Как правильно называются столбы электрические. Изготовим опоры линий электропередач. Деревянные опоры ЛЭП

Опоры высоковольтных линий электропередач служат для надежного крепления и необходимого натяжения электропроводов, по которым вырабатываемая электростанциями электрическая энергия передается потребителям на большие расстояния.

По своему назначению и применяемому способу крепления электропроводов опоры ЛЭП бывают:

  • промежуточного типа;
  • анкерного типа;
  • углового типа;
  • концевого типа;
  • специального типа.

Каждый вид этих опор обладает своими конструкционными и функциональными особенностями и может применяться в определенных ситуациях в соответствии со своим назначением.

Промежуточные опоры ЛЭП

Являются самым распространенным видом опор, применяемых для монтажа высоковольтных линий электропередач. Электропровода крепятся на них в специальных поддерживающих зажимах в виде вертикально расположенных подвесных изоляторов, воспринимающих горизонтальные нагрузки от веса проводов и тросов и ветрового воздействия. На продольное усилие от натяжения проводов между опорами они не рассчитаны. Устанавливаются такие опоры на прямолинейных участках и при небольших углах поворота магистральных трасс ЛЭП.

Анкерные опоры ЛЭП

Обеспечивают крепление электропроводов с их продольным регулируемым натяжением при помощи специальных натяжных приспособлений. Конструкция данного типа опор отличается повышенной жесткостью и особой прочностью, так как кроме поперечных горизонтальных и вертикальных нагрузок на них действует и продольная горизонтальная нагрузка, соответствующая усилию натяжения проводов. Такой вид опор применяется на прямолинейных участках линий электропередач при их пересечении естественных преград или инженерных сооружений, а также на местах изменения направления магистральных трасс при больших углах поворота (более 30 градусов) .

Угловые опоры ЛЭП

Применяются в местах изменения направления магистральных линий электропередач. При небольших значениях углов поворота (до 20–30 градусов), обеспечивающих небольшую нагрузку на конструктивные элементы применяются угловые опоры промежуточного типа. При больших углах поворота используются угловые с анкерным типом крепления проводов.

Концевые опоры ЛЭП

Устанавливаются на начале и конце высоковольтных линий электропередач для подключения основных и промежуточных трансформаторных подстанций и потребителей электроэнергии. На них используется анкерный тип крепления электропроводов, обеспечивающий их одностороннее натяжение.

Специальные опоры ЛЭП

Используются в определенных ситуациях и в свою очередь подразделяются на:

  • транспозиционные опоры, позволяющие изменять порядок расположения электропроводов в линиях электропередач;
  • ответвительные опоры, обеспечивающие подключение дополнительных ответвлений от магистральной трассы;
  • перекрёстные опоры, используемые в случае взаимного пересечения линий электропередач в разных направлениях;
  • переходные опоры ЛЭП, применяемые при пересечении линий электропередач с естественными преградами или различными инженерными сооружениями.

В зависимости от наибольшей допустимой мощности электроэнергии, передаваемой по высоковольтной линии потребителям, опоры классифицируются на следующие категории:

  • опоры ЛЭП 35 кв;
  • опоры ЛЭП 110 кв;
  • опоры ЛЭП 220 кв;
  • опоры ЛЭП 330 кв.

Чем выше мощность предаваемой по высоковольтной линии электроэнергии, тем больше сечение и вес используемых при этом электропроводов и тем прочнее и надежнее должна быть конструкция опор.

Обращаясь к нам, вы получаете

yarsmp.ru

Типы опор ЛЭП

Виды опор ВЛ

Услуги по изготовлению металлоконструкций опор ЛЭП, производству металлоизделий, услуги по металлообработке на заказ предоставляются компанией "Схид-будконструкция", Украина.

Какие типы опор ЛЭП существуют?

При производстве металлоконструкций ЛЭП различают сдующие типы опор ВЛ: промежуточные опоры ЛЭП, анкерные опоры ЛЭП, угловые опоры ЛЭП и специальные металлоизделия для ЛЭП. Разновидности типов конструкций воздушных линий электропередач, являющиеся наиболее многочисленными на всех ЛЭП, это промежуточные опоры, которые предназначены для поддерживания проводов на прямых участках трассы. Все высоковольтные провода крепятся к траверсам ЛЭП через поддерживающие гирлянды изоляторов и другие конструктивные элементы воздушных линий электропередач. В нормальном режиме опоры ВЛ этого типа воспринимают нагрузки от веса смежных полупролетов проводов и тросов, веса изоляторов, линейной арматуры и отдельных элементов опор, а также ветровые нагрузки, обусловленные давлением ветра на провода, тросы и саму металлоконструкцию ЛЭП. В аварийном режиме конструкции промежуточных опор ЛЭП должны выдерживать напряжения, возникающие при обрыве одного провода или троса.

Расстояние между двумя соседними промежуточными опорами ВЛ называется промежуточным пролетом. Угловые опоры ВЛ могут быть промежуточными и анкерными. Промежуточные угловые элементы ЛЭП применяют обычно при небольших углах поворота трассы (до 20°). Устанавливаются анкерные или промежуточные угловые элементы ЛЭП на участках трассы линии, где меняется ее направление. Промежуточные угловые опоры ВЛ в нормальном режиме, кроме нагрузок, действующих на обычные промежуточные элементы ЛЭП, воспринимают суммарные усилия от тяжения проводов и тросов в смежных пролетах, приложенные в точках их подвеса по биссектрисе угла поворота линии ЛЭП. Число анкерных угловых опор ВЛ составляет обычно небольшой процент от общего числа на линии (10… 15%). Применение их обуславливается условиями монтажа линий, требованиями, предъявляемыми к пересечениям линий с различными объектами, естественными препятствиями, т. е. они применяются, например в горной местности, а также когда промежуточные угловые элементы не обеспечивают требуемой надежности. Используются анкерные угловые опоры и в качестве концевых, с которых провода линии идут в распределительное устройство подстанции или станции. На линиях, проходящих в населенной местности, число анкерных угловых элементов ЛЭП также увеличивается. Провода ВЛ крепятся через натяжные гирлянды изоляторов. В нормальном режиме на эти опоры леп, кроме нагрузок, указанных для промежуточных элементов леп, действуют разность тяжений по проводам и тросам в смежных пролетах и равнодействующая сил тяжения по проводам и тросам. Обычно все опоры анкерного типа устанавливаются так, чтобы равнодействующая сил тяжения была направлена по оси траверсы опоры. В аварийном режиме анкерные стойки ЛЭП должны выдерживать обрыв двух проводов или тросов. Расстояние между двумя соседними анкерными опорами ЛЭП называют анкерным пролетом. Ответвительные элементы ЛЭП предназначены для выполнения ответвлений от магистральных воздушных линий при необходимости электроснабжения потребителей, находящихся на некотором расстоянии от трассы. Перекрестные элементы применяются для выполнения на них скрещивания проводов ВЛ двух направлений. Концевые стойки ВЛ устанавливаются в начале и конце воздушной линии. Они воспринимают направленные вдоль линии усилия, создаваемые нормальным односторонним тяжением проводов. Для воздушных линий применяются также анкерные опоры ЛЭП, имеющие повышенную по сравнению с перечисленными выше типами стойки прочность и более сложную конструкцию. Для воздушных линий с напряжением до 1 кВ в основном применяются железобетонные стойки.

Какие бывают опоры ЛЭП? Классификация разновидностей

По способу закрепления в грунте классифицируют:

Опоры ВЛ, устанавливаемые непосредственно в грунт - Опоры ЛЭП, устанавливаемые на фундаменты Разновидности опор ЛЭП по конструкции:

Свободностоящие опоры ЛЭП - Столбы с оттяжками

По количеству цепей классифицируют опоры ЛЭП:

Одноцепные - Двухцепные - Многоцепные

Унифицированные опоры ЛЭП

На основании многолетней практики строительства, проектирования и эксплуатации ВЛ определяются наиболее целесообразные и экономичные типы и конструкции опор для соответствующих климатических и географических районов и проводится их унификация.

Обозначение опор ЛЭП

Какие виды опор применяют для сооружения вл?

Для металлических и железобетонных опор ВЛ 10 - 330 кВ принята следующая система обозначения.

П, ПС - промежуточные опоры

ПВС - промежуточные опоры с внутренними связями

ПУ, ПУС - промежуточные угловые

ПП - промежуточные переходные

У, УС - анкерно-угловые

К, КС - концевые

Б - железобетонные

М - Многогранные

Опоры ВЛ как маркируются?

Цифры после букв в маркировке обозначают класс напряжения. Наличие буквы «т» указывает на тросостойку с двумя тросами. Цифра через дефис в маркировке опор ВЛ указывает количество цепей: нечётное, например единица в нумерации опоры ЛЭП - одноцепная линия, четное число в нумерации - двух и многоцепные. Цифра через «+» в нумерации означает высоту приставки к базовой опоре (применимо к металлическим).

Например, условные обозначения опор ВЛ:У110-2+14 - Металлическая анкерно-угловая двухцепная опора с подставкой 14 метров ПМ220-1 - Промежуточная металлическая многогранная одноцепная опора У220-2т - Металлическая анкерно-угловаяПБ110-4 - Промежуточная железобетонная

sbk.ltd.ua

КЛАССИФИКАЦИЯ ОПОР ЛЭП ПО ОБЩЕМУ ВИДУ

? LiveJournal
  • Ratings
  • Disable ads
Login
  • Login
  • CREATE BLOG Join
  • English (en)
    • English (en)
    • Русский (ru)
    • Українська (uk)
    • Français (fr)
    • Português (pt)
    • español (es)
    • Deutsch (de)
    • Italiano (it)
    • Беларуская (be)

novoklimov.livejournal.com

ЭлектрО - Виды опор

ВИДЫ ОПОР

Опоры бывают анкерными (в том числе концевыми), промежуточ­ными, угловыми, транспозиционными и специальными. Примене­ние того или иного вида опор диктуется их назначением, которое в свою очередь зависит от места установки опор на трассе воздушной линии.

Анкерные опоры устанавливают для жесткого закреп­ления проводов в особо ответственных точках линии (на концах линии, на концах прямых ее участков, на пересечениях особо важ­ных инженерных сооружений и больших водоемов). Анкерные опоры должны выдерживать одностороннее тяжение двух проводов. В наихудших условиях находятся концевые анкерные опоры, устанавливаемые при выходе линии с электростанции или на подходах к подстанции. Эти опоры испытывают одностороннее тяжение всех проводов со стороны линии, так как тяжение проводов со стороны портала незначительно.

Рис. 1. Анкерная деревянная опора линии напряжением 110 кВ.

На рис. 1 показана деревян­ная анкерная опора для линий передачи напряжением 110 кВ, предназначенная для прямых участков трассы.

Анкерные опоры значительно сложнее и дороже промежуточных, и поэтому число их на каждой линии должно быть минимальным. На прямых участках линий напряжением выше 1000 В с глухими зажимами расстояние между анкерными опорами практически достигает 10-15 км и нормами не ограничивается.

Промежуточные опоры (рис. 2 и 3) служат для поддержания провода на прямых участках линии в анкерном пролете. Промежуточная опора дешевле опор других типов и проще их в изго­товлении, так как благодаря одинако­вому тяжению проводов по обеим сторо­нам она в нормальном режиме (т. е. при необорванных проводах) не испытывает усилий вдоль линии. Характерная осо­бенность промежуточных опор - их массовость; они составляют не менее 80-90% общего числа опор воздуш­ной линии. Вот почему при проек­тировании воздушных линий надо об­ращать особое внимание на выбор наибо­лее экономичного типа промежуточных опор.

Рис. 2. Промежуточная деревянная опора на бестросовой линии напряжением 110 кВ.

Рис. 3. Промежуточная свободностоящая металлическая опора двухцепной линии напряжением 220 кВ.

