Общие принципы теории конформных отображений. Глава iii. конформные и квазиконформные отображения Конформное отображение w e i z

Геометрический смысл модуля и аргумента аналитической функции. Пусть функция w=f(z) является аналитической в некоторой области D. Выберем произвольную точку и проведем через нее произвольную гладкую кривую , целиком лежащую в D . Функция f(z) осуществляет отображение области D комплексной плоскости (z) на область G комплексной плоскости (w) . Пусть точка отображается в точку , а кривая отображается в кривую .Обозначим через угол, составленный касательной к в точке с осью Ox, а через - угол, составленный касательной в точке с осью Ou . Так как функция f(z) аналитическая, то существует производная в любой точке области D . Предположим, что в D . Производную можно представить в показательном виде, т.е. записать в виде:

Выберем такой способ стремления , при котором точки лежат на кривой . Тогда соответствующие им точки Комплексные числа и на плоскости будут изображаться векторами секущих к кривым и соответственно, причем и - длины векторов секущих, а и углы, образованные этими векторами и положительными осями. При эти векторы секущих переходят в касательные к кривым и в точках и .Из равенства (10) следует, что , т.е. аргумент производной имеет геометрический смысл разности угла вектора касательной кривой и угла вектора касательной . Так как производная не зависит от способа предельного перехода, то она будет той же самой для любой другой кривой, проходящей через точку . Другими словами, дуги, проходящие через точку z 0 на плоскости z при отображении w=f(z) повернутся на один и тот же угол на плоскости w . Когда угол между любыми кривыми на плоскости (z) , проходящий через точку z 0 , равен углу между кривыми и на плоскости (w) ,то это называется свойством сохранения (консерватизма) углов.

Аналогично из равенства (10) получим: , т.е. с точностью до величин более высокого порядка малости имеет место равенство: .

Последнее соотношение также не зависит от способа выбора кривой и геометрический смысл его состоит с том, что при отображении, осуществляемом аналитической функцией, удовлетворяющей условию бесконечно малые линейные элементы (бесконечно малые дуги) преобразуются подобным образом, причем модуль производной называется коэффициентом подобия . Такое свойство данного отображения называется свойством постоянства растяжения , поэтому k еще называют коэффициентом растяжения . Говорят, что при k >1 – растяжение, а при k <1 – сжатие.

Определение конформного отображения и основные свойства. Определение 17. Взаимно-однозначное отображение области D комплексной плоскости (z) на область G комплексной плоскости (w) называется конформным , если оно во всех точках z D обладает свойством сохранения углов и постоянством растяжения.

Теорема 6. Для того, чтобы комплексная функция w=f(z) конформно отображала область D плоскости (z) на область G плоскости (w) , необходимо и достаточно, чтобы она была аналитической в D и ни в одной точке области D .

Необходимость . Предположим. что функция w=f(z) осуществляет конформное отображение. По определению это означает выполнение свойств сохранения углов и постоянства растяжения. Возьмем на плоскости z произвольную точку z 0 и в ее окрестности две точки: z 1 и z 2 . На плоскости w им будут соответствовать точки w 0 , w 1 , w 2

С точностью до бесконечно малых величин будут выполняться соотношения: , а из постоянства углов следует: . Из равенства для аргументов следует, что углы равны не только по абсолютной величине, но и по направлению. В результате получим: .

Таким образом из последних двух равенств следует с точностью до бесконечно малых величин выполнение следующих равенств: . По причине произвольности выбора точки z 0 и точек z 1 ,z 2 из ее окрестности следует, что существует , Достаточность. Пусть производная существует и не равна нулю в области D , тогда из геометрического смысла производной следует выполнение свойств сохранения углов и постоянства растяжения, а это по определению означает, что функция осуществляет конформное отображение. ■

Конформное отображение используется для решения задач математической физики, гидродинамике и аэродинамике, теории упругости, теории электромагнитных и тепловых полей. Основная задача теории конформного отображения заключается в нахождении функции комплексного переменного w=f(z), которая отображала бы заданную область D плоскости z на заданную область G плоскости w . В решении этой задачи важную роль играет теорема.

Теорема 7. Всякую односвязную область D комплексной плоскости z , граница которой состоит более чем из одной точки можно конформно отобразить на внутренность единичного круга <1 комплексной плоскости w. (без доказательства).

Из данной теоремы следует возможность конформного отображения данной области D на заданную область G, если граница каждой из областей состоит более чем из одной точки. Тогда, отобразив эти области на вспомогательный круг <1, мы получим искомое отображение. Конформное отображение многосвязной области на односвязную область невозможно, но в ряде случаев возможно конформное отображение областей одинаковой связности. Рассмотрим два конформных отображения.

Линейное отображение . Линейным называется отображение, осуществляемое линейной функцией где a и b - комплексные числа.

Такое отображение является взаимно-однозначным и конформным на всей комплексной плоскости поскольку Линейное отображение оставляет неподвижным две точки:

Пусть Представим линейное отображение в виде трех простейших.

1) Преобразование поворота всей плоскости z на угол вокруг начала координат:

2) Преобразование подобия с центром подобия в начале координат, т.е. растяжения при >1 и сжатия при 0< <1:

3) Параллельный перенос на вектор b :

Пример 4. Найти функцию, которая отображает треугольник с заданными вершинами z 1 =-1, z 2 =i, z 3 =1 в треугольник с вершинами w 1 =0, w 2 =-2+2i, w 3 =4i.

Решение. Построим искомую функцию как суперпозицию трех элементарных преобразований.

1) - поворот на угол против часовой стрелки;

2) - растяжение в два раза;

3) - сдвиг на две единицы вверх;

Искомая функция имеет вид:

Дробно-линейное отображение. Дробно-линейная функция , где a,b,c,d - комплексные числа осуществляет дробно-линейное отображение расширенной комплексной плоскости z w . Найдем производную: если .

