Биологическая продуктивность экосистем. Продуктивность первичная

Способность живых организмов к созданию новой биомассы называется продуктивностью . Скорость образования биомассы за единицу времени на единице площади называется продукцией . Биологическую продукцию выражают в джоулях на 1 м 2 за одни сутки, калориях на 1 м 2 за одни сутки, килограммах на 1 га за один год.

Органическая масса, создаваемая растением за единицу времени называется первичная продукция . Валовой первичной продукцией называют общее количество вещества и энергии, производимых автотрофами экосистемы. Чистая первичная продукция –скорость накопления органического вещества в растительных тканях после вычета расходов на дыхание. Консументы могут использовать только чистую первичную продукцию.

Вторичная продукция в экосистемах образуется консументами. Вторичная продукция сообщества всегда меньше первичной продукции. Согласно правилу пирамиды биологической продукции на каждом предыдущем трофическом уровне количество биомассы создаваемой за единицу времени больше, чем на последующем.

6.4. Гомеостаз и динамика экосистем

Устойчивость и сбалансированность процессов, протекающих в экосистемах, позволяет констатировать, что им в целом свойственно состояние гомеостаза , подобно входящим в их состав популяциям и каждому живому организму. Нестабильность среды обитания в экосистемах компенсируется биоценотическими адаптивными механизмами.

Основной причиной неустойчивостиэкосистем является: несбалансированность круговорота веществ. Выпадение из состава биоценоза основных массовых видов приводит к: разрушению биоценоза, смене биоценоза.

Правило экологического дублирования : исчезающий или уничтожаемый вид живого в рамках одного уровня экологической пирамиды заменяет другой функционально-биоценотически аналогичный. Наиболее устойчивыми являются экосистемы, в которых большое видовое разнообразие; наличие неспециализированных видов; относительная изоляция от соседних экосистем; большая биомасса; большое количество цепей питания.

Параметры экосистемы испытывают как и все биологические объекты периодические циклические изменения: суточные и сезонные, флуктуации. Флуктуации – кратковременные обратимые смены экосистем с циклом менее 10 лет. Характерно, что при такой динамике сохраняются принципиальные свойства экосистемы, в том числе целостность и функциональная устойчивость.

При сукцессиях функциональные свойства экосистем изменяются в определенном направлении.Сукцессией называется последовательная во времени направленная смена одних сообществ другими на определенном участке среды.

Причиной начала сукцессии являются изменения фундаментальных свойств среды обитания: извержения вулканов, пожары, расчистка лесных угодий, распашка участков степи, открытая добыча полезных ископаемых, создание прудов и водохранилищ.


Сукцессионный ряд – цепь сменяющих друг друга биоценозов. Процессы сукцессии занимают определенные промежутки времени. Чаще всего это – годы и десятки лет, но встречаются и очень быстрые смены сообществ, например, во временных водоемах, и очень медленные – вековые изменения экосистем, связанные с эволюцией на Земле.

В сукцессионном ряду выделяют незрелые (промежуточные) и зрелое сообщества. Незрелыесообщества характеризуются: неустойчивостью; ограниченным числом видов; простыми цепями питания; избытком растительной продукции. Зрелые сообщества характеризуются: устойчивостью; видовым разнообразием; сложными цепями питания; нарастанием общей биомассы и продукции. Зрелые сообщества наиболее адаптированы по отношению к комплексу сложившихся климатических условий данной местности.

По общему характеру сукцессии делят на первичные и вторичные. Первичная сукцессия начинается на горной породе, лишенной почвы; поверхности, где прежде не было автотрофов (обрастание голой скалы лишайниками, поселение злаков на горных дюнах). Вторичные сукцессии развиваются на субстрате, первоначально измененном деятельностью комплекса живых организмов, существовавших на данном месте ранее – до пожара, наводнения, вырубки и т. п. (превращение озера в болото, превращение болота в мокрый луг, смена луга лесом, смена березового леса дубовым, развитие леса на заброшенном поле).

Вопросы для самоконтроля

1) Какое понятие более шире, биогеоценоз или экосистема?