Угловые опоры устанавливают в точках поворота линии. Углом поворота линии называется угол α (рис. 4), дополнительный до 180° к внутреннему углу β линии. Траверсы угловой опоры устанавливают по бис­сектрисе угла β.

Чаще всего применяют угловые опоры анкерного типа (рис. 5, а). При углах поворота до 60° можно устанавливать одностоечные железобетонные опоры с оттяжками (рис. 5, б), а при углах поворота до 20° и ровном профиле трассы разрешается вместо угловых применять промежуточные опоры, соответственно изме­нив способ закрепления проводов.

Рис. 4. Угол поворота линии электропередачи: 1 – ноги опоры; 2 – траверса; 3 – петля.

Рис. 5. Угловые опоры: а – анкерная портальная на линии напряжением 220 кВ; б – одностоечная железобетонная с оттяжками на одноцепной линии напряжением 110 кВ.

Транспозиционные опоры применяют для транс­позиции проводов. На рис. 6 представлена транспозиционная опора одноцепной линии напряжением 220 кВ, а на рис. 7 - транспозиция проводов на опо­ре двухцепной линии.

Рис. 6. Транспозиционная опора одноцепной линии напряжением 220 кВ.

Рис. 7. Транспозиция проводов на опоре двухцепной линии.

Специальные опоры бывают двух типов: пере­ходные (рис. 8) - для больших пролетов (пересечения рек, ущелий, озер и др.) и ответвительные (рис. 9).- когда требуется глухое ответвление от линии.

Рис. 8. Переходная опо­ра.

Рис. 9. Ответвительная опора двухцеп­ной линии напряжением 110 кВ.

По материалу изготовления опоры воздушных линий бы­вают деревянные, железобетон­ные и металлические.

Деревянные опоры просты в изготовлении и дешевы.

В нашей стране их делают из сосны, листвен­ницы. Недостаток этих опор - их недолговечность, объясняющаяся гниением древесины, т. е. разрушением ее особыми грибками. Наиболее подвержены поражениям нижние части столбов, вка­пываемые в грунт, а также врубки в дереве и места болтовых сое­динений. Срок службы тех частей опор из непропитанной сосны, которые находятся у поверхности земли, составляет в среднем 3-5 лет. Срок службы деревянных опор можно повысить, если готовые деревянные детали пропитать антисептиками (креозотом, антраценовым маслом) и тем предотвратить развитие грибков в древесине. Заводская пропитка увеличивает срок службы дере­вянных опор до 15-20 лет.

Деревянные опоры применяют при строительстве одноцепных линий напряжением до 220 кВ включительно. Из экономи­ческих соображений опоры делают в большинстве случаев состав­ными. Нога опоры состоит из двух частей: длинной (основной стойки) и короткой (пасынка). Пасынок соединяют со стойкой двумя бандажами из стальной проволоки диаметром 4-6 мм. Для натяжки бандажа служат металлические накладки, стягиваемые сквозными болтами. Соприкасающиеся места пасынка и основной стойки затесывают так, чтобы они плотнее прилегали друг к другу. В грунт пасынок заделывают на глубину 1,8 м для опор линий передачи напряжением до 10 кВ и 2,5 м для линий 35-220 кВ.

Рис. 10. Одностоечные деревянные опо­ры бестросовых линий напряжением 6-10 кВ (размеры в метрах).

Деревянные опоры линий передачи напряжением до 10 кВ изготавливают одностоечными, изоляторы закрепляют на крюках (рис. 10, а). Для проводов средних сечений изоляторы крепятся на штырях (рис. 10, б). На линиях напряжением 110 кВ и на боль­шинстве линий напряжением 35 кВ устанавливают двухстоечные опоры П-образного типа (см. рис. 2).

Деревянные опоры для ли­ний электропередачи приме­няют главным образом в рай­онах, богатых строевым лесом, где влажность воздуха незна­чительная и среднегодовая температура не выходит за пределы от 0 до + 5° С. Для увеличения срока службы деревянных опор их делают преимущественно с железобетонными па­сынками. В торфянистых и слабых грунтах в качестве пасынков при­меняют железобетонные сваи.

Железобетонные опоры долговечнее деревянных, требуют меньше металла, чем металлические, просты в обслужи­вании и поэтому получили в последнее время широкое применение на линиях электропередачи всех напряжений до 500 кВ включи­тельно.

На одноцепных линиях напряжением 6-10 кВ применяются одностоечные свободностоящие опоры из вибробетона, прямо­угольного сечения. Провода крепятся на штыревых изоляторах, установленных на горизонтальной металлической траверсе и приваренной к ней вертикальной стойке (верхний провод). Одностоеч­ные опоры для линий 35 кВ с большим сечением проводов и для линий 110-330 кВ изготовляют из центрифугированного бетона, с металлическими траверсами. Одностоечные опоры бывают как свободностоящие (рис. 11), так и на оттяжках (рис. 12).

Рис. 11. Одностоечная свободностоящая железобетонная опора двухцепной линии напряжением 110 кВ.

Рис. 13. Портальная промежуточная железобетонная опора с оттяжками линии напряжением 330 кВ.

При горизонтальном расположении проводов на линиях напря­жением 330-500 кВ применяют портальные железобетонные промежуточные опоры на оттяжках (рис. 13). Опоры устанавливают на железобетонных фундаментах с шарнирами в опорных точках стоек. Фундаменты заделывают в грунт с таким наклоном, чтобы оси стоек опоры и оси фундаментов совпадали. Оттяжки делают из стального спирального каната. Нижние концы оттяжек при­крепляют к заделанным в грунт якорным плитам с помощью специальных U-образных анкерных тяг с нарезкой на концах для регулирования натяжения.

Металлические опоры применяют на линиях напряжением 35 кВ и выше. Эти опоры требуют затраты большого количества металла и регулярной окраски в процессе эксплуатации для защиты от коррозии. Изготавливают их из стали 3 с дополни­тельными гарантиями прочности.

Металлические опоры преимущественно используют в горных районах и в другой труднодоступной местности, так как они транс­портируются отдельными секциями. Устанавливают металличе­ские опоры на железобетонных фундаментах, которые могут быть монолитными (сплошными), сборными и свайными. Монолитные фундаменты изготавливают па месте установки опоры, а свайные и сборные - на заводах. При нормальном грунте, т. е. при отсут­ствии скалы, плывунов, болот и т. п., предпочтение отдают свай­ным железобетонным фунда­ментам, так как их погруже­ние в грунт осуществимо механизированным способом (например, при помощи ви­бропогружателей).

На рис. 14 показана ан­керная металлическая опора с широкой базой для двухцепной линии напряжением 110 кВ, а на рис. 15 - угловая анкерная опора для линии напряжением 500 кВ.

Рис. 17. Промежуточные метал­лические опоры двухцепных ли­ний: а - напряжением 220 кВ; б - 330 кВ; (размеры в метрах).

ellectroi.ucoz.ru

Виды и типы опор воздушных линий электропередачи - Школа для электрика: устройство, монтаж, наладка, эксплуатация и ремонт электрооборудования

Виды и типы опор воздушных линий электропередачи

В зависимости от способа подвески проводов опоры воздушных линий (ВЛ) делятся на две основные группы:

а) опоры промежуточные. на которых провода закрепляются в поддерживающих зажимах,

б) опоры анкерного типа. служащие для натяжения проводов. На этих опорах провода закрепляются в натяжных зажимах.

Расстояние между опорами воздушных линий электропередачи (ЛЭП) называется пролетом. а расстояние менаду опорами анкерного типа - анкерованным участком (рис. 1).

В соответствии с требованиями ПУЭ пересечения некоторых инженерных сооружений, например железных дорог общего пользования, необходимо выполнять на опорах анкерного типа. На углах поворота линии устанавливаются угловые опоры, на которых провода могут быть подвешены в поддерживающих или натяжных зажимах. Таким образом, две основные группы опор - промежуточные и анкерные - разбиваются на типы, имеющие специальное назначение.

Рис. 1. Схема анкерованного участка воздушной линии

Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально, на промежуточных опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные - от веса проводов, изоляторов и собственного веса опоры.

При необорванных проводах и тросах промежуточные опоры, как правило, не воспринимают горизонтальной нагрузки от тяжения проводов и тросов в направлении линии и поэтому могут быть выполнены более легкой конструкции, чем опоры других типов, например концевые, воспринимающие тяжение проводов и тросов. Однако для обеспечения надежной работы линии промежуточные опоры должны выдерживать некоторые нагрузки в направлении линии.

Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерные угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов.

При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. Поэтому промежуточные угловые опоры применяются для углов до 10 - 20°. При больших углах поворота устанавливаются анкерные угловые опоры.

Рис. 2. Промежуточные опоры ВЛ

Анкерные опоры. На линиях с подвесными изоляторами провода закрепляются в зажимах натяжных гирлянд. Эти гирлянды являются как бы продолжением провода и передают его тяжение на опору. На линиях со штыревыми изоляторами провода закрепляются на анкерных опорах усиленной вязкой или специальными зажимами, обеспечивающими передачу полного тяжения провода на опору через штыревые изоляторы.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, т. е. воспринимает только горизонтальные поперечные и вертикальные нагрузки.

Рис. 3. Опоры ВЛ анкерного типа

В случае необходимости провода с одной и с другой стороны от анкерной опоры можно натягивать с различным тяжением, тогда анкерная опора будет воспринимать разность тяжения проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет также воздействовать горизонтальная продольная нагрузка. При установке анкерных опор на углах (в точках поворота линии) анкерные угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций. При подвеске проводов на линии до окончания сооружения подстанции концевые опоры воспринимают полное одностороннее тяжение проводов и тросов ВЛ.

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные. служащие для изменения порядка расположения проводов на опорах, ответвительные - для выполнения ответвлений от основной линии, опоры больших переходов через реки и водные пространства и др.

Основным типом опор на воздушных линиях являются промежуточные, число которых обычно составляет 85 -90% общего числа опор.

По конструктивному выполнению опоры можно разделить на свободностоящие и опоры на оттяжках. Оттяжки обычно выполняются из стальных тросов. На воздушных линиях применяются деревянные, стальные и железобетонные опоры. Разработаны также конструкции опор из алюминиевых сплавов.

Конструкции опор ВЛ

  1. Деревянная опора ЛОП 6 кВ (рис. 4) - одностоечная, промежуточная. Выполняется из сосны, иногда лиственницы. Пасынок выполняется из пропитанной сосны. Для линий 35-110 кВ применяются деревянные П-образные двухстоечные опоры. Дополнительные элементы конструкции опоры: подвесная гирлянда с подвесным зажимом, траверса, раскосы.
  2. Железобетонные опоры выполняются одностоечными свободностоящими, без оттяжек или с оттяжками на землю. Опора состоит из стойки (ствола), выполненной из центрифугированного железобетона, траверсы, грозозащитного троса с заземллителем на каждой опоре (для молниезащиты линии). С помощью заземляющего штыря трос связан с заземлителем (проводник в виде трубы, забитой в землю рядом с опорой). Трос служит для защиты линий от прямых ударов молнии. Другие элементы: стойка (ствол), тяга, траверса, тросостойка.
  3. Металлические (стальные) опоры (рис. 5) применяются при напряжении 220 кВ и более.

Рис. 4. Деревянная одностоечная промежуточная опора ЛЭП 6 кВ: 1 - опоры, 2 - пасынок, 3 - бандажа, 4 - крюка, 5 - штыревых изоляторов, 6 - провода

fix-builder.ru

типы опор ЛЭП | electric-zone.ru

Типы опор линий электропередач (по роду материала).

Март 27th, 2012 Vadim

По роду материала различают следующие типы опор ЛЭП: железобетонные, деревянные (пропитанные) и металлические опоры.