Определение 18. Точки z 1 и z 2 называются симметричными относительно окружности , если они лежат на одном луче, проходящем через точки z 1 , z 2 и точку z 0 , причем .

Инверсией относительно окружности называется преобразование расширенной комплексной плоскости на себя, переводящее каждую точку z 1 плоскости в точку z 2 , симметричную относительно этой окружности. Рассмотрим отображение, заданное функцией и обозначим Пользуясь свойством модуля, можно записать: . Отсюда следует, что рассматриваемое отображение есть инверсия относительно окружности радиуса R, с центром в начале координат с последующим зеркальным отображением, относительно действительной оси.

По аналогии с линейным отображением, представим дробно-линейное отображение как суперпозицию простейших преобразований. Выделим сначала целую часть дроби:

Простейшие преобразования будут следующие:

1) параллельный перенос на : ;

2) преобразование инверсии относительно окружности радиуса R с центром в начале координат с последующим зеркальным отражением относительно действительной оси: ;

3) поворот относительно начала координат: ;

4)параллельный перенос на : .

Пример 5. Найти область, в которую перейдет окружность при дробно-линейном отображении .

Решение.

Это будет окружность, которая получается после следующих преобразований:

1) перенос на 1 вниз:

2) инверсия относительно , направление обхода изменится:

3) поворот на 90 градусов:

4) перенос на 1 вниз:

Свойства дробно-линейного отображения. Без доказательства сформулируем следующие свойства.

1.Конформность. Дробно-линейная функция конформно отображает расширенную комплексную плоскость z на расширенную комплексную плоскость w .

2.Единственность. Существует единственная дробно-линейная функция, которая три заданные различные точки z 1 ,z 2 ,z 3 плоскости z отображает в три различные точки w 1 ,w 2, w 3 плоскости w и это отображение задается равенством: .

3.Круговое свойство. При дробно-линейном отображении, образом любой окружности в широком смысле является окружность(в широком смысле, т.е. окружность или любая прямая).

4.Принцип отображения границ. При дробно-линейном отображении область, лежащая внутри окружности, преобразуется в область, лежащую либо внутри, либо вне преобразованной окружности(граница отобразится в границу).

5.Принцип симметрии Римана-Шварца. При дробно-линейном отображении точки, симметричные относительно окружности, отображаются в точки, симметричные относительно преобразованной окружности(симметрия в смысле инверсии).

Пример 6. Задана верхняя полуплоскость плоскости z и произвольная точка z 0 . Найти функцию, которая отобразит ее в единичный круг плоскости w так, чтобы z 0 отобразилась в центр круга.

Решение.

Пусть , тогда согласно принципу отображения границ, действительная ось на плоскости z отобразится в окружность единичного радиуса. По свойству симметрии точка отобразится в точку . Таким образом, учитывая это построим функцию . Если рассмотреть точки z , лежащие на действительной оси, а это точки вида: , то для них будут выполняться равенства: , т.к. они все равноудалены от точки, лежащей на действительной оси, т.е. имеем, что все точки действительной оси отобразятся во все точки единичной окружности Отсюда получаем, что если рассмотреть модуль Искомое отображение будет иметь вид: .

Решить еще одну задачу на дробно-линейное отображение и вставить обе в первый модуль!

Лекция №4.

Геометрически функция комплексного переменного w=f (z ) задает отображение некоторого множества z – плоскости на некоторое множество w -плоскости. Точка w ÎG называется образом точки z при отображении w=f (z ), точка z ÎD прообразом точки w .

Если каждому z соответствует лишь одно значение w=f (z ), то функция называется однозначной (w=|z| , w= , w= Rez и т.д.) Если некоторым z соответствует более чем одно значение w , функция называется многозначной (w= Argz ).

Если (т.е. в различных точках области D функция принимает различные значения), то функция w =f (z ) называется однолистной в области D .

Другими словами, однолистная функция w =f (z ) взаимно однозначно отображает область D на G . При однолистном отображении w =f (z ) прообраз любой точки w ÎG состоит из единственного элемента: : . Поэтому z можно рассматривать как функцию от переменной w , определенную на G . Она обозначается и называется обратной функцией .

Если в области D существует, по крайней мере, одна пара точек , то функцию f (z ) называют многолистной в области D .

Если отображение w =f (z ) является многолистным на D (например, w =z n ), то в этом случае некоторым значениям w ÎG соответствует более, чем одна точка z ÎD : f (z )=w . Следовательно, обратное отображение не является однозначным, оно является многозначной функцией.

Однозначная на области D функция w =f (z ) называется ветвью многозначной функции F , если значение f в любой точке z ÎD совпадает с одним из значений F в этой точке.

Для того, чтобы выделить однозначные ветви многозначной функции, поступают следующим образом: область D разбивают на области однолистности функции w =f (z ) так, что никакие две из областей не имеют общих внутренних точек и так, чтобы каждая точка z ÎD принадлежала одной из этих областей или границе некоторых из них. В каждой из этих областей однолистности определяют функцию, обратную к w =f (z ). Она и является однозначной ветвью многозначной функции .

Понятие о конформном отображении

Пример. Найти коэффициент растяжения и угол поворота в точке z =2i при отображении .

■ Находим производную и ее значение в данной точке .

Коэффициент растяжения k равен модулю производной: .

Угол поворота j равен аргументу производной. Точка лежит в четвертой четверти, следовательно, . ■

Пример 3.5. Определить, какая часть плоскости при отображении w =z 2 растягивается, а какая – сжимается.

■ Находим производную w ¢=2z . Коэффициент растяжения в любой точке z равен k =|w ¢(z )|=2|z |. Множество точек комплексной плоскости, для которых k >1, то есть 2|z |>1 или , образует часть плоскости, которая при отображении растягивается. Следовательно, при отображении w =z 2 внешность круга растягивается, а внутренняя часть - сжимается. ■



Отображение w =f (z ) называется конформным (т.е. сохраняет форму) в точке , если оно сохраняет углы между кривыми и обладает свойством постоянства растяжения окрестности точки.

