правильное и неправильное включение

Больше всего ошибок допускают автомобилисты, когда пытаются сэкономить на схеме питания светодиодного освещения. Часто автолюбители включают светодиодные приборы напрямую от аккумулятора, а потом жалуются на разные неполадки: моргание, потерю яркости и полное погасание кристалла. Всё это происходит из-за отсутствия промежуточного преобразователя, который должен компенсировать перепады напряжения в интервале от 10 до 14,5В. Ещё одна ошибка владельцев авто – подключение только через резистор, рассчитанный на среднее показание аккумулятора 12В. Резистор – линейный элемент, а значит, ток через него растет пропорционально напряжению. Подключение через резистор допускается при условии его расчета на 14,5В, но тогда придется смириться с неполной светоотдачей светодиодов при низких и средних значениях напряжения в бортовой сети. Поэтому однозначный верный способ подключения светодиодов в автомобиле – это использование стабилизатора тока, желательно импульсного типа.

В различных осветительных конструкциях на основе светодиодов часто используются именно стабилизаторы напряжения. Почему так происходит? Во-первых, они намного дешевле качественных токовых драйверов. Во-вторых, чтобы из стабилизатора напряжения получился более-менее надёжный драйвер достаточно на выходе установить резистор, грамотно рассчитав его мощность и сопротивление. Такое схемотехническое решение часто применяется в недорогих LED лампах и осветительных конструкциях с применением светодиодных лент.

Большинство светодиодных лент питается стабильным напряжением 12В. Если рассмотреть конструкцию ленты более детально, то можно увидеть, что она разделена на небольшие участки. Как правило, каждый участок состоит из трёх SMD­ светодиодов и одного токозадающего резистора. Падение напряжения на одном светоизлучающем элементе в среднем составляет 2,5-3,5 В, то есть максимум 10,5В в сумме. Остаток гасится резистором, номинал которого изготовитель подбирает под тип используемых светодиодов. Поэтому подключение светодиода через связку из стабилизатора напряжения и резистора можно считать правильной.

Выходная мощность стабилизатора должна быть больше потребляемой мощности нагрузки примерно на 30%.

Если использовать простой блок питания без стабилизации (трансформатор, диодный мост и конденсатор), то при небольшом увеличении напряжения сети, его пропорционально уменьшенная часть будет равномерно распределяться на всех четырёх элементах каждого участка ленты. В итоге вырастет ток, температура кристалла и, как следствие, начнется необратимый процесс деградации светодиодов.

Самым правильным схемотехническим решением является применение стабилизатора тока импульсного типа. На сегодняшний день – это оптимальный вариант, который используют все ведущие производители светодиодных изделий. Токовый драйвер с ШИМ регулятором практически не греется, эффективен и надёжен.

Так чему же отдать предпочтение: дешевому стабилизатору напряжения с резистором или более дорогому токовому драйверу? Правильный ответ скрыт в выражении: «Любая экономия должна быть оправдана». Если Вам нужно подключить десяток слаботочных светодиодов или не более одного метра ленты, то выбор в пользу первого варианта нельзя назвать ошибочным.

Но если ваша цель – запитать фирменные светодиоды с мощностью каждого кристалла более 1 Вт, то без качественного токового драйвера не обойтись. Потому что стоимость таких излучающих диодов намного выше цены на драйвер.

Читайте так же

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Чем это объясняется?

Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов

Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:
  • - кусок текстолита для платы,
Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора


Схема взята из даташита на микросхему L7805.


Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов

Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.



В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.


На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.