Деревянные опоры в наше время устарели и уже не применяются. Раньше они применялись на ВЛ напряжением до 220 кВ включительно. Такие опоры обычно изготовливались из сосны и лиственницы. Срок службы сосновых опор 5-7 лет, а из лист­венницы 15 -25 лет. Для повышения срока службы деревянные опоры пропитывали антисептиками, предотвращающими гниение В зависимости от концентрации пропиточного состава и способа пропитки срок службы опор из сосны повышается до 15-25 лет. Для таких опор вместо деревянных пасынков применяли железо­бетонные. что еще более увеличивает срок их службы. Пример на рисунке 1.

Рисунок 1. Дере­вянная П-образная промежуточная опора для одноцепний линии передачи 110 кВ

Железобетонные опоры изготовляют из центрифуги­рованного железобетона, при этом достигается экономия металла. Опоры выполняют конусообразными с небольшим наклоном обра­зующих. изготовляют их в заводских условиях на специальных станках. Длина стойки опоры 20-25 м. Такие опоры используют на линиях напряжением 35 и 110 кВ. Их устанавливают краном в котлован цилиндрической формы, вырытый буровой машиной. На линиях напряжением 220 и 500 кВ применяют также П-образные опоры с оттяжками. Пример на рисунке 2.

Рисунок 2. Железобетонная П-образная промежуточная опора для одноцепний линии передачи 220 кВ.

Металлические опоры изготовляют из стали марок СтЗ, Ст5 и низколегированной стали. Они прочны и надежны, но требуют-больших затрат металла. Для зашиты от коррозии метал­лические опоры покрывают масляной краской. Применяют их на линиях напряжением 110 кВ и выше и устанавливают наа металли­ческих подножках или бетонных фундаментах. Пример на рисунке 3.

Рисунок 3. Металлическая П-образная промежуточная опора для одноцепний линии передачи 110 кВ

Читайте так же: Типы опор линий электропередач по назначению.

Свяжитесь со мной:

  1. Устройство воздушных линий электропередач.
Вы можете оставить комментарий, или ссылку на Ваш сайт.

Мировой опыт и первые шаги

Первые линии электропередачи появились в конце XIX века и конструктивно имели много общего с телеграфными и телефонными. В большинстве случаев допустимо было применять те же изоляторы, крепёжную арматуру и столбы, что и на линиях связи. Поскольку расстояния между опорами были невелики, 50-70 метров, наиболее часто использовались деревянные столбы с железными крючьями или горизонтальными консолями — траверсами. Выбор между крючьями и траверсами делался в зависимости от числа и сечения подвешиваемых проводов, а также места расположения линии. Крюки ввинчивались в столб с двух сторон в шахматном порядке, и на каждом из них располагалось по одному изолятору. На траверсах, как правило, размещалось от двух до восьми изоляторов в ряд. В тех случаях, когда требовалась повышенная механическая прочность, в качестве опор использовали клёпанные металлические мачты, так же снабжённые крючьями или траверсами. С внедрением трёхфазных сетей переменного тока 2 и 6,6 кВ стали появляться новые типы опор, рассчитанные на подвеску трёх (рис.1 ) или шести (для двухцепных линий) проводов, однако условия сооружения линий всё ещё позволяли обходиться простейшими конструкциями и подходами. Нередко размеры опор и условия монтажа проводов задавались на глаз опытным монтёром, а не получались в результате расчёта. Первые отечественные опоры для линий 6,6 кВ почти всегда были деревянными, для крепления проводов применялись крюки или металлические, реже - деревянные траверсы, на каждой из которых размещался один провод.

Использование трёхфазного переменного тока, стремительное развитие электротехнической отрасли и увеличение потребности в электроэнергии способствовали росту напряжений, применяемых в линиях передачи, тем самым делая возможным передачу больших мощностей на большие расстояния. Стали широко использоваться линии напряжением 30-60 кВ. Кроме того, начало входить в обиход понятие экономического пролёта - наиболее выгодного расстояния между опорами с точки зрения затрат на строительство линии. В связи с этим впервые возник значительный интерес к вопросам механического расчёта опор ЛЭП и создания новых специализированных конструкций - их использование позволяло увеличить длину пролёта и добиться значительной экономии в условиях высокой стоимости изоляции и арматуры.

С ростом напряжения всё большее предпочтение среди материалов для опор отдавалось стали: использовать деревянные конструкции было уже далеко не всегда возможно и выгодно (проблема заключалась в их низкой надёжности и малом сроке службы: опыт применения антисептиков для пропитки опор ЛЭП в начале XX века был ещё невелик). Стоит так же отметить, что фарфоровые штыревые изоляторы, применявшиеся в начале 20 века на линиях напряжением 30-60 кВ, представляли собой громоздкие, дорогие, сложные в производстве, транспортировке и монтаже составные конструкции (рис.3 ), поэтому проектировщики старались сократить количество изоляторов на линии. Металлические опоры давали возможность сооружать линии с более длинными пролётами, что, в частности, позволяло использовать меньше изоляторов. На рис. 4 в качестве примера представлен фарфоровый штыревой изолятор фирмы Locke , применённый на линии 60 кВ Замора-Гуанахуато. Высота изолятора составляла около 30 см, диаметр верхней юбки - 35 см, а масса - около 7 кг. На линию изоляторы поставлялись в виде двух половинок, окончательная сборка происходила в полевых условиях с помощью портланд-цемента.

В 1904 году для электроснабжения шахт в мексиканском штате Гуанахуато была построена одна из первых в мире линий, на которой использовались только металлические опоры (рис.5 ). Протяжённость трёхфазной одноцепной линии составляла 100 миль, а напряжение - 60 кВ. В постройке линии принимали участие американские инженеры. Опоры для линии были закуплены у американской компании Aeromotor Windmill , производившей ветряные мельницы. Мачты ветряных мельниц хорошо подходили для использования в качестве опор с точки зрения механической прочности и экономии, так как требовали лишь минимальных изменений в конструкции, связанных с установкой арматуры для крепления проводов. Мачта линии Замора-Гуанахуато имела высоту 40 футов (12 м) и состояла из четырёх уголков размером 3 х 3 х 3/16 дюйма, соединённых раскосами и диафрагмами из уголков меньшего размера. Наверху мачты располагалась металлическая траверса на два штыревых изолятора и 3 ½-дюймовая труба для крепления верхнего штыревого изолятора. Для подтверждения надёжности конструкции на заводе Aeromotor Windmill были проведены испытания экспериментальной опоры. Опору закрепили горизонтально к стене здания и подвесили за верхушку платформу со свинцовыми грузами. Труба верхнего изолятора начала отклоняться от горизонтального положения при нагрузке 900 фунтов (405 кг), при этом прогиба самой мачты не происходило. При нагрузке 1234 фунта (555 кг) прогиб трубы достиг 6 дюймов, после снятия нагрузки остаточный прогиб составил 1 дюйм. При нагрузке 1560 фунтов (702 кг) труба продолжила изгибаться, пока груз не оказался на земле. На всём протяжении линии, кроме короткого участка у Гуанахуато, где из-за особенностей местности пришлось применить 60-футовые опоры и удлинённые 400-метровые пролёты, длина пролёта составляла 132 метра.

Применение металлических опор на линии Замора-Гуанахуато вызвало существенный интерес в среде инженеров-электриков. В 1904-06 годах в США было сооружено ещё несколько линий с опорами аналогичной конструкции, в том числе закупленными у компании Aeromotor Windmill. Благоприятный опыт использования таких конструкций оказал значительное влияние на подход к проектированию опор более мощных линий.

Немаловажным фактором, поспособствовавшим распространению металлических опор, стало изобретение подвесных изоляторов. К 1907-08 годам в электроиндустрии остро стояла проблема линейной изоляции. При напряжении выше 50 кВ штыревые изоляторы становились слишком громоздкими, хрупкими и неудобными в монтаже, кроме того, они не отличались высокой эксплуатационной надёжностью. При напряжении свыше 80 кВ применение штыревых изоляторов становилось и вовсе невозможным. Подвесные изоляторы были в этом плане гораздо более выгодными, однако, для них требовались более высокие опоры. В 1907 году Эдвард Хьюлетт (Edward Hewlett) и Гэрольд Бак (Harold Buck) изобрели первый пригодный для промышленной эксплуатации подвесной изолятор (рис.6 ). В том же году появился первый подвесной изолятор «с шапкой и стержнем» конструкции Джона Данкана (John Duncan, рис.9 ). Впервые подвесные изоляторы Хьюлетта были применены в 1907 году на линии 100 кВ американской компании Muskegon & Grand Rapids Power Co. Линия была построена с использованием металлических опор, её протяжённость составила 35 миль. Изоляторы Данкана, имевшие более прогрессивную конструкцию, устанавливались на нескольких линиях в 1908 году, в частности, на линии 104 кВ, принадлежавшей компании Stanislaus Electric Power (рис.8), однако, показали низкую надёжность из-за плохого качества цемента, соединявшего крепёжную арматуру с фарфоровой изолирующей деталью. Аналогичные проблемы, связанные с качеством цементной связки, преследовали первые изоляторы «с шапкой и стержнем» фирмы Ohio-Brass . Тем не менее, преимущества подвесных изоляторов были очевидны. К 1910-11 годам подвесные изоляторы продолжали совершенствоваться, они уже производились рядом заводов США и Германии и получали всё более широкое применение (рис.7 ) как в США, так и в Европе: первая европейская линия электропередачи 100 кВ Lauchammer (1910 г.) была построена с применением только подвесных изоляторов и только металлических опор (рис.10 ).

В условиях бурного развития электрических сетей в 1910-20-х годах выделились два основных подхода к конструированию металлических опор: американский и немецкий.

В начале XX века США было создано множество различных видов опор, но, в основном, американский подход заключался в применении пространственных конструкций с широким основанием, составленных из стержней (уголков) сравнительно малых (по сравнению с европейскими конструкциями) сечений. Этот подход происходил из опыта строительства линий на металлических опорах в 1904-06 годах, о котором говорилось ранее. Стойки опор в плане - квадратные или прямоугольные, в некоторых случаях - треугольные. Каждая нога помещалась на отдельный фундамент. Расположение проводов могло быть как треугольным (рис.8,11 ) или вертикальным (рис.12 ), так и горизонтальным (рис.13-14 ). В 1920-30-х годах опоры американского типа применялись при длине пролёта до 250 м. В отечественной практике опоры американского типа также известны как «широкобазные».

Немецкий подход предполагал использование узких квадратных в плане стоек с основанием, помещённым на один массивный, компактный фундамент. Пояса (вертикальные уголки) соединялись перекрёстной или треугольной решёткой («змейкой»). В 1920-30-х годах опоры немецкого типа, также называемые «узкобазными», применялись при длине пролёта до 200 метров и получили значительное распространение в Европе, так как позволяли сократить расходы на отчуждаемую землю (рис.15, рис.4 ).

Во Франции существовала своя разновидность одноцепных узкобазных опор с горизонтальным и треугольным расположением проводов (рис.16 ).

Типы опор в зависимости от назначения

Условия работы опор на высоковольтных линиях существенно различаются в зависимости от места установки опоры и места прохождения линии По назначению опоры разделяются на несколько типов.

Промежуточная (рис.17-18 ) - опора, которая в режиме нормальной эксплуатации линии воспринимает только поперечные ветровые нагрузки и вес проводов, но не их тяжение (усилие, с которым натянут провод). Крепления проводов на промежуточных опорах делаются с таким расчётом, чтобы минимизировать повреждения опоры в случае аварии (обрыва проводов).

Анкерная (рис.19-20 ) - опора, на которой провода всегда закрепляются жёстко - «анкеруются», анкерная опора воспринимает продольное тяжение проводов (рис.21 ). Анкерные опоры стараются устраивать таким образом, чтобы в нормальном режиме эксплуатации тяжение проводов с двух сторон от опоры было одинаковым. Анкерные опоры устанавливают при переходах через инженерные сооружения, естественные препятствия и каждые 1-1,5 км (по нормам 1920-30-х годов для линий 30-115 кВ) для разбиения линии на анкерные участки. Концевая опора - разновидность анкерной, которая в нормальном режиме воспринимает одностороннее или существенно неравномерное тяжение и устанавливается в начале и конце линии, а также перед большими переходами через естественные препятствия. (крупные реки, водохранилища, ущелья и т.п.).