Всякое отображение, устанавливаемое посредством аналитической функции f (z ) является конформным во всех точках, где .

Отображение называется конформным в области , если оно конформно в каждой точке этой области.

Конформное отображение, при котором направление отсчета углов сохраняется, называется конформным отображением Ι рода . Конформное отображение, при котором направление отсчета углов меняется на противоположное, называется конформным отображением ΙΙ рода (например, ).

В теории и практике конформных отображений ставятся и решаются две задачи.

Первая задача заключается в нахождении образа данной линии или области при заданном отображении – прямая задача .

Вторая заключается в нахождении функции, осуществляющей отображение данной линии или области на другую заданную линию или область – обратная задача .

При решении прямой задачи учитывается, что образом точки z 0 при отображении w =f (z ) является точка w 0 , такая, что w 0 =f (z 0), то есть результат подстановки z 0 в f (z ). Поэтому для нахождения образа множества нужно решить систему, состоящую из двух соотношений. Одно из них задает отображающую функцию w =f (z ), другое – уравнение линии, если решается задача нахождения образа линии, или неравенство, определяющее множество точек прообраза, если решается задача отображения областей. В обоих случаях процедура решения сводится к исключению переменной z из двух заданных соотношений.

Правило 3.3. Для нахождения образа линии, заданной уравнением F (x ,y )=0 (или в явном виде y =j (x )), при отображении w =f (z ) необходимо:

1. Выделить действительную и мнимую части функции f (z ): u =Ref (z ), v =Imf (z ).

2. Из системы исключить х и у. Полученное соотношение – уравнение образа данной линии.

Правило 3.4. Для нахождения образа данной линии при отображении w =f (z ) необходимо:

1. Записать уравнение линии в параметрической форме z =z (t ) или в комплексной форме .

2. В зависимости от вида уравнения линии рассмотреть соответствующий случай:

Если линия задана в параметрической форме, подставить выражение z (t ) в w =f (z );

Если линия задана в комплексной форме, то выразить z из w =f (z ), то есть , и . Затем следует подставить z и в уравнении линии. Полученное соотношение – уравнение образа данной линии.

Правило 3.5. Для нахождения образа данной области следует воспользоваться одним из двух способов.

Первый способ.

1. Записать уравнение границы данной области. Найти образ границы заданной области по правилам 3.3 или 3.4.

2. Выбрать произвольную внутреннюю точку заданной области и найти ее образ при данном отображении. Область, которой принадлежит полученная точка, является искомым образом заданной области.

Второй способ.

1. Выразить z из соотношения w =f (z ).

2. Подставить полученное в п.1. выражение в неравенство, определяющее заданную область. Полученное соотношение - искомый образ.

Пример. Найти образ окружности |z |=1 при отображении с помощью функции w =z 2 .

1 способ (по правилу 3.3).

1. Пусть z=x+iy , w=u+iv . Тогда u+iv =x 2 -y 2 +i 2xy . Получаем:

2. Исключим х и у из этих уравнений. Для этого возведем первое и второе уравнения в квадрат и сложим:

u 2 +v 2 =x 4 -2x 2 y 2 +y 4 +2x 2 y 2 = x 4 +2x 2 y 2 +y 4 =(x 2 +y 2) 2 .

Учитывая третье уравнение системы, получаем: u 2 +v 2 =1 или |w | 2 =1, то есть |w |=1. Итак, образом окружности |z |=1 является окружность |w |=1, проходимая дважды. Это следует из того, что поскольку w =z 2 , то Argw =2Argz +2pk . Поэтому когда точка z описывает полную окружность |z |=1, то ее образ описывает окружность |w |=1 дважды.

2 способ (по правилу 3.4).

1. Запишем уравнение единичной окружности в параметрическом виде: z =e it (0£t £2p ).

2. Подставим z =e it в соотношение w =z 2: w=e i 2 t =cos2t +i sin2t . Следовательно, |w | 2 =cos 2 2t +sin 2 2t =1, то есть |w |=1 – уравнение образа. ■

Пример. Найти уравнение образа прямой у=х при отображении w =z 3 .

■ Так как кривая задана в явном виде, то применим правило 3.3.

1. w =z 3 =(x +iy ) 3 =x 3 +3x 2 iy +3x (iy ) 2 +(iy ) 3 =x 3 - 3xy 2 +i (3x 2 y-y 3).

2. В полученную систему подставим у=х : Исключая х из этих уравнений, получим v=-u .

Итак, образом биссектрисы I и III координатных углов системы хОу является биссектриса II и IV координатных углов системы uOv . ■

1. Линейная функция

Линейной функцией называется функция вида

w =az +b , (4.1)

где а , b - комплексные постоянные.

Эта функция определена , . Следовательно, если ,то линейная функция производит конформное отображение всей плоскости комплексного переменного. При этом касательные ко всем кривым поворачиваются на один и тот же угол Arga , а растяжение во всех точках равно . Если a= 1, то , значит, растяжение и поворот отсутствуют. В этом случае получаем w=z+b . Это отображение осуществляет сдвиг всей плоскости на вектор .

В общем случае, переходя к показательной форме записи комплексного числа , получим . Следовательно, линейное отображение является композицией трех геометрических преобразований:

w 1 =rz - подобие с коэффициентом r =|a |;

w 2 =e i j w 1 =rze i j - поворот на угол j =arga вокруг точки О ;

w =w 2 +b =re i j z +b - параллельный перенос на вектор .

Следовательно, отображение w =az +b изменяет линейные размеры любой фигуры плоскости в |a | раз, поворачивает эту фигуру на угол j =arga вокруг начала координат и смещает ее в направлении вектора на его величину.

Линейное отображение обладает круговым свойством, то есть переводит окружности z -плоскости в окружности w -плоскости (и обратно); прямые переводит в прямые.