Способность живых организмов к созданию новой биомассы называется продуктивностью . Скорость образования биомассы за единицу времени на единице площади называется продукцией . Биологическую продукцию выражают в джоулях на 1 м 2 за одни сутки, калориях на 1 м 2 за одни сутки, килограммах на 1 га за один год.

Органическая масса, создаваемая растением за единицу времени называется первичная продукция. Валовой первичной продукцией называют общее количество вещества и энергии, производимых автотрофами экосистемы. Чистая первичная продукция скорость накопления органического вещества в растительных тканях после вычета расходов на дыхание. Консументы могут использовать только чистую первичную продукцию.

Вторичная продукция в экосистемах образуется консументами. Вторичная продукция сообщества всегда меньше первичной продукции. Согласно правилу пирамиды биологической продукции на каждом предыдущем трофическом уровне количество биомассы создаваемой за единицу времени больше, чем на последующем.

Количество энергии, поступающей за год в определенную местность, зависит от широты этой местности и от облачного покрова, т.е. от факторов способствующих фотосинтезу. Средняя продуктивность наземных площадей соответствует ассимиляции примерно 0,3% световой энергии, достигающей поверхности Земли.

Выявлены четыре группы районов, отличающиеся первичной продуктивностью экосистем:

1) открытые моря и пустыни (продуктивность обычно менее 500-1000 ккал/м 2 в год;

2) травянистые полуаридные формации, некоторые агроценозы, глубокие озера, высокогорные леса, морская литораль (500-3000 ккал/м 2 в год;

3) влажные леса, неглубокие озера, пастбищные угодья и большинство агроценозов (300-10000 ккал/м 2 в год);

4) некоторые эстуарии, коралловые рифы (более 10000 ккал/м 2 в год).

Качество пищи и распределение энергии для выполнения различных функций организмов определяет характер потока энергии через сообщество. Наиболее сильные различия в этом отношении существуют между водными и наземными экосистемами. Наивысшего уровня продуктивность достигает в тех местах, где в изобилии есть свет, тепло, вода и минеральные питательные вещества.

Первыми по значимости факторами, ограничивающими продуктивность наземных систем, обычно выступают влажность и температура, вторыми – минеральные элементы. Обеспеченность влагой для погашения таких потерь – основной детерминант продуктивности суши. Существует почти линейная зависимость между количеством осадков и чистой первичной продукцией, возрастающей с увеличением среднегодовой суммы осадков. В экосистемах умеренных и арктических областей низкие зимние температуры и длинные ночи сокращают продуктивность. Экосистемы болот и маршей находятся на грани между наземными и водными местообитаниями, а по продуктивности растений соответствуют тропическим лесам. Растения, обитающие на маршах, высокопродуктивны, так как их корни постоянно находятся под водой, а листья – на свету и в воздухе. Кроме того, они в изобилии снабжаются питательными веществами, потому что смываемый в марши детрит быстро разлагается бактериями.

В водных экосистемах энергия быстро и весьма эффективно переносится от одного трофического уровня к другому, что создает возможность для образования длинных пищевых цепей. Главный фактор ограничивающий продуктивность водных экосистем – небольшое количество минеральных питательных веществ. Это ограничивает продуктивность практически на один порядок по сравнению с продуктивностью лесов умеренной зоны. Фосфор один из наиболее дефицитных элементов минерального питания в водах открытого океана.

В зонах апвеллинга (где питательные вещества выносятся на поверхность из глубины моря вертикальными течениями) и континентального шельфа (где происходит активный обмен между донными осадками и поверхностными водами) продукция выше, в среднем составляя соответственно 500 и 360 г/м 2 в год. Продукция мелководных эстуариев, коралловых рифов и прибрежных зарослей водорослей приближается к продукции соседних наземных местообитаний. Экосистемы пресных вод имеют достаточно широкий диапазон продукции. Наивысшая продуктивность отмечается на границе суши и воды: в определенных сырых или водных сообществах суши и в некоторых прибрежных и мелководных сообществах водных экосистем.