Угловая (рис.22 ) - опора, которая устанавливается в местах, где линия изменяет направление. В нормальном режиме работы угловая опора воспринимает несимметричные нагрузки от проводов, результирующая которых направлена по биссектрисе угла поворота; поэтому такие опоры всегда укрепляются соответствующим образом и имеют массивные фундаменты. По способу крепления проводов угловые опоры делятся на анкерно-угловые и промежуточные угловые.

Существуют также специальные типы опор: переходные, транспозиционные, ответвительные.

Опоры «Электропередачи»

В Российской Империи первые линии электропередачи 30 кВ стали строиться Обществом «Электропередача», в планы которого входило развёртывание в Богородском уезде Московской губернии местной высоковольтной распределительной сети для снабжения близлежащих частных фабрик. С самого начала было решено использовать для всех линий металлические опоры, но первую линию 30 кВ Электропередача - Зуево по ряду причин пришлось строить на деревянных опорах. Примерно, через год, в 1914 году, была построена вторая линия - на деревню Большие Дворы, на которой, как и на всех последующих, были применены уже только металлические опоры. Значительная часть линий Общества проходила по частным владениям, и за аренду земли под опоры взималась плата, из-за чего при рассмотрении конструкций было решено остановиться на опорах немецкого типа, занимавших меньшую площадь, чем американские. Опоры производились заводом Гюжона в Москве (ныне «Серп и Молот»), доставлялись в Богородский уезд в разобранном виде на платформах по Нижегородской железной дороге, а затем развозились по трассе на лошадях. Для линий 30 кВ применялись двухцепные опоры марки C-15 и D-15 высотой 15 метров (рис.23-24 ). Опора C-15 использовалась в качестве анкерной и угловой, D-15 была её облегчённой версией, выполненной из профилей меньшего сечения, и использовалась в качестве промежуточной и, иногда - анкерной. Ствол опор состоял из двух секций с треугольной решёткой. Пояса выполнялись из уголков с полкой 70 - 100 мм, раскосы и диафрагмы- из уголков с полкой 30 - 60 мм. В нижней части опоры раскосы крепились к поясам с применением косынок, а в верхней - внахлёст. Все соединения, кроме креплений траверс и секций (которые предусмотрены разъемными), выполнены заклёпочными, что обусловлено дешевизной заклёпок по сравнению с болтами и малым опытом использования сварки. Для укрепления проводов на опорах смонтированы три траверсы плоской конструкции, изготовленные из двух стальных полос каждая, и снабжённые проушинами для подвески гирлянд тарельчатых подвесных изоляторов или штырями для крепления штыревых изоляторов. Изначально на всех промежуточных и некоторых анкерных опорах линий 30 кВ применялись штыревые изоляторы, однако, в конце 1920-х годов они были заменены на гирлянды тарельчатых изоляторов для большей надёжности, при этом средние траверсы были удлинены проставками из уголков (рис.24 ).

В 1915 году Общество «Электропередача» завершило строительство линии электропередачи напряжением 70 кВ на Москву, которая связала станцию «Электропередача» с заводом Гюжона и МОГЭС. Для этой ЛЭП были применены 18-метровые опоры марок А-18 (анкерная, рис.25 ) и B-18 (промежуточная). Эти же опоры применялись и на линиях 30 кВ в качестве переходных и анкерных там, где требовалась повышенная надёжность. Ствол каждой из опор состоял из двух разъёмных секций. У В-18 решётки обеих секций были треугольными, выполненными аналогично опорам C и D.

У опоры A-18 нижняя секция имела перекрёстную решётку, между собой секции соединялись усиленными накладками. Все неразъёмные соединения на опорах А-18 и B-18, как и на 15-метровых, выполнены с применением заклёпок. Траверсы пространственной конструкции изготавливались из угловых профилей. На концах траверс были укреплены проушины для подвески тарельчатых изоляторов, предусмотрены съемные детали для подвески двухцепных гирлянд. Большинство опор имели вертикальное расположение проводов, но некоторые выполнялись с расположением проводов «бочкой». И 15-метровые, и 18-метровые опоры не имели специальных тросостоек, но были оснащены зажимами для крепления грозозащитного троса на верхушке ствола. Такое расположение обусловлено существовавшей в те годы теорией о действии защитного троса, согласно которой трос следовало крепить как можно ближе к фазным проводам, что увеличивало общую ёмкость линии и способствовало понижению величины перенапряжения при индуцированных волнах.

Конструкции опор A,B,C,D оказались удачными и продолжили использоваться и после Октябрьской революции почти без изменений. В 1940-50-е годы во время ремонтов на уже эксплуатирующиеся опоры этой серии иногда надстраивали сварные тросостойки высотой два метра (рис.26 ). Некоторые линии с опорами A,B,C,D сохранились и действуют по сей день.

Опоры ГОЭЛРО

Поскольку план ГОЭЛРО предполагал строительство мощных районных электростанций, предназначенных, в частности, для питания важных объектов промышленности, одним из ключевых его элементов было строительство сети магистральных и распределительных линий электропередачи. На первых порах в распределительных сетях главным образом использовались уже знакомые линии 30-35 кВ, для магистральных передач предполагалось освоить новый класс напряжений - 115 кВ. К 1918-20 годам в международной практике уже имелся достаточно большой опыт строительства и эксплуатации таких линий электропередачи. Лидирующие позиции в вопросах строительства электропередач 100 кВ и выше, а также производства арматуры для них занимали США и Германия. Именно на германский и американский опыт ориентировались отечественные инженеры при создании металлических опор ЛЭП для линий ГОЭЛРО.

На линиях напряжением 115 кВ и выше предпочтение отдавалось опорам американского типа. Из-за большого веса металлические опоры для линий такого напряжения, как правило, выполняются разъёмными, то есть опора закрепляется на подпятники заранее подготовленного фундамента. Промежуточные и анкерные опоры американского типа возможно было устанавливать без устройства бетонных фундаментов, что было весьма существенно, так как бетонирование фундаментов в полевых условиях в 1920-е годы считалось одним из наиболее сложных аспектов строительства линии. Кроме того, в отличие от Европы, не стоял вопрос о затратах на отчуждение земель под опоры.

Металлические опоры для линий электропередачи ГОЭЛРО изготавливались разными механическими заводами, наиболее крупные из них: ленинградский завод «Стальмост», «Серп и Молот» и «Парострой» в Москве, Краматорский завод в Донбассе.

Существенное влияние на выбор опор, особенно на первых порах, оказывала нехватка металла: металлические опоры старались применять для строительства лишь наиболее ответственных линий, или только в качестве анкерных или угловых. Важно отметить, что и в дальнейшем, несмотря на увеличение производства стали, на линиях всех классов напряжений значительное внимание уделялось расширению применения деревянных опор, как более экономичных в условиях низких цен на мачтовый лес. Увеличение срока службы деревянных опор достигалось за счёт использования антисептиков, рельсовых или бетонных пасынков. В 1929-30-х годах уже существовал и применялся типовой проект, включавший в себя не только промежуточные, но и анкерные, и угловые деревянные опоры для ВЛ 110 кВ. В 1930-х годах деревянные опоры стали применяться и на линиях 220 кВ.

На первой в СССР линии 115 кВ Каширская ГРЭС - Москва из-за дефицита металла пришлось применить только деревянные опоры. Каширская линия 1922 года была одноцепной, промежуточная и анкерная опоры показаны на рисунках 17 и 19 соответственно. Опоры этой линии не были обработаны антисептиками. Качество постройки оказалось низким, и линия постоянно выходила в ремонт из-за повреждений опор. В 1931 году параллельно старой была построена новая двухцепная линия Кашира - Москва на металлических опорах.

Другая линия электропередачи 115 кВ должна была связать Волховскую ГЭС с понизительной подстанцией в Ленинграде. Руководил проектированием линии профессор Н. П. Виноградов. В основном, установка опор этой линии была выполнена в 1924 году, а в 1926 году началась её эксплуатация. Промежуточные опоры для экономии металла делались деревянными (рис.28 ), с учётом опыта Каширской линии. В качестве анкерных, угловых, транспозиционных и переходных были применены опоры американского типа с горизонтальным расположением проводов (рис.27 ), конструкция которых была схожа с опорами линий компаний Вестингауз и Монтана Пауэр . Все неразъёмные соединения выполнялись с применением заклёпок. Линия Волхов-Ленинград была двухцепной, но каждая цепь располагалась на отдельных опорах. Такое решение, как и выбор горизонтального расположения проводов, объясняется соображениями надёжности и простоты монтажа и безопасности обслуживания. Опоры американского типа Волховской линии получили большое распространение в электрических сетях Ленинградской области и существовали в нескольких модификациях.

Подход, использованный при строительстве линии Волхов-Ленинград, применялся и в сетях Мосэнерго. В конце 1920-х - начале 1930-х годов многие второстепенные одноцепные линии 115 кВ Мосэнерго строились с использованием металлических опор только в качестве анкерных и угловых. В качестве примера можно привести линии Голутвин-Озёры и Кашира-Рязань. Проектно-конструкторское бюро Мосэнерго разработало собственные опоры американского типа, несколько отличавшиеся от Волховских (рис.29-30 ). В основе конструкции так же лежали решения, применённые на линиях компании Вестингауз . Существовало три марки металлических опор американского типа ПКБ Мосэнерго для линий с деревянными промежуточными опорами: анкерная АМ-101, угловая УМ-101 и транспозиционная ТАМ-101, а также две модификации: АМ-101+4 и УМ-101+4 с подставками четырехметровой высоты для использования в качестве переходных. В качестве промежуточных использовались П-образные деревянные опоры конструкции ПКБ Мосэнерго, аналогичные опорам Каширской и Волховской линий.

Шатурские опоры

Важным моментом в истории отечественных линий электропередачи стало строительство в 1924-25 годах линии ШГЭС - Москва. Это была первая в СССР ЛЭП 115 кВ, на которой использовались двухцепные металлические опоры. В проектировании опор принял участие Александр Васильевич Винтер, а также инженеры А. Горев, Г. Красин, А.Чернышёв . Маршрут линии Шатура-Москва проходил не только по Московской области и пригородам, но и по самому центру Москвы: линия пересекала Окружную железную дорогу у станции Угрешская и выходила к Москве-реке по Арбатецкой улице, откуда шла по Крутицкой, Краснохолмской, Котельнической и Москворецкой набережным к Зарядью, где располагалась концевая опора (рис.31 ), с которой линия пересекала Москву-реку и заходила на подстанцию Раушской ГЭС.

Для городского участка ЛЭП были спроектированы специальные узкобазные опоры с фундаментами особой конструкции (рис.32 ), на остальном протяжении линии использовались опоры американского типа (рис.18,20,33 ).

Для повышения механической надёжности опор была выбрана конструктивная схема «обратная ёлка», при которой траверсы сужались от верхней к нижней. Такая схема не являлась оптимальной с электрической точки зрения, но позволяла избежать повреждения опор и их траверс в случае обрывов и падения проводов. Для защиты от ударов молний над каждой цепью располагался грозотрос. На анкерных опорах были предусмотрены крепления для одноцепных и двухцепных гирлянд изоляторов, на угловых опорах на концах траверс закреплялись трапециевидные площадки для более удобной подвески двухцепных гирлянд при повороте линии на большие углы. Высота до нижней траверсы на анкерных и угловых опорах американского типа составляла 11 м, на промежуточных - 12 м, вертикальное расстояние между траверс на всех опорах - 3,1 м. Все опоры имели заклёпочную конструкцию, отдельные секции опор собирались на стапелях в заводских условиях и соединялись вместе уже на трассе, также посредством клёпки.