Пример. Найти образ оси Оу при отображении w =2iz-3i .

1 способ (по правилу 3.4). Уравнение оси выберем в параметрической форме.

1. Так как в действительной форме уравнение оси Oy : x =0, -¥<y <+¥, то в комплексной форме запишется как z=iy , -¥<y <+¥. Это параметрическое уравнение, в качестве параметра выбран у .

2. Подставим z=iy в выражение w =2iz-3i : w =-2y -3i , -¥<y <+¥. Это уравнение образа в параметрической форме (у – параметр). Выделив действительную и мнимую часть, получим уравнение образа в действительной форме: u =-2y , v =-3 или v =-3, -¥<u <+¥. Это есть уравнение прямой в плоскости uOv , параллельной действительной оси.

2 способ . Используем круговое свойство линейного преобразования – образом прямой является прямая. Так как прямая определяется заданием двух точек, то достаточно на оси Оу выбрать любые две точки и найти их образы. Прямая, проходящая через найденные точки, и будет искомой. Выберем точки z 1 =0, z 2 =i , их образы w 1 =-3i , w 2 =-2-3i при отображении лежат на прямой Imw =-3.Следовательно, образом оси Оу является прямая v =-3.

3 способ (геометрический). Из соотношения w =2iz-3i следует, что a =2i , b =-3i , |a |=2, . Значит, заданную прямую (ось Оу ) надо повернуть на угол относительно начала координат, а затем сместить на 3 единицы вниз. Растяжение в 2 раза не меняет геометрического вида исходной линии, так как она проходит через начало координат. ■

Пример. Найти какую-нибудь линейную функцию, отображающую окружность |z-i |=1 на окружность |w- 3|=2.

■ Поставленная задача есть обратная задача теории отображений – по заданному образу и прообразу найти соответствующее отображение. Без дополнительных условий задача не имеет единственного решения. Приведем геометрический способ решения.

1. Переместим центр окружности в начало координат. Для этого применим отображение w 1 =z-i .

2. В плоскости w 1 применим отображение, дающее растяжение в 2 раза, то есть w 2 =2w 1 .

3. Смещаем окружность на 3 единицы вправо: w =w 2 +3. Окончательно получаем: w =2(z-i )+3, w= 2z +3-2i – искомая функция.

Можно выбрать другой порядок выполнения геометрических операций – сделать сначала не смещение, а поворот или растяжение. ■

2. Дробно-линейная функция

Дробно-линейной называется функция вида

где a , b , c , d - комплексные числа, такие что , .

Свойства дробно-линейного преобразования

Конформность

Отображение w =L (z ) является конформным во всех конечных точках комплексной плоскости, кроме .

Круговое свойство

Образом прямой или окружности при дробно-линейном отображении w =L (z ) является прямая или окружность, (причем образом прямой может быть как окружность, так и прямая, и образом окружности – как прямая, так и окружность). Несложно установить, что при отображении w =L (z ) все прямые и окружности, проходящие через точку переходят в прямые плоскости (w ), а все прямые или окружности, не проходящие через точку d , - в окружности плоскости (w ).

Инвариантность двойного отношения

Отношение сохраняется при дробно-линейном отображении, т.е является его инвариантом. Это отношение называется двойным отношением четырех точек . Таким образом, дробно-линейное преобразование однозначно определяется заданием трех точек и их образов: . По этим парам можно найти дробно-линейную функцию по формуле:

Эту формулу можно применять и в случае, когда некоторые из чисел z k и w k обращаются в ¥, если воспользоваться правилом: разность, в которой встречается символ ¥, следует заменить на 1.

Сохранение симметрии

Если точки z 1 и z 2 симметричны относительно некоторой прямой или окружности g , то при любом дробно-линейном отображении w =L (z ) их образы w 1 и w 2 будут симметричны относительно образа g : .

Симметрия относительно прямой понимается в обычном смысле.

Точки z и z* называются симметричными относительно окружности |z-z 0 |=R , если они лежат на одном луче, выходящем из центра окружности, и произведение их расстояний от центра окружности равно квадрату ее радиуса, то есть

|z-z 0 |×|z*-z 0 |=R 2 . (4.4)

Точкой, симметричной точке z 0 – центру окружности, очевидно, является бесконечно удаленная точка.

Принцип соответствия обхода границ (отображение областей, ограниченных прямыми или окружностями)

Если при дробно-линейном отображении прямая или окружность g переходит в прямую или окружность ,то область D , которую ограничивает g , преобразуется в одну из двух областей, которые ограничивает . При этом имеет место принцип соответствия обхода границ: если при каком-то обходе линии g область D оказывается слева (справа), то при соответствующем обходе линии область тоже должна оказаться слева (справа).

Пример. Найти дробно-линейную функцию w =L (z ), такую, что w (i )=2i , w (¥)=1, w (-1)=¥.

■ Обозначим z 1 =i , z 2 =¥, z 3 =-1 и w 1 =2i , w 2 =1, w 3 =¥. Применим формулу (4.3), заменяя разности, содержащие z 2 и w 3 на ¥:

Преобразуем: -w-wi+ 2i- 2=wz-wi-z+i Û w (z +1)=z -2+i Û - искомая функция. ■ :w =1 и Imw =0.

2. Теперь в соответствии с п.2. правила 3.5 выберем произвольную точку, например, z =-1ÎD . Ее образом при заданном отображении является , лежащая между прямыми Imw =1 и Imw =0. Следовательно, образом заданной области будет полоса 0< Imw <1. ■

3. Показательная функция

Показательной функцией комплексного переменного z=x+iy называется функция, обозначаемая expz (читается «экспонента z ») и определяемая формулой

Свойства expz

Если , то expz =expx =e x , т.е. на действительной оси показательная функция комплексного переменного совпадает с показательной функцией действительного переменного. Поэтому наряду с обозначением expz p , параллельные действительной оси:

Если, например, , то .