Первичная и вторичная продукция. Одно из важнейших свойств экосистем – способность создавать органическое вещество, которое называют продукцией . Продуктивность экосистем – это скорость образования продукции в единицу времени (час, сутки, год) на единицу площади (метр квадратный, гектар) или объёма (в водных экосистемах). Органическую массу, создаваемую продуцентами за единицу времени, называют первичной продукцией сообщества. Она подразделяется на валовую и чистую продукцию. Валовая первичная продукция – это количество органического вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание). В лесах умеренного пояса и тропических растения тратят на дыхание от 40 до 70 % валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Перерабатываясь в цепях питания, она идёт на пополнение массы гетеротрофных организмов.

Вторичная продукция – это прирост массы консументов за единицу времени. Её вычисляют отдельно для каждого трофического уровня. Консументы живут за счёт чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстаёт от темпов прироста растений, то это ведёт к постепенному увеличению биомассы продуцентов. Биомасса – это суммарная масса организмов данной группы или всего сообщества в целом. В стабильных сообществах с уравновешенным круговоротом веществ вся продукция тратится в цепях питания и биомасса остаётся постоянной.

Продукция и биомасса экосистем – это не только ресурс, используемый в пищу, от этих показателей в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем: интенсивность поглощения углекислоты и выделение кислорода растениями, регулирование водного баланса территорий, гашение шумов и т.д. Биомасса, в том числе и мёртвое органическое вещество, является основным резервуаром концентрации углерода на суше. Теоретически прогнозируемая скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Как известно, лишь 44% солнечного излучения относятся к фотосинтетически активной радиации (ФАР) – по длине волны, пригодной для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза – это 10–12% энергии ФАР, что составляет около половины от теоретически возможного. Он отмечается в наиболее благоприятных условиях. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как фотосинтетическая активность растений ограничивается множеством факторов: недостатком тепла и влаги, неблагоприятными почвенно-грунтовыми условиями и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны (табл. 2.) На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с ростом притока тепла и продолжительности вегетационного периода. Годовой прирост растительности изменяется от 20 ц/га на побережье Северного Ледовитого океана до 200 ц/га на Черноморском побережье Кавказа. Самый большой прирост растительной массы достигает в среднем 25 г/м 2 в день при очень благоприятных условиях, при высокой обеспеченности растений водой, светом и минеральными веществами. На больших площадях продуктивность растений не превышает 0,1 г/м 2: в жарких и полярных пустынях и обширных внутренних пространствах океанов с крайним дефицитом питательных веществ для водорослей.

Таблица 2

Биомасса и первичная продуктивность основных типов экосистем

(по Т.А. Акимовой, В.В. Хаскину, 1994)

Экосистемы Биомасса, т/га Продукция, т/га·год
Пустыни 0,1 – 0,5 0,1 – 0,5
Центральные зоны океана 0,2 – 1,5 0,5 – 2,5
Полярные моря 1 – 7 3 – 6
Тундра 1 – 8 1 – 4
Степи 5 – 12 3 – 8
Агроценозы 3 – 10
Саванна 8 – 20 4 – 15
Тайга 70 – 150 5 – 10
Лиственный лес 100 – 250 10 – 30
Влажный тропический лес 500 – 1500 25 – 60
Коралловый риф 15 – 50 50 – 120

Для пяти континентов мира средняя продуктивность экосистем различается сравнительно мало (82–103 ц/га в год). Исключением является Южная Америка (209 ц/га в год), на большей части которой условия для жизни растительности очень благоприятны.

Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд тонн. Более трети его образуется в океанах, около двух третей – на суше.

Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10% площади суши. Сельскохозяйственные площади при рациональном их использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большую численность населения планеты, чем существующую. Сложнее обеспечить население вторичной продукцией. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% от потребностей современного населения Земли. Следовательно, большая часть населения планеты находится в состоянии хронического белкового голодания. В связи с этим увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из важнейших задач человечества.

Экологические пирамиды. Каждая экосистема имеет определённую трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо их биомассой, либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне. Графически это обычно представляют в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды.

Рис. 17. Упрощённая схема пирамиды численности (по Г.А. Новикову, 1979)

Различают три основных типа экологических пирамид – чисел, биомассы и продукции (или энергии).

Пирамида чисел отражает распределение особей по трофическим уровням. Установлено, что в трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило: общее число особей в цепях питания на каждом последующем трофическом уровне уменьшается (рис. 17).