На основе опыта Шатурской линии 1925 года ПКБ Мосэнерго разработало типовой проект двухцепных опор американского типа для I-II климатических районов. Опоры этого проекта несколько отличались от установленных на Шатурской ЛЭП, но сохранили общие технические решения и характерный внешний вид, за который они получили название «шатурских», или «опор шатурского типа». В 1920-х годах опоры шатурского типа устанавливались, в основном, на линиях Мосэнерго: Электропередача - Москва, Кашира - Москва (рис.34 ), вторая линия Шатура - Москва, линии Московского электрокольца 110 кВ. А с конца 1920-х годов шатурские опоры стали широко применяться и в других регионах СССР.

В типовой проект входили следующие основные марки опор (рис.35 ): АМ-103 - анкерная, также допускавшая поворот линии на угол до 5º, ПМ-103 - промежуточная, УМ-102 - угловая для поворота на угол до 60º, УМ-103 - угловая для поворота на угол до 90º, ТАМ-103 - транспозиционная. По сравнению с опорами Шатурской линии 1925 года была уменьшена база, ширина ствола, для поясов были применены угловые профили меньшего размера. Кроме опор обычной высоты, имелись также повышенные модификации: АМ-103+4, АМ-103+6,8, УМ-102+6,8.

Все опоры представляли из себя клёпанные конструкции. На трассу опоры поступали в виде отдельных собранных в заводских условиях секций, которые соединялись на месте при помощи клёпки, иногда - на болтах.

Фундаменты промежуточных и анкерных опор выполнялись в виде четырёх подпятников из металлических профилей, закрепляемых в грунте без использования бетона при прохождении линии по нормальному грунту, с лёгким бетонным основанием при установке опоры на мелком торфяном болоте или на сваях при установке на глубоком болоте. Подпятники анкерных опор отличались большим размером, а также тем, что в их конструкции имелся лист из котельного железа, улучшавший работу на вырывание вдоль линии. Фундаменты угловых и концевых опор выполнялись всегда бетонными.

В 1929-31 годах появились «грозостойкие» опоры шатурского типа марок АМ-103г, ПМ-103г, УМ-102г, УМ-103г, АМ-103г+4, отличавшиеся тросостойками увеличенной высоты (рис.36 ). Кроме того, в проект были включены опоры немецкого типа следующих марок: анкерная АМ-102 и промежуточная ПМ-102 (рис.37 ).

В связи с тем, что в 1930-х годах в СССР шло освоение заводской сборки опор с применением сварки, к 1933 году появились сварные модификации опор шатурского типа.

Шатурские опоры новой серии состояли из сварных секций, изготавливаемых на заводе и соединяемых на трассе заклёпками или болтами. Сварные опоры имели аналогичное с заклёпочными технологическое членение, что позволяло применять при строительстве линий одинаковую оснастку и шаблоны и было удобно с точки зрения транспортировки. Использование сварки удешевило шатурскую конструкцию за счёт экономии металла и несколько упростило заводскую сборку, так как отпала необходимость в сверлении множества отверстий под заклёпки. Также отпадала надобность в клёпке в полевых условиях, так как готовые секции соединялись только на болтах. Тем не менее, как и в случае с заклёпочными опорами, где требуется строгий контроль за качеством клёпки, при производстве сварных опор требуется тщательная проверка отсутствия перекосов конструкции и сварных швов на предмет непроваров и трещин.

Существовали следующие марки сварных опор шатурского типа (рис.38-40 ): АМ-109г - анкерная, УМ-113г - угловая для поворота на угол до 90º, ПМ-109г - промежуточная, УМ-111г - угловая для поворота на угол до 35º, УМ-112г - угловая для поворота на угол до 60º. Опоры УМ-111г и УМ-112г по конструкции ствола аналогичны АМ-109г, но отличаются асимметричными траверсами. Все сварные опоры шатурского типа выполнялись «грозостойкими». Сварные соединения на опорах этой серии в верхней части ствола выполнялись с применением фасонок, раскосы и диафрагмы нижней части ствола и траверс приваривались внахлёст. Траверсы и тросостойки крепились к стволу на болтах. Верхняя и средняя секции представляют собой неразъёмные конструкции, а нижняя секция состоит из четырех частей, соединяемых болтами. На угловых опорах на концах траверс укреплены трапециевидные площадки для более удобного крепления гирлянд изоляторов. Как и в случае с заклёпочными опорами, существовали повышенные модификации с подставками высотой 6,8 метров аналогичной конструкции (рис.40 ). Узкобазные варианты сварных опор шатурского типа не выпускались. Сварные шатурские опоры продолжали устанавливать на строящихся линиях электропередачи вплоть до конца 1950-х годов.

Активно строились в период ГОЭЛРО и линии распределительных сетей меньшего напряжения, 30-35 кВ. На этих линиях существовало ещё большее разнообразие конструкций опор, чем на ВЛ напряжением выше 100 кВ. Так как опоры линий 35 кВ существенно меньше и легче опор линий 115 кВ, наибольшее распространение получили удобные при транспортировке и монтаже неразъёмные конструкции немецкого типа. Неразъёмные опоры устанавливались либо прямо в грунт, либо на бетонную подушку. Котлован фундамента мог засыпаться землёй или заливаться бетоном. Существовали, однако, и другие конструкции. Например, опоры линии 35 кВ Ивановской ТЭЦ-1 имели узкий ствол и широкое основание, такая компоновка в дальнейшем получила широкое применение и стала называться «смешанной», так как совмещала достоинства широкобазных и узкобазных опор. Также стоит отменить опоры плоской («гибкой») конструкции Земо-Авчальской линии 35 кВ 1929 года (рис.41 ).

В сетях Мосэнерго в 1920-х годах продолжали применяться спроектированные до октябрьской революции опоры А-18, B-18, C-15 и D-15. С другой стороны, в эти же годы ПКБ Мосэнерго спроектировало для линий 35 кВ новые двухцепные опоры немецкого типа следующих марок (рис.42 ): Н - промежуточная, НА - анкерная, НУ - угловая. Кроме того, существовала специальная одноцепная опора НБ. Литера Н буквально означала «немецкий тип». В отличие от опор A,B,C,D, на которых провода располагались вертикально или «бочкой», опоры немецкого типа были выполнены по схеме «обратная ёлка». Отсутствовала возможность установки штыревых изоляторов. Конструкция опор немецкого типа была клёпанной, ствол опоры состоял из двух секций, траверсы крепились к стволу на болтах. У первых опор немецкого типа было низкое расположение грозозащитного троса, как на опорах общества «Электропередача», но в дальнейшем все вновь устанавливаемые и уже эксплуатирующиеся опоры снабжались повышенной тросостойкой.

В связи с дефицитом металла при строительстве линий 35 кВ предпочтение отдавалось деревянными опорам. Целиком на металлических опорах строились только наиболее важные линии, в остальном, металлические опоры использовались в качестве угловых и анкерных в особо ответственных местах. Существовало большое количество конструкций деревянных опор для линий 35 кВ: одноцепная «свечка», «ласточкин хвост» (рис.43 ), А-образная опора «азик», одноцепные П-образные опоры. Опоры «свечка» и «азик» могли использоваться со штыревыми изоляторами. Двухцепные опоры «азик» со штыревыми изоляторами ВЭО-38 были применены на линии электропередачи 33 кВ АМО - Рублёвская насосная станция 1923 года постройки. Наибольшее же распространение получили П-образные опоры, которые по конструкции были аналогичны деревянным опорам ЛЭП 110 кВ.

Свирь и ДГЭС

Новые мощные гидроэлектростанции, сооружаемые по плану ГОЭЛРО, предназначались для снабжения электроэнергией крупных промышленных районов: заводов Ленинграда и строящихся промышленных гигантов Запорожья. Для выдачи мощностей станций потребителям необходимо было сооружать крупные магистральные линии и разветвлённые местные электросети, при этом уже освоенные классы напряжений 35 и 110-115 кВ уже не обеспечивали требуемую пропускную способность и не могли стать основой запланированных энергосистем. Во второй половине 1920-х годов в распоряжении советских инженеров имелся некоторый заграничный опыт как проектирования, так и эксплуатации линий напряжением выше 150 кВ. В США и странах Европы на тот момент существовали линии, работавшие на напряжении 220 кВ. Технические решения, выработанные для первых линий 154, 161 и 220 кВ, базируются как на иностранном опыте, так и на собственных, полностью оригинальных решениях.

В 1927 году началось строительство Нижнесвирской ГЭС в Ленинградской области. Для передачи энергии реки Свирь в Ленинград предстояло соорудить самую длинную и самую мощную в СССР ЛЭП. Руководил созданием линии профессор Н. П. Виноградов, разработавший ранее проект электропередачи Волхов - Ленинград. При составлении сметы в 1927 году рассматривалось два варианта строительства электропередачи Свирь-Ленинград: первый вариант представлял собой четырёхцепную линию напряжением 130 кВ, а второй - двухцепную линию 220 кВ. Стоимость сооружения линии по первому варианту была меньше, однако второй вариант позволял обеспечить большую мощность. В итоге для исполнения был выбран второй вариант. Линия электропередачи проходила по крайне заболоченным местам, однако, в результате тщательнейшего изучения всех возможных вариантов трассы был выбран наиболее проходимый и короткий. Длина трассы в своём конечном варианте составила 272 км, линия была способна передавать мощность до 240 мВт, что соответствовало пиковой планируемой мощности двух станций Свирского каскада. Две цепи передачи выполнялись в виде отдельных линий, что было сделано для повышения надёжности передачи и обеспечения безопасности персонала во время ремонта при отключении одной из цепей. По результатам экономического расчёта была выбрана длина пролёта в 300 м, длина анкерного участка - 3 км. Из соображений экономии и удобства обслуживания было выбрано горизонтальное расположение проводов. В первоначальном варианте каждая цепь защищалась одним сталеалюминиевым грозозащитным тросом.

Линия Свирь-Ленинград была первой из проектируемых в СССР ЛЭП напряжением выше 115 кВ, работа над проектом началась в 1926 году. Исходя из выбранного расстояния между проводами и высоты их подвески, в качестве основного рассматривался вариант опоры американского типа (рис.43 ). Но такой вариант не удовлетворял современным требованиям к проектированию ферменных конструкций. Требовалось, чтобы отношение длины стержней, из которых состоит конструкция, к минимальному радиусу инерции не должно было превосходить: 120-140 для основных стоек, 160 -180 - для второстепенных элементов и 200 - для вспомогательных, не несущих усилий деталей. При расчёте опоры на основании этого условия в конструкции получалось большое количество неработающих и слабоработающих элементов значительной длины, что при строительстве привело бы к перерасходу металла. Проектировщики опоры столкнулись с тем случаем, когда не рационально приспосабливать старые конструкции к новым условиям.

В ходе рассмотрения различных вариантов была выбрана Н-образная конструкция с наименьшей свободной длиной элементов фасадной решётки (рис.44 ), что позволило существенно сократить вес опоры по сравнению с первоначальным вариантом. Вес промежуточной опоры составлял 3,3 т, анкерной - 4,3 т. Было достигнуто сокращение веса, по сравнению с первоначальным вариантом, на 17% для промежуточной и на 12% для анкерной опор. Общая экономия металла для двух цепей линии составила 1120 т. Для подтверждения расчётов, проверки условий изготовления и получения фактических коэффициентов запаса прочности были изготовлены и испытаны две экспериментальные опоры (рис.45 ), промежуточная и анкерная. Проведённые натурные испытания подтвердили соответствие нормам и требованиям расчёта.

Хотя во время строительства линии Свирь-Ленинград уже существовала возможность изготовить опоры с применением сварки, из-за особой важности линии и из соображений надёжности все опоры были выполнены с использованием заклёпок. Как сказано выше, изначально каждая цепь защищалась одним грозотросом, расположенным на небольшой треугольной стойке над одной из ног опоры, но в последующие годы вся линия была оборудована двумя грозозащитными тросами. Для сохранности опор в случае обрывов проводов на всём протяжении линии, кроме переходов через инженерные сооружения, были применены выпускающие зажимы, хотя конструкция опор была рассчитана на полную одностороннюю нагрузку в случае несрабатывания зажима.