Показательная функция является аналитической на , (expz )¢=expz.

Пример. Найти действительную, мнимую часть, модуль и главное значение аргумента для числа e 2- i .

■ Используем определение показательной функции комплексного переменного. Пусть z =2-i , x =Rez =2, y =Imz =-1.

Тогда . Следовательно,

Можно также вместо определения использовать теорему сложения и формулу Эйлера (1.7). ■

Отображение w =expz

КОНФОРМНОЕ ОТОБРАЖЕНИЕ (конформное преобразование), отображение одной области (в плоскости или в пространстве) на другую область, сохраняющее углы между кривыми. Простейшими примерами конформного отображения являются преобразования подобия и повороты (ортогональные преобразования).

Конформное отображение применяется в картографии, когда требуется часть поверхности земного шара изобразить на плоскости (карте) с сохранением величин всех углов; примеры таких конформных отображений - стереографическая проекция и проекция Меркатора (смотри Картографические проекции). Особое место занимают конформные отображения одних областей плоскости на другие; их теория имеет существенные приложения в аэро- и гидромеханике, электростатике и теории упругости. Решение многих важных задач легко получается, когда область, для которой ставится задача, имеет достаточно простой вид (например, круг или полуплоскость). Если задача ставится для более сложной области, то оказывается достаточным конформно отобразить простейшую область на данную, чтобы получить решение новой задачи из известного решения. Именно таким путём шёл Н. Е. Жуковский, создавая теорию крыла самолёта.

Не всякие области плоскости допускают конформные отображения друг на друга. Так, например, круговое кольцо, ограниченное концентрическими окружностями, нельзя конформно отобразить на кольцо с другим отношением радиусов. Однако любые две области, каждая из которых ограничена лишь одной кривой (односвязные области), могут быть конформно отображены друг на друга (теорема Римана). Что касается областей, ограниченных несколькими кривыми, то такую область всегда можно конформно отобразить на область, ограниченную таким же числом параллельных между собой прямолинейных отрезков (теорема Гильберта) или окружностей (теорема Кёбе), но размеры и взаимное расположение этих отрезков или окружностей нельзя задать произвольно.

Если ввести комплексные переменные z и w в плоскостях оригинала и образа, то переменная w, рассматриваемая при конформном отображении как функция от z, является или аналитической функцией, или функцией, комплексно сопряжённой с аналитической. Обратно, любая функция, аналитическая в данной области и принимающая в разных точках области разные значения (такая функция называется однолистной), конформно отображает данную область на некоторую другую область. Поэтому изучение конформного отображения областей плоскости сводится к изучению однолистных аналитических функций.

Всякое конформное отображение трёхмерных областей переводит сферы и плоскости в сферы и плоскости и сводится или к преобразованию подобия, или к последовательно выполненным одному преобразованию инверсии и одному преобразованию подобия (теорема Лиувилля). Поэтому конформные отображения трёхмерных (и вообще многомерных) областей не имеют столь большого значения и таких разнообразных приложений, как конформные отображения двумерных областей.

Начало теории конформного отображения заложено Л. Эйлером (1777), обнаружившим связь функций комплексного переменного с задачей о конформном отображении частей сферы на плоскость (для построения географических карт). Изучение общей задачи конформного отображения одной поверхности на другую привело К. Гаусса (1822) к развитию общей теории поверхностей. Б. Риман (1851) сформулировал условия, при которых возможно конформное отображение одной области плоскости на другую, однако намеченный им подход удалось обосновать лишь в начале 20 века (А. Пуанкаре и К. Каратеодори). Исследования Н. Е. Жуковского и С. А. Чаплыгина, открывших широкое поле приложений конформного отображения в аэро- и гидромеханике, послужили мощным стимулом для развития теории конформного отображения как большого раздела теории аналитической функций.

Лит.: Голузин Г. М. Геометрическая теория функций комплексного переменного. 2-е изд. М., 1966; Маркушевич А. И. Теория аналитических функций. 2-е изд. М., 1968. Т. 2; Лаврентьев М. А., Шабат Б.В. Методы теории функций комплексного переменного. 6-е изд. М., 2002.

Пусть однозначная функция определена в некоторой области и пусть точки и принадлежат области .

Определение. Если существует конечный предел отношения , когда по любому закону стремится к нулю, то:

1) этот предел называется производной функции в точке и обозначается символом

2) в этом случае функция называется дифференцируемой в точке .

Все правила и формулы дифференцирования функции действительного переменного остаются в силе и для функций комплексного переменного.

Теорема. Для того, чтобы функция была дифференцируема в точке , необходимо и достаточно, чтобы:

1) действительные функции и были дифференцируемы в точке *) ;

2) в этой точке выполнялись условия

, (4.2)

называемые условиями Коши-Римана (C.-R. ) или Даламбера-Эйлера.

При выполнении условий (C.-R .) производная функции может быть найдена по одной из следующих формул:

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Функция называется аналитической в области , если она дифференцируема в каждой точке этой области.

Определение. Функция называется аналитической в точке , если она является аналитической в некоторой окрестности точки , т.е. если функция дифференцируема не только в данной точке, но и в ее окрестности.

Из приведенных определений видно, что понятия аналитичности и дифференцируемости функции в области совпадают, а аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши–Римана для всех точек этой области.

Связь аналитических функций с гармоническими . Любая ли функция двух переменных и может служить действительной и мнимой частью некоторой аналитической функции?



Если функция аналитическая в области , то функции и являются гармоническими, т.е удовлетворяют уравнению Лапласа.

и .

Однако если функции и являются произвольно выбранными гармоническими функциями, то функция , вообще говоря, не будет аналитической, т.е. условия для них не всегда будут выполняться.