Это объясняется тем, что хищники, как правило, крупнее своих жертв и одному хищнику для поддержания его жизни требуется несколько жертв. Например, одному льву требуется 50 зебр в год. Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами (например, оленей). Пауки и змеи, обладая ядом, убивают крупных животных.

Пирамида биомассы отражает суммарную массу организмов каждого трофического уровня. В большинстве наземных экосистем суммарная масса растений больше, чем биомасса всех растительноядных организмов, а масса последних, в свою очередь, превышает массу всех хищников (рис. 18)

З Ф

Коралловый риф Залежь Пелагиаль

Рис. 18. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976):

П – продуценты, РК – растительные консументы, ПК – плотоядные консументы, Ф – фитопланктон, З – зоопланктон

В океанах и морях, где основными продуцентами являются одноклеточные водоросли, пирамида биомассы имеет перевёрнутый вид. Здесь вся чистая первичная продукция быстро вовлекается в цепи питания, накопление биомассы водорослей очень мало, а их потребители гораздо крупнее, имеют большую продолжительность жизни, поэтому на высших трофических уровнях преобладает тенденция к накоплению биомассы.

Пирамида продукции (энергии) даёт наиболее полное представление о функциональной организации сообщества, так как отражает законы расходования энергии в пищевых цепях: количество энергии, содержащейся в организмах на каждом последующем трофическом уровне цепи питания меньше, чем на предыдущем уровне.


Рис. 19. Пирамида продукции


Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне цепи питания количество продукции, создаваемой за единицу времени, меньше, чем на предыдущем . Это правило является универсальным, действует во всех типах экосистем (рис. 19). Пирамиды энергии никогда не бывают перевёрнутыми.

Изучение законов продуктивности экосистем, возможность количественного учёта потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ является основным источником запасов пищи для человечества. Не менее важна и вторичная продукция, которую получают за счёт сельскохозяйственных животных. Точные расчёты потока энергии в масштабах продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность.

Первичная и вторичная продукция

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах – эквивалентном числе джоулей.

Валовая первичная продукция – количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание). Эта часть может быть достаточно большой. В тропических лесах и зрелых лесах умеренного пояса она составляет от 40 до 70 % валовой продукции. Планктонные водоросли используют на метаболизм около 40 % фиксируемой энергии. Такого же порядка траты на дыхание у большинства сельскохозяйственных культур. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений. Чистая первичная продукция – это энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов – это вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

Гетеротрофы, включаясь в трофические цепи, живут в конечном счете за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению общей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Часто биомассу выражают в эквивалентных энергетических единицах.

Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т. п. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

Правило пирамид

Экосистемы очень разнообразны по относительной скорости создания и расходования как первичной продукции, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правила пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило выражают в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях. Пирамида продукции отражает законы расходования энергии в пищевых цепях.

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т. е. насколько сильно выедание образовавшихся запасов. Немаловажную роль при этом играет скорость оборота генераций основных продуцентов и консументов.

Рис. 150. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976): П – продуценты; РК – растительноядные консументы; ПК – плотоядные консументы; Ф – фитопланктон; 3 – зоопланктон

В большинстве наземных экосистем действует также правило пирамиды биомасс, т. е. суммарная масса растений оказывается больше, чем биомасса всех фитофагов и травоядных, а масса тех, в свою очередь, превышает массу всех хищников (рис. 150). Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. В разных фитоценозах, где основные продуценты различаются по длительности жизненного цикла, размерам и темпам роста, это соотношение варьирует от 2 до 76 %. Особенно низки темпы относительного прироста биомассы в лесах разных зон, где годовая продукция составляет лишь 2–6% от общей массы растений, накопленной в телах долгоживущих крупных деревьев. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5 %. В сообществах с господством травянистых форм скорость воспроизводства биомассы гораздо выше: годовая продукция в степях составляет 41–55 %, а в травяных тугаях и эфемерно-кустарниковых полупустынях достигает даже 70–76 %.