Линия электропередачи Свирь-Ленинград пережила Великую Отечественную войну, большинство её изначальных опор сохранились и продолжают эксплуатироваться по сей день.

Другим крупным объектом электосетевого строительства была стройка ДнепроГЭС. Энергосистема ДГЭС должна была питать регион Донбасса и крупные промышленные предприятия Запорожья, среди которых комплекс Днепрокомбината: Завод Ферросплавов, Металлургический завод и Алюминиевый Комбинат. Главные линии энергосистемы работали на напряжении 161 и 150 кВ, в распределительных сетях также использовалось напряжение 35 кВ. Кроме того, в Днепропетровске существовало кольцо линий 150 кВ, обеспечивающее более надёжную работу энергосистемы. Наиболее протяжённой линией была ЛЭП 161 кВ ДГЭС - Рыково (Донбасс), длина которой составляла 210 км, а общее протяжение линий, считая по одной цепи, составляло примерно 900 км.

Проектированием линий электропередачи для энергосистемы ДГЭС руководил профессор Н. П. Виноградов.

Условия механического расчёта опор были весьма сложными ввиду того, что линии электропередачи Днепростроя проходили по гололёдным районам. Из-за значительных ветровых нагрузок, вызывающих сильное отклонение изоляторов и проводов, расчётное расстояние между проводами достигало 6,4 м, что даже с учётом меньшего рабочего напряжения соответствовало параметрам линии Свирь-Ленинград. В связи с этим, а также для большей грозоустойчивости, было решено использовать для линий модифицированный вариант «свирских» опор с горизонтальным расположением проводов. Более низкое напряжение позволяло уменьшить габарит линии по высоте, в связи с чем верхняя часть опор была несколько упрощена, в то время как нижняя часть осталась без изменений.

Опоры были рассчитаны для использования при нормальной длине пролёта 220 м и сталеалюминиевом проводе марки АС сечением 120 мм 2 . В некоторых случаях такие же опоры использовались с проводом АС-150, но при уменьшенных пролётах. Вес промежуточной (рис.47 ) опоры составлял 3,28 т, анкерной (рис.46 ) - 4,6 т. Каждая линия защищалась двумя грозотросами. Для проверки правильности выбора конструкции был сделан проект опоры по американскому типу, расчёт показал, что применение опор свирского типа даёт экономию 20% экономию металла. Опоры свирского типа применялись на большинстве линий Днепростроя.

Иная конструкция опор была применена на весьма протяжённых, но менее ответственных линиях 161 кВ ДГЭС - Донбасс и ДГЭС - Днепропетровск-Каменское. При изучении различных вариантов двухцепных опор с горизонтальным расположением проводов для этих линий в числе прочих рассматривалась трёхстоечная опора с общей траверсой, но все варианты опор оказывались слишком тяжёлыми. Однако, неожиданные и благоприятные результаты были получены при разделении трёхстоечной двухцепной опоры с единой траверсой на три отдельные опоры, каждая из которых несла два провода (рис.48,50 ). Такой вариант обеспечивал существенную экономию металла по сравнению с использованием двух одностоечных опор. Размещение механически не связанных стоек на отдельных бетонных блоках позволяло избежать свойственных широкобазным опорам проблем с появлением напряжений, вызванных осадкой фундамента. Трёхстоечные опоры были более транспортабельны, обеспечивали более благоприятные условия монтажа проводов и изоляторов. Недостатками конструкции были объём фундаментов, больший, чем при использовании двух широкобазных опор, и возможность выхода из строя сразу обеих цепей при повреждении средней опоры. С учётом всех факторов применение трёхстоечной конструкции удешевляло строительство линии на 10% по сравнению с вариантом строительства двухцепной линии на одностоечных широкобазных опорах.

После того, как трёхстоечная конструкция была утверждена для использования на линиях ДГЭС - Донбасс и ДГЭС - Каменское, были построены две опытные опоры: сварная и клёпанная (рис.49 ). В июне 1930 года обе опоры успешно прошли испытания, причём сварная опора показала большие фактические коэффициенты запаса, чем клёпанная. На основании испытаний было принято решение об использовании электросварки для изготовления промежуточных опор. Это был первый значительный отечественный опыт в использовании сварных опор на высоковольтных линиях. Анкерные, угловые и специальные опоры выполнялись клёпанными.

Принятые типы опор использовались с выпускающими зажимами при пролётах до 235 м на всём протяжении лини, кроме особо гололёдных участков. На линии ДГЭС - Донбасс был применён провод СА-150, в связи с чем конструкции анкерных опор были усилены.

Для сокращения начальной стоимости линии ДГЭС - Донбасс и ДГЭС - Каменское строились в две очереди. По мере выхода ГЭС на полную мощность строилась сначала одна цепь каждой линии, затем достраивалась вторая. При этом в первую очередь строились две двухпроводные линии, у которых три провода были рабочими, а четвёртый оставался резервным до момента постройки третьей линии и введения в строй второй цепи.

Кроме обычных опор, для энергосистемы ДнепроГЭС были созданы уникальные переходные опоры различных конструкций, заслуживающие отдельного упоминания.

После ГОЭЛРО

Первые годы ГОЭЛРО, отмеченные интенсивным строительством ЛЭП разных классов напряжений с использованием самых разнообразных технических решений, были очень важны для накопления опыта проектирования и сооружения высоковольтных линий. В очень короткое время были освоены новые классы напряжений: 110-115 и 220 кВ. Уже в 1931-32 году обсуждалось создание электропередач напряжением 400 и 500 кВ, рассматривались различные конструкции опор, делались попытки экстраполировать на новые условия опыт проектирования линий Днепростроя и Свири. Что касается существующих классов напряжений, то совершенствование конструкций опор для них продолжалось. С одной стороны, большое внимание уделялось применению дерева: в конце 1930-х годов деревянные опоры стали использовать не только на линиях 35 и 110 кВ, но и на ЛЭП 220 кВ. С другой стороны, вступали в строй промышленные гиганты первых пятилеток, и дефицит конструкционного металла проходил, что позволяло шире использовать металлические опоры. Определённое внимание уделялось опорам из железобетона, но на тот момент связанные с их производством и установкой технические трудности всё ещё не позволяли широко их использовать.

Общей тенденцией был переход во второй половине 1930-х - начале 1940-х годов на заводскую сборку опор с применением электросварки: появились сварные модификации опор шатурского типа, о которых говорилось выше, сварные опоры для линий 35 и 220 кВ.

К концу 1930-х годов для линий 35 кВ были спроектированы унифицированные опоры сварной конструкции следующих марок (рис.51 ): А-37г - анкерная, П-37г - промежуточная и У-37г - угловая. Опоры были выполнены по схема «елка». Траверсы - швеллерные, плоской треугольной конструкции. По сравнению с предыдущими металлическими опорами для ЛЭП 35 кВ, была увеличена длина траверс и вертикальное расстояние между ними. Ствол состоял из двух сварных секций, соединяемых болтами. Опоры данного типа отличались простой конструкцией и сравнительно малой массой и применялись повсеместно до конца 1950-х годов.

Для активно строящихся линий 220 кВ к середине 1930-х годов был создан типовой проект одноцепных портальных опор, существенно отличавшихся от применённых на линиях ДГЭС и Свирь-Ленинград. Опоры портального типа состояли из двух узких стоек прямоугольного сечения, на которых размещалась горизонтальная траверса (рис.52 ). Каждая стойка укреплялась на отдельный компактный фундамент. Выбранная конструкция позволяла сделать опоры более технологичными, транспортабельными и сократить по сравнению с широкобазными опорами свирского типа механические напряжения, возникающие из-за осадки фундаментов стоек. Секции портальных опор изготовлялись в заводских условиях при помощи электросварки. На трассе готовые секции соединялись заклёпками, а в более поздние годы - болтами. Существовали промежуточный, анкерный и угловой вариант опоры. Портальные опоры этой серии применялись на линиях 220 кВ повсеместно и весьма продолжительное время - до конца 1950х годов. Среди них: ВЛ Сталиногорск - Москва, Рыбинск - Москва и другие. Появились также типовые переходные опоры для линий 220 кВ высотой 35 и 70 метров.

Отход от использования конструкций периода ГОЭЛРО начался в первые послевоенные годы. С одной стороны, до конца 1950-х продолжали строиться линии на опорах шатурского типа сварной конструкции и линии 220 кВ на свободностоящих порталах. С другой стороны, всё большее применение находили узкобазные опоры и конструкции так называемого «смешанного» типа. Опоры смешанного типа применялись на ЛЭП 35-220 кВ и имели такой же ствол, как узкобазные (немецкий тип), и сильно расширяющуюся к фундаменту нижнюю секцию. Таким образом, опоры смешанного типа объединяли в себе преимущества узкобазных и широкобазных. Появилось значительное разнообразие конструкций опор, созданных разными проектными институтами, лидером среди которых являлся ленинградский институт «Теплоэлектропроект» (ТЭП). Кроме того, появилось большее количество вариантов опор, учитывающих особенности разных климатических зон. В 1948 году появилась новая серия опор для линий 110 кВ, заменившая шатурские: опоры «крымского» типа (рис.53 ). По конструкции ствола эти опоры принадлежали к смешанному типу. Один из вариантов промежуточной опоры был узкобазным. При изготовлении секций на заводе использовалась электросварка, для соединения секций - болты. Траверсы были плоской конструкции, несущими элементами в них являлись швеллеры. Имелись варианты опор для подвески двух и одного грозозащитного троса. Опоры крымского типа вытеснили шатурские и получили очень широкое распространение на территории СССР, значительное число таких опор продолжает эксплуатироваться. Сварные опоры смешанного типа (крымского, ленинградского и другие) продолжали использоваться до середины 1960-х годов, в итоге они были вытеснены более технологичными унифицированными опорами болтовой конструкциями.

Кроме того, в послевоенные годы в СССР были сооружены первые линии электропередачи 400 и 500 кВ (рис.55 ). В них также отразился опыт, накопленный в период становления электросетевой отрасли. Некоторые общие технические решения, применённые при проектировании этих линий, обсуждались ещё в начале 1930-х годов (Рис.54 ).

Подытоживая статью, стоит ещё раз отметить, что годы работы общества «Электропередача», и первые годы ГОЭЛРО, когда шло активное строительство ЛЭП, и проходили проверку разные подходы и технические решения, были очень важны для накопления бесценного опыта проектирования и сооружения высоковольтных линий, а также для подготовки квалифицированных инженерных и технических кадров. Полученный опыт стал фундаментом для всего последующего развития отечественных электрических сетей и для создания объединённой энергетической системы.

Литература:

1. Инженер И.В. Линде, «Справочная книга для электротехниковъ» 11-е издание, вторая

государственная типография, 1920 г.

2. Кох, «Электропередача высокого напряжения», издательство Бюро Иностранной Науки и

Техники, Берлин, 1921 г.

3. А.А. Смуров, «Электротехника высокого напряжения и передача электрической энергии»,

типография им. Бухарина, Ленинград, 1925 г.

4. В.Э.К. бюро по высоким напряжениям, труды I всесоюзной конференции по электропередаче больших мощностей на большие расстояния токами сверхвысоких напряжений, ГЭИ М-Л, 1932 г.

5. Техническая Энциклопедия, глав. ред. Мартенс, том 20, ОГИЗ РСФСР, Москва, 1933 г.

6. Инж. В. В. Гульденбальк, Сооружение линий электропередач высокого напряжения, ОНТИ НКТП СССР, ГЭИ М-Л, 1934 г.

7. Электротехнический Справочник (подстанции и сети высокого напряжения) под общ. ред.

инженера М.В. Хомякова, ГЭИ Москва-Ленинград, 1942 г.

8. Электротехнический Справочник (электрические установки высокого напряжения, подстанции, сети и линии электропередач) под общ. ред. инж. М.В. Хомякова, ГЭИ Москва-Ленинград, 1950 г.