Можно построить аналитическую функцию по одной заданной гармонической функции (например, ), подобрав другую так, чтобы удовлетворялись условия . Условия (4.2) позволяют определить неизвестную функцию (например, ) по ее двум частным производным или, что то же самое, по ее полному дифференциалу. Отыскивание гармонической функции по ее дифференциалу есть известная из действительного анализа задача интегрирования полного дифференциала функции двух переменных.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через (рис.4.1).

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией

В каждой точке области в каждом направлении коэффициент растяжения будет свой. Для аргумента производной можно записать

где и это соответственно углы и , которые векторы и образуют с действительной осью (рис.4.1). Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Если рассмотреть две кривые и , и , то углы и (рис. 4.1) между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом). Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

УПРАЖНЕНИЯ

55. Показать, что функция дифференцируема и аналитична во всей комплексной плоскости. Вычислить ее производную.

Решение. Найдем и . По определению имеем . Следовательно, .

, ,

Откуда , .

Как видно, частные производные непрерывны на всей плоскости, и функции и дифференцируемы в каждой точке плоскости. Условия выполняются. Следовательно, дифференцируема в каждой точке плоскости, а значит, и аналитична на всей плоскости . Поэтому производную можно найти по одной из формул (4.3):

Наконец, производная может быть найдена по правилам формального дифференцирования: .

56. Выяснить, является ли аналитической функция:

Решение. а) Так как , то , откуда . Как видно, первое условие (4.2) не выполняется ни при каких и . Следовательно, функция не дифференцируема ни в одной точке плоскости, а поэтому и не аналитична.

б) Имеем . Функция и дифференцируемы в каждой точке плоскости, ибо их частные производные непрерывны во всей плоскости. Но условия не выполняются ни в какой точке плоскости, кроме точки , где все частные производные равны нулю. Следовательно, функция дифференцируема только в одной точке, но не является аналитической в ней, так как по определению требуется дифференцируемость в окрестности данной точки.

Таким образом, функция не является аналитической ни при каком значении . Из приведенного примера ясно, что аналитичность функции в точке более сильное требование, чем дифференцируемость ее в этой точке.

57. Существует ли аналитическая функция, для которой ?

Решение. Проверим, является ли функция гармонической. С этой целью находим

и . Из последнего соотношения следует, что не может быть действительной, а также и мнимой частью аналитической функции.

58. Найти, если это возможно, аналитическую функцию по ее действительной части .

Решение. Прежде проверим, является ли функция гармонической. Находим , , , и . Гармоническая на всей плоскости функция сопряжена с условиями Коши-Римана , . Из этих условий получаем , . Из первого уравнения системы находим интегрированием по , считая постоянным.

где произвольная функция, подлежащая определению. Найдем отсюда и приравняем к выражению , ранее найденному: . Получим дифференциальное уравнение для определения функции , откуда

Итак, . Тогда, т.е. в данной точке происходит вращение на угол и образующие между собой угол , отображаются соответственно в лучи и , образующие между собой угол . Поэтому в точке конформность отображения нарушается в силу того, что нарушается свойство консерватизма углов: углы не сохраняются, а утраиваются.

Электродные системы со сложными двумерными электростатическими полями могут быть рассчитаны методом конформных отображений. Основная идея этого метода состоит в замене сложных полей – простыми полями, для которых решения известны. К таким простым полям относятся поля плоского или цилиндрического конденсатора вдали от их краев. Метод конформных отображений является практическим применением теории функции комплексного переменного. Конформное отображение – это непрерывное отображение, сохраняющее форму бесконечно малых (б.м.) фигур. Для конформного отображения выполняется свойство постоянство углов и постоянство растяжений. Название происходит от позднелатинского – conformis – подобный, непрерывное отображение, сохраняющее форму бесконечно малых фигур: например, б.м. круг остается б.м. кругом; углы между линиями в точке их пересечения друг с другом не изменяются. Область применения метода конформных отображений для расчета электрических полей – двумерные электростатические поля.

Конформное преобразование отображает каждую точку z =x +j×y реального расчетного поля, описывающегося комплексной плоскостью, в точку w =u +j×v другой комплексной плоскости, с более простой конфигурацией поля. Основная сложность метода – нахождение вида функции для данной реальной электродной системы. На практике, при попытках найти функцию конформного отображения, используют либо специальные каталоги конформных отображений , либо ищут ее посредством последовательных проб.

Предположим, что мы знаем вид некоторого преобразования z =f(w) или обратного преобразования w =f(z) , которое устанавливает взаимно однозначное соответствие между двумя комплексными плоскостями со сложной (z ) и простой (w ) конфигурацией поля. Коэффициентом преобразования называется отношение dw/dz .

здесь использованы соотношения:

, . (2.94)

Аналогично можно записать:

. (2.95)

Два комплексных числа равны, если у них равны порознь действительные и мнимые части. Сравнивая значения коэффициента преобразования, приведенные в выражениях (2.93) и (2.95) можно записать:

Выражения (2.96) известны под названием условий Коши-Римана. Используя различные формы представления комплексных чисел, коэффициент преобразования можно записать в виде:

где - коэффициент изменения длины отрезков при преобразовании, а tg(j) = b/a (j - угол поворота отрезков при преобразовании). Из соотношений Коши-Римана, получим:

(2.99)

Из соотношений (2.97) – (2.98) следует, что коэффициент конформного преобразования М является относительной напряженностью электрического поля, а каждая из функций u и v может быть выбрана в качестве потенциала на новой комплексной плоскости w =f(u,v) . Этот вывод может быть проверен другим способом. Если функции u и v могут быть выбраны в качестве потенциала, то каждая из них должна удовлетворять уравнению Лапласа: Du =0 и Dv =0. Это можно проверить непосредственным повторным дифференцированием условий Коши-Римана. Продифференцируем первое условие по х , а второе по у ; сложим результат; перенесем в левую часть записи все значащие производные и оставим справа нуль:

; ; . (2.100)