Отношение первичной продукции к биомассе растений определяет те масштабы выедания растительной массы, которые возможны в сообществе без подрыва его продуктивности. Относительная доля потребляемой животными первичной продукции в травянистых сообществах выше, чем в лесах. Копытные, грызуны, насекомые-фитофаги в степях используют до 70 % годового прироста растений, тогда как в лесах в среднем не более 10 %. Однако возможные пределы отчуждения растительной массы животными в наземных сообществах не реализуются полностью и значительная часть ежегодной продукции поступает в опад.

В пелагиали океанов, где основными продуцентами являются одноклеточные водоросли с высокой скоростью оборота генераций, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы (рис. 151). Вся чистая первичная продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей очень мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества.

Рис. 151. Схема соотношения продукции и биомассы у бактерий (1), фитопланктона (2), зоопланктона (3), бентоса (4) и рыб (5) в Баренцевом море (по Л. А. Зенкевичу из С. А. Зернова, 1949)

Для океана правило пирамиды биомасс недействительно (пирамида имеет перевернутый вид). На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни крупных хищников велика, скорость оборота их генераций, наоборот, мала и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

Все три правила пирамид – продукции, биомассы и чисел – выражают в конечном счете энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют чрезвычайное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ – основной источник запасов пищи для человечества. Не менее важна и вторичная продукция, получаемая за счет сельскохозяйственных и промысловых животных, так как животные белки включают целый ряд незаменимых для людей аминокислот, которых нет в растительной пище. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей и точнее всего выполнены для более простых водных экосистем. Примером энергетических соотношений в конкретном сообществе могут послужить данные, полученные для экосистем одного из озер (табл. 2). Отношение П/Б отражает скорость прироста.

Таблица 2

Поток энергии в экосистеме эвтрофного озера (в кДж/м 2) в среднем за вегетационный период (по Г. Г. Винбергу, 1969)

В данном водном сообществе действует правило пирамиды биомасс, так как общая масса продуцентов выше, чем фитофагов, а доля хищных, наоборот, меньше. Наивысшая продуктивность характерна для фито– и бактериопланктона. В исследованном озере отношения их П/Б довольно низки, что говорит об относительно слабом вовлечении первичной продукции в цепи питания. Биомасса бентоса, основу которой составляют крупные моллюски, почти вдвое больше биомассы планктона, тогда как продукция во много раз ниже. В зоопланктоне продукция нехищных видов лишь ненамного выше рациона их потребителей, следовательно, пищевые связи планктона достаточно напряжены. Вся продукция нехищных рыб составляет лишь около 0,5 % первичной продукции водоема, и, следовательно, рыбы занимают скромное место в потоке энергии в экосистеме озера. Тем не менее они потребляют значительную часть прироста зоопланктона и бентоса и, следовательно, оказывают существенное влияние на регулирование их продукции.

Описание потока энергии, таким образом, является фундаментом детального биологического анализа для установления зависимости конечных, полезных для человека продуктов от функционирования всей экологической системы в целом.

По мере того, как человечество с упрямством, достойным лучшего применения, превращает лицо Земли в сплошной антропогенный ландшафт, всё большее практическое значение приобретает оценка продуктивности различных экосистем. Человек научился получать энергию для своих производственных и бытовых нужд самыми различными способами, но энергию для собственного питания он может получать только через фотосинтез.