9. Линии электропередач и подстанции 400 кВ, ОРГЭНЕРГОСТРОЙ, Куйбышев, 1958 г.

Е.В.Старостин, «Мечты и мачты шатурских романтиков»

Рис.43 - фотография Дмитрия Новоклимова

Основные элементы воздушных линий. Опоры.

Опоры

Опоры являются одним из главных конструктивных элементов линий электропередач, отвечающим за подвеску электрических проводов на определённом уровне.

Классификация опор.

Классифицировать опоры можно по различным признакам: по назначению (по характеру воспринимаемых нагрузок), по особенностям их конструкции, по материалу из которого изготовлена опора, по способу закрепления в грунте, по количеству цепей передачи электрической энергии и т.д.

В зависимости от назначения опоры, она должна выдерживать определенные нагрузки. По характеру воспринимаемых нагрузок опоры разделяются на два вида: воспринимающие усилие натяжение от проводов и тросов и не воспринимающие такого тяжения. В зависимости от этого применяют следующие типы опор:

  • Промежуточные - устанавливаемые на прямых участках трассы, воспринимают вертикальные усилия от веса проводов, изоляторов, арматуры и горизонтальные нагрузки от давления ветра на опору и провода. Промежуточные опоры также могут устанавливаться в местах изменения направления трассы при углах поворота менее 20-30 градусов, в этом случае они воспринимают и поперечные нагрузки от тяжения проводов. В аварийном режиме (при обрыве одного или нескольких проводов) промежуточные опоры воспринимают нагрузку от тяжения оставшихся проводов, подвергаются кручению и изгибу. Поэтому их рассчитывают с определенным запасом прочности. Промежуточные опоры на линиях составляют 80-90%.
  • Анкерные - устанавливаются в местах изменения направления трассы, числа, марок и сечения проводов, а также на пересечении ВЛ с различными сооружениями, воспринимают усилия натяжения проводов ВЛ.
а б

Рисунок. Опоры воздушных линий: а – промежуточная опора; б – анкерная опора.

На базе анкерных опор могут выполняться:

  • концевые опоры - устанавливаются в начале и конце ВЛ, воспринимают односторонние усилия тяжения проводов,
  • угловые опоры - устанавливаются в местах изменения направления трассы,
  • ответвительные опоры - предназначены для выполнения ответвлений,
  • перекрестные опоры - устанавливаются в местах пересечения трасс воздушных линий,
  • переходные - устанавливаются в местах перехода трассы линии через различные препятствия (железные и автомобильные дороги, реки и водоемы и т.п.),
  • транспозиционные опоры - предназначены для изменения расположения фаз на опоре.

Рисунок. Анкерные опоры: а – угловая; б – ответвительная; в - транспозиционная.

В разделе ГАЛЕРЕЯ размещен фотоальбом "Классификация опор ВЛ по назначению".

По материалу, из которого изготавливаются , опоры могут быть:

  1. Низкая стоимость. Деревянные опоры дешевле железобетонных и металлических опор;
  2. Деревянная опора значительно легче железобетонной (примерно в 3 раза), что снижает затраты на их транспортировку к месту монтажа, кроме того для установки деревянных опор не требуется применение крановых механизмов большой грузоподъемности. При необходимости, деревянную опору можно установить в грунт вручную;
  3. Хорошие диэлектрические свойства, что приводит к снижению токов утечки на ВЛ;
  4. Деревянные опоры лучше выдерживают изгибающие нагрузки, чем железобетонные (примерно в 1,5-2 раза), поэтому они лучше противостоят гололедным и ветровым нагрузкам;
  5. Снижается вероятность «эффекта домино». Так как железобетонная опора значительно тяжелее деревянной то, падая она может увлечь за собой соседние опоры по всему анкерному пролету, более легкая деревянная опора будет удерживаться на натянутых проводах, что сокращает количество аварийных отключений на линиях;
  6. «Условно» высокий срок службы. В соответствии с ГОСТ 20022.0-93 средний срок службы деревянных опор может достигать 45-50 лет.

Недостатки деревянных опор:

В настоящее время деревянные опоры применяются, как правило, на ВЛ до 1 кВ.

  • Металлические. Выполняют из стали специальных марок. Отдельные элементы соединяют сваркой или болтами. Для предотвращения окисления и коррозии поверхность металлических опор оцинковывают или периодически окрашивают специальными красками. Металлические опоры бывают решетчатого типа, а так же многогранные в виде гнутых стальных стоек.
  • Рисунок. Металлические опоры: а - решетчатого типа; б - из многогранных гнутых стоек.

    Многогранные металлические опоры выполняются из стоек в виде полых усечённых пирамид из стального листа с поперечным сечением в форме правильного многогранника. Секции стоек соединяются между собой телескопическим или фланцевым соединениями. Траверсы таких опор выполняются многогранными, решётчатыми или изолирующими.

    Преимущества многогранных опор ЛЭП:

    1. Меньше сроки строительства. Сроки строительства ВЛ на многогранных опорах меньше чем у ВЛ выполненных железобетонными и металлическими решетчатыми опорами. Это обусловлено снижением трудозатрат за счет увеличенных пролетных расстояний, простоты установки многогранных опор, а также малого количества сборочных элементов.
    2. Ниже затраты на транспортировку. Многогранные опоры отличает низкая стоимость транспортировки: в 1,5-2 раза дешевле решетчатых, и в 3-4 раза дешевле железобетонных опор. Длина секций 12 м позволяет использовать для перевозок стандартный габаритный транспорт. Телескопическая конструкция опор позволяет при транспортировке размещать одни секции внутри других.
    3. Малый землеотвод. При применении многогранных опор затраты на постоянный землеотвод снижаются. По сравнению с железобетонными опорами выигрыш обеспечивается за счет меньшего количества опор при равном отводе на одну опору, а по сравнению с решетчатыми, за счет меньшего отвода под одну опору при примерно равном количестве опор.
    4. Экономическая эффективность. С учетом выше приведенных преимуществ, использование при строительстве ВЛЭП стальных многогранных опор позволяет сэкономить до 10% денежных средств по сравнению с железобетонными и до 40% по сравнению с металлическими решетчатыми опорами.
  • Железобетонные. Массовое внедрение данного типа опор началось в 50-х годах прошлого века взамен более дорогих металлических опор. Основными элементами железобетонных опор являются стойки, траверсы, тросостойки, надставки, оголовники, хомуты, оттяжки, различные узлы крепления и ригели.
  • Стойки железобетонных опор выполняют из бетона, армированного металлом.



    Рисунок. Конструкция железобетонной опоры.

    Сопротивление бетона растяжению на порядок ниже сопротивления сжатию, поэтому для увеличения прочности опор при растяжении в бетон закладывается стальная арматура. Примерно одинаковые коэффициенты температурного расширения стали и бетона исключают появление в железобетоне внутренних напряжений при изменениях температуры.

    В настоящее время доля ВЛ с железобетонными опорами составляет около 80% протяженности всех строящихся линий.

    Широкое распространение железобетонных опор ВЛ обусловлено относительной дешевизной конструкций, высоким уровнем унификации и типизации стоек опор, и наличием широкой производственной базы. Железобетонные опоры обладают высокой механической прочностью, долговечны (срок службы около 40 лет) и не требуют больших расходов при эксплуатации. Затраты труда на их сборку значительно ниже, чем на сборку деревянных и металлических опор решетчатого типа. Положительным качеством железобетона является также надежная защита металлической арматуры от коррозии. С целью предохранения арматуры от коррозии опоры на заводе-изготовителе покрываются гидроизоляцией – асфальтобитумным лаком.

    Недостатком железобетонных опор является большая масса, что удорожает транспортные расходы и вызывает необходимость применения при сборке и монтаже кранов большой грузоподъемности. Железобетонные опоры ВЛ способны выдерживать в 2-3 раза меньшие аварийные нагрузки, чем металлические, и для строительства линий требуется вдвое больше опор. Кроме того, при растяжении сталь может удлиняться в 5-6 раз больше, чем бетон, вследствие чего в бетоне могут появляться трещины. Для повышения трещиностойкости железобетонных конструкций применяют предварительное напряжение арматуры, которое создает дополнительное обжатие бетона.

    Железобетонные стойки кольцевого сечения (конические и цилиндрические) изготовляют на специальных центробежных машинах (центрифугах), формующих и уплотняющих бетон путем вращения формы вокруг ее оси. Стойки прямоугольного сечения изготовляют способом вибрирования, при котором уплотнение бетона в формах производят вибраторами. Для линий электропередачи напряжением 110 кВ и выше используют только центрифугированные стойки, а для опор ВЛ до 35 кВ – как центрифугированные, так и вибрированные.

    Рисунок. Железобетонные стойки опор воздушных линий: а – прямоугольного сечения; б – кольцевого сечения.

    Траверсы железобетонных опор изготавливаются металлическими. Также проводятся работы по созданию стеклопластбетонных траверс, в которых бетон армирован стекловолокном. Отдельные участки ВЛ с такими траверсами и опорами находятся в опытно-промышленной эксплуатации.

  • Комбинированные. Для увеличения срока службы деревянных опор их выполняют составными: из более длинной основной деревянной стойки и короткого пасынка (приставки), как правило, железобетонного. Пасынок – часть опоры, которая заглубляется в землю.
  • Композитные. Применение опор из композитных материалов при сооружении воздушных линий является последним достижением в электромонтажном производстве. Основа применяемого материала - стекловолокно. Достоинством композитных опор является: малый вес, упрощение процедуры хранения и транспортировки, простота монтажа и технического обслуживания данных опор, высокая прочность и долговечность, огнестойкость и экологичность, хорошие диэлектрические свойства. К недостаткам данного типа опор можно отнести: относительно высокую стоимость, а также отсутствие опыта их монтажа и эксплуатации. Опоры из композитных материалов в настоящее время применяются в основном для организации сетей наружного освещения, однако все больше сетевых компаний начинает использовать стеклопластиковые стойки при сооружения ВЛ среднего и высокого напряжения.
  • По способу закрепления в грунте:

    По количеству цепей:

    Опоры ВЛ различают также по конструкции , которая зависит от назначения ВЛ, ее напряжения, количества проводов и тросов, подвешиваемых на опоре, их расположения, климатических и других условий. Простейшая конструкция опоры - одиночный столб («свечка»). Кроме «свечки» применяют более сложные опоры: А-образные, треноги, П-образные (портальные), АП-образные и т.д.

    Рисунок. Опоры воздушных линий: а – V-образная опора (типа «набла»); б – Y-образная опора; в – опора типа «тренога».

    В разделе ГАЛЕРЕЯ размещен фотоальбом "Классификация опор ВЛ по конструкции".

    Кроме типовых конструкций опор ВЛ, на практике также можно встретить и уникальные опоры.

    В разделе ГАЛЕРЕЯ размещен фотоальбом "Уникальные опоры воздушных линий".

    По способу установки:

    Электричество в наше время это основной вид энергии используемый повсюду. Повсеместное использование её стало возможным благодаря электрическим сетям , которые объединяют источники и потребителей электроэнергии. Линии электропередачи или сокращённо ЛЭП выполняют функцию транспортировки электричества. Они прокладываются либо над поверхностью земли и именуются «воздушными», либо заглубляются в землю и или под воду и именуются «кабельными».

    Воздушные линии электропередачи, несмотря на их сложную инфраструктуру получаются более дешёвыми по сравнению с кабельными линиями. Сам по себе высоковольтный кабель является дорогим и сложным изделием. По этой причине этими кабелями прокладываются только некоторые участки на трассе воздушной ЛЭП в тех местах, где невозможно установить опоры с проводами, например через морские проливы, широкие реки и т.п. Кабелями прокладываются электрические сети в населённых пунктах, где сооружение опор также невозможно из-за городской инфраструктуры.