Из полученного выражения следует, что функция u удовлетворяет уравнению Лапласа (1.25), (1.30) и может быть принята за потенциал. Продифференцируем 1-е условие по у , а 2-е - по х :

; ; , (2.101)

т.е. и функция v также удовлетворяет уравнению Лапласа и также может быть принята за потенциал. Поскольку силовые и эквипотенциальные линии на плоскости z =f(x,y) взаимно перпендикулярны, а конформное преобразование оставляет неизменными углы между линиями в точке их пересечения, то из (2.97) ¸ (2.101) следует, что если функция u принята, например, за потенциал, то тогда линия с v =const – является силовой линией. Если же v – потенциал, то u =const – силовая линия. Какая из функций u или v является потенциалом, а какая силовой линией, следует определять из анализа конформного преобразования поля на исходной плоскости z =f(x,y) в поле на плоскости w =f(u,v). Любая функция z=f(w) (или w=f(z)) дает нам решение какой-либо задачи электростатики. Можно придумать произвольную функцию, найти для неё решения, а затем к найденным решениям подобрать соответствующую электродную систему. Таким методом (задом наперед) было найдено множество решений электростатических задач.

При нахождении напряженности электрического поля методом конформных отображений следует учитывать следующее важное обстоятельство. Картина электрического поля полностью определяется геометрическими параметрами электродной системы независимо от пространственного масштаба и приложенного напряжения. Поэтому поле может быть описано напряженностью, отнесенной к единице напряжения или длины. Выражения (2.97)-(2.98) представляют собой именно такую относительную напряженность. Для получения реальной напряженности необходимо учесть действительно приложенное напряжение и фактическое расстояние между электродами. Это делается умножением выражений (2.97)-(2.98) на коэффициент масштаба К м . Пусть расстояние между электродами в плоскости w равно u 2 -u 1 (v 2 -v 1), если за эквипотенциальные линии приняты функции u или v , соответственно. Тогда коэффициент масштаба принимает вид:

К м = U /(u 2 -u 1) или К м = U /(v 2 -v 1). (2.102)

Цилиндрический конденсатор. Хотя расчет электростатического поля цилиндрического конденсатора приведен в §2.5, рассмотрим его в качестве примера применения метода конформных отображений. Поле цилиндрического конденсатора (поле двух концентрических окружностей) на плоскости ху может быть отображено в однородное поле (поле плоского конденсатора) следующим преобразованием:

z = e w ; x + j×y = e u+jv = e u (Cosv +j ×Sinv ).

Произведем разделение действительных и мнимых частей:

Прямая линия на реальной плоскости z , проходящая через начало координат с углом наклона к оси х равным v =const переходит в прямую линию на плоскости w , параллельную оси абсцисс.

При u = const на плоскости w получается система прямых линий, параллельных оси ординат. На плоскости z они соответствуют системе концентрических окружностей. Очевидно, что линии с u = const следует принять за потенциальные линии, а v – за силовые линии поля. Расчет напряженности будем проводить по формуле (2.97):

Длина преобразуемого малого отрезка при переносе с плоскости z на плоскость w изменяется в 1/r раз, где r – расстояние до центра окружностей. Чем дальше от центра, тем меньше коэффициент изменения длин отрезков. Переносимый отрезок поворачивается на угол j = arctg(-y/x ). Угол между лучом, идущим из начала координат в середину преобразуемого отрезка, и осью х становится равным нулю. Все радиусы на z - плоскости превращаются на w - плоскости в линии параллельные оси u . Масштабный коэффициент

Напряженность

(2.103)

Полученная формула (2.103) совпадает, как и следовало ожидать в силу теоремы о единственности, с выражением (2.18), полученным с помощью теоремы Остроградского-Гаусса.

Поле внутри прямого угла, образованного двумя плоскостями

В качестве другого примера применения метода конформных отображений рассмотрим поле, образованное двумя бесконечными проводящими взаимно перпендикулярными плоскостями. Очевидно, что такая электродная система имеет трансляционную симметрию с бесконечно малым шагом трансляции вдоль плоскостей и плоскость симметрии, проходящую под углом 45° к каждой из плоскостей. Такое поле сводится к двумерному полю, а для определения его параметров достаточно рассчитать характеристики поля между одной из плоскостей и плоскостью симметрии. Для двумерных полей может быть применен метод конформного отображения. Поле в z – плоскости, перпендикулярной линии пересечения заряженных плоскостей, показано на рис.2.20а. За оси х и у приняты линии пересечения заряженных плоскостей с z – плоскостью. Поле внутри прямого угла, образованного двумя плоскостями, преобразуется в однородное поле преобразованием w = z 2 . Покажем это:

w = u +jv = z 2 = (x +jy ) 2 = x 2 + j 2xy y 2 ; u = x 2 – y 2 ; v = + j 2xy .

При u = const линии, параллельные оси v на плоскости w , преобразуются в семейство равнобочных гипербол x 2 – y 2 = а 2 на плоскости z . Ось 0х является действительной (фокальной) осью гипербол, а ось у её мнимой осью. Прямая линия, проходящая через начало координат под углом 45° к оси х (u = 0; y = x ), представляет собой линию пересечения z – плоскости с плоскостью симметрии и является асимптотой гипербол. Угол пересечения гипербол с осью х равен 90°, т.е. линии функции u =х 2 -у 2 перпендикулярны эквипотенци альной линии х (поверхности заряженной плоскости х ).

Функции v = 2xy при различных значениях v описывают другое семейство равнобочных гипербол, у которых оси х и у являются асимптотами, а линия у = х является фокальной осью. На рис.2.20а представлены гиперболы с v = 4, 16, 36. При v = 0 гипербола вырождается в оси координат х и у , которые совпадают с заряженными плоскостями. Поскольку поверхность заряженных плоскостей является поверхностью одинакового потенциала, очевидно, что именно функция v должна быть принята за потенциальную функцию на плоскости w . В этом случае функция u представляет собой силовую функцию. Поле двух бесконечных взаимно перпендикулярных плоскостей (оси х и у на z – плоскости) превращается в однородное поле бесконечной заряженной плоскости (ось v на w – плоскости).