В пищевой цепи человека в основании почти всегда оказываются продуценты, преобразующие в энергию биомассы органического вещества. Ибо это как раз та энергия, которую впоследствии могут использовать консументы и, в частности, человек. Одновременно те же самые продуценты производят необходимый для дыхания кислород и поглощают углекислый газ, причём скорость газообмена продуцентов прямо пропорциональна их биопродуктивности. Следовательно, в обобщенном виде вопрос об эффективности экосистем формулируется просто: какую энергию может запасти растительность в виде биомассы органического вещества? На верхнем рис. 1 приведены значения удельной (на 1 м 2) продуктивности основных типов . Из этой диаграммы видно, что сельскохозяйственные угодья, создаваемые человеком, отнюдь не самые продуктивные экосистемы. Наивысшую удельную продуктивность дают болотистые экосистемы — влажные тропические джунгли, эстуарии и лиманы рек и обычные болота умеренных широт. На первый взгляд, они производят бесполезную для человека биомассу, но именно эти экосистемы очищают воздух и стабилизируют состав атмосферы, очищают воду и служат резервуарами для рек и почвенных вод и, наконец, являются местами размножения для огромного числа рыб и других обитателей вод, используемых в пищу человеком. Занимая 10 % площади суши, они создают 40 % производимой на суше биомассы. И это без каких-либо усилий со стороны человека! Именно поэтому уничтожение и «окультуривание» этих экосистем есть не только «убийство курицы, несушей золотые яйца», но и может оказаться самоубийством для человечества. Если обратиться к нижней диаграмме рис. 1, то можно видеть, что вклад пустынь и сухих степей в продуктивность биосферы ничтожен, хотя они уже занимают около четверти поверхности суши и благодаря антропогенному вмешательству имеют тенденцию к быстрому росту. В долгосрочной перспективе борьба с опустыниванием и эрозией почв, то есть превращение малопродуктивных экосистем в продуктивные, — вот разумный путь для антропогенных изменений в биосфере.

Удельная биопродуктивность открытого океана почти столь же низка, как у полупустынь, а его огромная суммарная продуктивность объясняется тем, что он занимает более 50 % поверхности Земли, вдвое превосходя всю площадь суши. Попытки использовать открытый океан в качестве серьёзного источника продуктов питания в ближайшее время вряд ли могут быть экономически оправданы именно в силу его низкой удельной продуктивности. Однако роль открытого океана в стабилизации условий жизни на Земле столь велика, что охрана его от загрязнения, особенно нефтепродуктами, совершенно необходима.

Рис. 1. Биопродуктивность экосистем как энергия, накопленная продуцентами в процессе фотосинтеза. Мировое производство электроэнергии составляет около 10 Экал/год, а всего человечество потребляет 50-100 Экал/год; 1 Экал (эксакалория) = 1 миллион миллиардов ккал = К) 18 кал

Нельзя недооценивать и вклад лесов умеренного пояса и тайги в жизнеспособность биосферы. Особенно существенна их относительная устойчивость к антропогенным воздействиям по сравнению с влажными тропическими джунглями.

Тот факт, что удельная продуктивность сельскохозяйственных угодий до сих пор в среднем намного ниже, чем у многих природных экосистем, показывает, что возможности роста производства продуктов питания на существующих площадях ещё далеко не исчерпаны. Пример — заливные рисовые плантации, в сущности — антропогенные болотные экосистемы, с их огромными урожаями, получаемыми при современной агротехнике.

Биологическая продуктивность экосистем

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах — эквивалентном числе джоулей.

Валовая первичная продукция — количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание).

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Чистая первичная продукция — энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов - вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

Гетеротрофы, включаясь в трофические цепи, живут за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению обшей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т.д. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

Экосистемы также различаются по относительной скорости создания и расходования как первичной, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правша пирамиды продукции : на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило обычно иллюстрируют в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит оттого, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий.

Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5%. В сообществах с преобладанием травянистых форм скорость воспроизводства биомассы гораздо выше. Отношение первичной продукции к биомассе растений определяет те масштабы потребления растительной массы, которые возможны в сообществе без изменения его продуктивности.

Для океана правило пирамиды биомасс не действует (пирамида имеет перевернутый вид).

Все три правила пирамид — продукции, биомассы и чисел — отражают, в конечном счете, энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер. Пирамида чисел отражает численность отдельных организмов (рис. 2) или, например, численность населения по возрастным группам.

Рис. 2. Упрощенная пирамида численности отдельных организмов

Знание законов продуктивности экосистем и возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ — основной источник запасов пищи для человечества.

Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей.

Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.

Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений (ФАР). Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины теоретически возможного. КПД фотосинтеза в 5% считается для фитоценоза очень высоким. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как активность фотосинтеза растений ограничивает множество факторов.

Мировое распределение первичной биологической продукции крайне неравномерно. Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд т. Более трети его образуется в океанах, около двух третей — на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консу ментами, запасается в их организмах, органических осадках водоемов и гумусе почв.

На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.

Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны.

Питание людей обеспечивают в основном сельскохозяйственные культуры, занимающие примерно 10% площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16% всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть — на корм домашним животным, используется в промышленности и теряется в отбросах.

Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% потребностей современного населения Земли.

Таким образом, большая часть населения Земли находится в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.

Продуктивность биоценозов

Скорость фиксации солнечной энергии определяет продуктивность биоценозов. Основной показатель продукции — биомасса организмов (растительных и животных), составляющих биоценоз. Различают растительную биомассу — фитомассу, животную — зоомассу, бактериомассу и биомассу каких-либо конкретных групп или организмов отдельных видов.

Биомасса - органическое вещество организмов, выраженное в определенных количественных единицах и приходящееся на единицу площади или объема (например, г/м 2 , г/м 3 , кг/га, т/км 2 и др.).

Продуктивность — скорость прироста биомассы. Ее обычно относят к определенному периоду и площади, например к году и гектару.

Известно, что зеленые растения являются первым звеном в пищевых цепях и только они способны самостоятельно образовывать органическое вещество, используя энергию Солнца. Поэтому биомасса, произведенная автотрофными организмами, т.е. количество энергии, преобразованное растениями в органическое вещество на определенной площади, выраженное в определенных количественных единицах, называется первичной продукцией. Ее величина отражает продуктивность всех звеньев гетеротрофных организмов экосистемы.

Суммарная продукция фотосинтеза называется первичной валовой продукцией. Это вся химическая энергия в форме произведенного органического вещества. Часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции — растений. Если изъять ту часть энергии, которая тратится растениями на дыхание, то получится чистая первичная продукция. Ее можно легко учесть. Достаточно собрать, высушить и взвесить растительную массу, например, при уборке урожая. Таким образом, чистая первичная продукция равна разности между количеством атмосферного углерода, усвоенного растениями в процессе фотосинтеза и потребленного ими на дыхание.

Максимальная продуктивность характерна для тропических экваториальных лесов. Для такого леса 500 т сухого вещества на 1 га — не предел. Для Бразилии называют цифры в 1500 и даже 1700 т — это 150-170 кг растительной массы на 1 м 2 (сравните: в тундрах — 12 т, а в широколиственных лесах умеренной зоны — до 400 т на 1 га).

Плодородные наносы почвы, высокая сумма годичных температур, обилие влаги способствуют поддержанию очень высокой продуктивности фитоценозов в дельтах южных рек, в лагунах и эстуариях. Она достигает 20-25 т с 1 га в год в сухом веществе, что значительно превосходит первичную продуктивность еловых лесов (8-12 т). Сахарный тростник за год успевает накопить до 78 т фитомассы на 1 га. Даже сфагновое болото при благоприятных условиях обладает продуктивностью 8-10 т, что можно сравнить с продуктивностью елового леса.

«Рекордсмены» продуктивности на Земле — травяно-древесные заросли долинного типа, которые сохранились в дельтах Миссисипи, Параны, Ганга, вокруг озера Чад и в некоторых других регионах. Здесь за один год на 1 га образуется до 300 т органического вещества!

Вторичная продукция — это биомасса, созданная всеми консументами биоценоза за единицу времени. При ее подсчете производят вычисления отдельно для каждого трофического уровня, потому что при движении энергии от одного трофического уровня к другому она прирастает за счет поступления с предыдущего уровня. Общую продуктивность биоценоза нельзя оценить простой арифметической суммой первичной и вторичной продукции, потому что прирост вторичной продукции происходит не параллельно росту первичной, а за счет уничтожения какой-то ее части. Происходит как бы изъятие, вычитание вторичной продукции из общего количества первичной. Поэтому оценку продуктивности биоценоза производят по первичной продукции. Первичная продукция во много раз больше вторичной. В целом вторичная продуктивность колеблется от 1 до 10 %.

Законами экологии предопределены различия в биомассе растительноядных животных и первичных хищников. Так, за стадом мигрирующих оленей обычно следуют несколько хищников, например волков. Это позволяет волкам быть сытыми без ущерба для воспроизводства стада. Если бы численность волков приближалась к количеству оленей, то хищники быстро истребили бы стадо и остались без корма. По этой причине в умеренной зоне не бывает высокой концентрации хищных млекопитающих и птиц.