    ЛЭП, несмотря на большую протяжённость это всё те же электрические цепи, для которых закон Ома применим так же, как и для остальных. Поэтому экономичность ЛЭП напрямую связана с увеличением напряжения в ней. Сила тока уменьшается, а вместе с ней и потери становятся меньше. По этой причине, чем дальше от электростанции расположены потребители, тем более высоковольтной должна быть ЛЭП. Современные сверхдальние ЛЭП передают электрическую энергию с напряжениями в миллионы вольт.

    Но увеличение напряжения с целью уменьшения потерь имеет ограничения. Причиной их является коронный разряд. Это явление проявляется, вызывая ощутимые потери энергии, начиная с напряжений выше 100 киловольт. Жужжание и потрескивание высоковольтных проводов является следствием коронного разряда на них. По этой причине, с целью уменьшения потерь на коронный разряд, начиная с 220 киловольт, применяется два провода и более для каждой фазы воздушной ЛЭП.

    Протяжённость линий электропередачи и рабочее напряжение их являются взаимосвязанными.

    • С напряжениями от 500 киловольт работают сверхдальние ЛЭП.
    • 220 и 330 киловольт это напряжения для магистральных линий электропередачи.
    • 150, 110, и 35 киловольт это напряжения распределительных ЛЭП.
    • Напряжения 20 киловольт и менее характерны для местных электросетей, по которым снабжаются электроэнергией конечные потребители.

    Опоры для проводов

    Кроме проводов в состав линий электропередачи в качестве главных конструктивных элементов входят опоры. Их назначение это удерживание проводов. В каждой ЛЭП есть несколько разновидностей опор, что показано на изображении ниже:

    Анкерные опоры воспринимают большие нагрузки и поэтому имеют прочную жёсткую конструкцию, которая может быть весьма разнообразной. Все опоры соприкасаются со слабым или сырым грунтом через бетонный фундамент. В прочном грунте делаются скважины, в которые непосредственно погружаются опоры ЛЭП. Примеры конструкций металлических анкерных опор показаны на изображении далее:

    Опоры также могут быть изготовлены с применением бетона или древесины. Деревянные опоры хотя и менее долговечные, но в полтора раза более дешёвые в сравнении с металлическими и бетонными конструкциями. Особенно оправдано их применение в регионах с сильными морозами и большими запасами древесины. Наиболее широкое распространение деревянные опоры получили в электросетях с напряжением до 1000 Вольт. Конструкция таких опор показана на изображении далее:

    Провода линий электропередачи

    Провода современных ЛЭП в основном изготовлены из алюминиевой проволоки. Для местных линий электропередачи применяются провода из чистого алюминия. Ограничением является длина пролёта между опорами в 100 – 120 метров. Для более протяжённых пролётов применяются провода из алюминия и стали. Такой провод имеет внутри стальной трос, охваченный алюминиевыми жилами. Трос воспринимает механическую нагрузку, алюминий – электрическую.

    Полностью стальные провода применяются только на непротяжённых участках, где необходима максимальная прочность при минимальном весе провода. Все линии электропередачи с напряжением выше 35 киловольт снабжены стальным тросом для защиты от удара молний. Провода из меди и бронзы в настоящее время применяются только в ЛЭП специального назначения. Медная и алюминиевая проволока используется для изготовления полых трубчатых проводов. Это делается для уменьшения потерь в коронном разряде и для уменьшения радиопомех. Изображения проводов различной конструкции показаны далее:

    Провод для линий электропередачи выбирается с учётом условий работы и возникающих при этом механических нагрузок. В тёплое время года это ветер, который раскачивает провода и увеличивает нагрузку на разрыв. Зимой к ветру добавляется гололёд. Слой льда на проводах своим весом существенно увеличивает нагрузку на них. Тем более что понижение температуры приводит к уменьшению длины проводов и усиливает внутренне напряжение в их материале.

    Изоляторы и арматура

    Для безопасного соединения проводов с опорами используются изоляторы. Материалом для них служит либо электротехнический фарфор, либо закалённое стекло, либо полимер, как показано на изображении ниже:

    Стеклянные изоляторы при одних и тех же условиях получаются меньше и легче, чем фарфоровые. Конструктивно изоляторы разделяют на штыревые и подвесные. Штыревая конструкция для ЛЭП с напряжением выше 35 киловольт не применяется. Механические нагрузки, воспринимаемые подвесными изоляторами больше, нежели у штыревых изоляторов. По этой причине подвесная конструкция может применяться и на более низких напряжениях вместо штыревых изоляторов.

    Подвесной изолятор состоит из отдельных чашек, соединённых в гирлянду. Число чашек зависит от напряжения ЛЭП. Для соединения чашек в гирлянду и всех остальных креплений проводов и изоляторов применяется специальная арматура. Надёжность, прочность и долговечность в условиях открытой среды определяют такие материалы для изготовления арматуры как сталь и чугун. При необходимости получения повышенной стойкости к коррозии выполняется покрытие деталей цинком.

    К арматуре относятся различные зажимы, распорки, гасители вибрации, сцепные соединители, промежуточные звенья изоляторов, коромысла. Общее представление об арматуре даёт изображение ниже:

    Защитные приспособления

    Ещё одним компонентом устройства линий электропередачи являются конструкции защищающие оборудование, присоединённое к ЛЭП от атмосферных и коммутационных перенапряжений. От ударов молний защитой являются трос, протянутый выше всех проводов линии электропередачи и молниеотводы, которые обычно устанавливаются вблизи подстанций. Защитные промежутки располагаются на опорах ЛЭП. Пример такого промежутка показан на изображении слева. Вблизи подстанций устанавливаются трубчатые разрядники, в которых внутри есть искровой промежуток. Если он пробивается и при этом возникает дуга питаемая током короткого замыкания, выделяется газ, который гасит эту дугу.

    Все технические и организационные нюансы по устройству линий электропередачи регулируются Правилами устройства электроустановок (ПУЭ). Какие – либо отступления от этих правил категорически запрещаются и могут рассматриваться как преступление той или иной тяжести в зависимости от последствий оного.

    При прокладке воздушных линий электропередач помимо выбора кабеля необходимо также осуществлять и выбор опор, на которых он будет закреплен, а также изоляторов. Данную статью мы посвятим опорам воздушных линий электропередач.

    Для устройства воздушных линий применяют металлические, железобетонные и деревянные, как их часто называют в обычной жизни, электроопоры.

    Деревянные опоры

    Изготавливаются, как правило, из сосновых бревен со снятой корой. Для ЛЭП с напряжением питания до 1000 В допускается применение и других пород деревьев, например, пихта, дуб, кедр, ель, лиственница. Бревна, которые впоследствии должны будут стать опорами линий электропередач, должны соответствовать определенным техническим требованиям. Естественная конусность ствола, проще говоря, изменение его диаметра от толстого нижнего конца (комля) к верхнему отрубу не должна превышать 8 мм на 1 метр длины бревна. Диаметр бревна на верхнем отрубе для линий с напряжением до 1000 В принимается не менее 12 см, для линий с напряжением выше 1000 В, но не выше 35 кВ – 16 см, а для линий с более высоким напряжением не менее 18 см.

    Деревянные опоры могут применять для сооружения воздушных линий с напряжением не выше 110 кВ включительно. Наиболее широкое распространение деревянные опоры получили в воздушных линиях с напряжением до 1000 В, а также в линиях связи. Плюсом деревянных опор есть их относительно небольшая стоимость и простота изготовления. Однако есть и минус, существенный минус – они подвержены гниению и срок службы сосновых опор составляет порядка 4-5 лет. Для предохранения древесины от гниения ее пропитывают специальными антисептиками против гниения, например антраценовым или креозотовым маслом. Особенно тщательной обработке поддаются те части, которые будут вкапываться в землю, а также врубки концов, раскосов и траверс. Благодаря антисептикам срок службы увеличивается примерно в 2-3 раза. Для этой же цели довольно часто ноги деревянной электроопоры изготавливают из двух частей – основной стойки и стула (пасынка):

    Где – 1) основная стойка, а 2) стул (пасынок)

    При сильном загнивании нижней части достаточно сменить только пасынка.

    Металлические опоры

    Плюс – прочные и надежные в эксплуатации. Минус – необходим большой расход металла, что влечет за собой значительное увеличение стоимости (в сравнении с деревянными). Применяют металлические опоры воздушных линий электропередач, как правило, при напряжениях от 110 кВ, так как эксплуатация металлических опор вызвана с большими расходами на выполнение очень трудоемких и дорогостоящих работ по периодической покраске, предохраняющей от коррозии.

    Железобетонные опоры

    При промышленном процессе изготовления являются наиболее оптимальным вариантом для воздушных линий как до 1000 В, так и выше 1000 В. Применение железобетонных опор резко снижает эксплуатационные расходы, так как они практически не требуют ремонта. В настоящее время, практически повсеместно, при сооружении воздушных линий 6-10 кВ и до 110 кВ применяют железобетонные опоры. Особенно широкое распространение они получили в городских сетях до и выше 1000 В. Железобетонные опоры могут выполнятся как монолитными (литыми), так и в виде сборок, которые собираются непосредственно на месте монтажа. Прочность их зависит от способа уплотнения бетона, которых два – центрифугование и вибрирование. При использовании способа центрифугования получается хорошая плотность бетона, которая, впоследствии, оказывает хорошее влияние на готовое изделие.

    На воздушных линиях электропередач применяют специальные, анкерные, угловые, концевые, промежуточные опоры.

    Их назначение – жесткое закрепление на них проводов и линии. Места для их установки определяет проект. По своей конструкции анкерная опора должна быть прочной, так как при обрыве провода с одной стороны она должна выдержать механическую нагрузку проводов с другой стороны линии.

    Анкерными пролетами называют расстояние между анкерными опорами. На прямолинейных участках (в зависимости от сечения проводов) анкерные пролеты имеют длину до 10 км.

    Промежуточные опоры

    Служат только для поддержки проводов на прямых участках линии между анкерными опорами. Из общего количества установленных на линии электроопор, промежуточные занимают порядка 80-90%.

    Угловые опоры

    Предназначены для установки в местах поворота трассы линии электропередач. Если угол поворота линии до 20 0 , то электроопора может изготавливаться по типу промежуточной, а если угол составляет порядка 20-90 0 , то по типу анкерной.

    Имеют анкерный тип и устанавливаются в начале и в конце линий. Если в анкерных электроопорах сила одностороннего тяжения проводов может возникнуть только в аварийной ситуации, при обрыве провода, то в концевых электроопорах она действует всегда.

    Специальные опоры

    Представляют собой электроопоры повышенной высоты и применяются в местах пересечения линий электропередач ЛЭП с шоссейными и железными дорогами, реками, пересечении между самими ЛЭП и в других случаях, когда стандартной высоты электроопоры недостаточно для обеспечения необходимого расстояния до проводов. Промежуточные электроопоры линий с напряжением до 10 кВ выполняют одностоечными (свечообразными). В сетях низкого напряжения одностоечные опоры выполняют функции угловых или концевых опор, а также снабжаются дополнительно или оттяжками, прикрепленными в сторону, противоположную тяжению проводов, или подкосами (подпорками), которые устанавливаются со стороны тяжения проводов:

    Для линий с напряжением 6-10 кВ электроопоры выполняются А-образными:

    Также характеризуются воздушные линии и основными габаритами и размерами.

    Габарит воздушной линии – вертикальное расстояние от самой низкой точки провода к земле или воде.

    Стрела провеса – это расстояние между воображаемой прямой линией между точками крепления проводов на опоре и самой низкой точкой провода в пролете:

    Все габариты ЛЭП строго регламентируются ПУЭ и напрямую зависят от величины напряжения питания, а также местности, по которой проходит трасса.

    ПУЭ также регламентирует и другие габариты при пересечении и сближении ЛЭП как между собой, так и между линиями связи, авто- и железнодорожными магистралями, воздушными трубопроводами, канатными дорогами.

    Для проверки запроектированной ЛЭП требованиям ПУЭ производятся расчеты на механическую прочность, методы которых даются в специальных курсах электрических сетей.