Конформное преобразование, сохраняя форму бесконечно малых фигур, может существенно изменить форму конечных фигур. В качестве примера такого изменения приведено преобразование квадрата abcd c координатами а (0,8;0,8), b (0,8;4), c (4;4), d (4;0,8) на z - плоскости в криволинейный четырехугольник a¢b¢c¢d¢ с координатами а¢ (0;1,28), (-15,36;6,4), (0;32), (15,36;6,4) на w - плоскости.

Определим относительную напряженность электростатического поля заряженных плоскостей рис.2.20а. Из двух формул (2.97) и (2.98) для определения напряженности будем использовать (2.98), поскольку именно функция v = 2xy описывает систему эквипотенциальных поверхностей (линий). Линейный коэффициент преобразования:

, (2.104)

Длина преобразуемого малого отрезка при переносе с z - плоскости на w - плоскость увеличивается в 2r раз, где r =х 2 +у 2 – расстояние на z - плоскости от начала координат до центра отрезка. Переносимый отрезок поворачивается на угол j = arctg(y/x ). Происходит удвоение угла между лучом, идущим из начала координат в середину отрезка, и осью х . Масштабный коэффициент К м = U /(v 2 -v 1) = U /(2x 2 y 2 -2x 1 y 1). Напряженность поля определится умножением относительной напряженности на масштабный коэффициент: Е =E¢×K м . Пусть масштабный коэффициент равен К м =100 в/м. Определим напряженность поля в двух точках на заряженной плоскости: более близкой к углу пересечения плоскостей n 1(1;0) и отдаленной от него n 2 (5;0).

В/м, ×в/м.

Чем ближе к углу, тем меньше напряженность поля. Это результат можно было ожидать из картины поля рис.2.20: расстояние между эквипотенциальными линиями уменьшается при удалении от угла. Любое углубление (вмятина, впадина, каверна, трещина и т.п.) на поверхности электрода может быть приблизительно описано рассмотренной задачей. Тогда, учитывая результаты предыдущего параграфа, можно заключить: вблизи острия или выступа напряженность электрического поля повышается, а вблизи впадины или отверстия она слабеет. Аналогичная рис.2.20а картина поведения силовых и эквипотенциальных линий наблюдается вблизи точки ветвления поля от двух одноименных зарядов (§2.11).

Поле на краю плоского конденсатора (профиль Роговского)

Поместим начало координат на z - плоскости так, чтобы ось х была параллельна плоскостям обкладок конденсатора и находилась от них на одинаковом расстоянии a . Ось у перпендикулярна обкладкам и проходит через их края. Функцию отображения поля на краю плоского конденсатора в однородное поле получил Ю. К. Максвелл в 1881 г. в виде:

. (2.105)

После разделения переменных получаем:

При v I = 0, y = 0, . При v II = p, y = a, .

Очевидно, что за потенциальную функцию следует выбрать функцию v .

,

Учитывая, что К м =U/(v II -v I) = U /p

(2.106)

При u < -5 в области от v I =0 до v II =p получается практически однородное поле с напряженностью U/a . При u ®0 напряженность на электроде (v =v II = p)сильно возрастает и стремиться к бесконечности при u =0. Наибольшая напряженность в реальных системах не обращается в нуль:

. (2.107)

При конечной толщине обкладки конденсатора v ¹p и напряженность остается конечной. Величину v следует подбирать так, чтобы эквипотенциальная поверхность совпала с реальной поверхностью обкладки конденсатора. Пусть v = 174° = 29p/30, тогда отношение напряженности у края электрода к средней напряженности:

.

Видно, что у даже довольно тупого края напряженность резко возрастает. Это отношение можно сделать близким к единице, если поверхность электрода выполнить в виде эквипотенциальной поверхности с v £ p/2. Такой профиль электрода называется профилем Роговского (рис.2.21в). При расстоянии а = p (между обкладками расстояние 2p) он имеет координату v = p/2 и для него x = u +1; y = p/2+e u , т.е. у = p/2+e (х -1) (2.108)

Профиль Роговского имеет большое практическое значение в экспериментах по пробою в поле, близком к однородному для устранения краевого эффекта . В центре устройства с электродами Роговского имеет место однородное поле.

Поле расщепленных проводов.

В линиях электропередачи высокого напряжения фазовый провод расщепляют на несколько проводников в целях уменьшения потерь передаваемой мощности из-за коронного разряда. Для описания поля расщепленного

провода можно пользоваться функцией отображения , где n

число отдельных проводников, на которые расщепляется фазовый провод. В качестве иллюстрации метода конформных отображений рассмотрим расщепление на два провода (n =2). (Заметим, что этот случай достаточно просто может быть решен методом изображений )

Пусть плоскость z перпендикулярна расщепленным проводам. Выберем ось х на z плоскости таким образом, чтобы она проходила через оси проводов. Пусть ось y проходит через середину отрезка между проводами. Решение существенно упрощается, если находить не функции x,y =f(u,v) , а функции u,v = f(x,y) . Разделяя действительную и мнимую части, получим:

,

Эквипотенциальным линиям соответствует функция u . Чтобы функция u равнялась нулю, логарифм должен быть равен нулю, а выражение в квадратных скобках должно быть равно 1. Тогда выполняется соотношение:

(х 2 +у 2) 2 = 2а 2 (х 2 -у 2)

Эта функция проходит через начало координат z - плоскости. При u в диапазоне -1,28 < u < 0 на z - плоскости наблюдаются круговые области справа и слева от оси у . При u £ -1.28 это практически точки с координатами х = -а и х = а . При u > 0 решениями являются замкнутые кривые, которые при возрастании u приближаются по форме к окружностям. Эти кривые представляют собой потенциальные линии поля двух цилиндров с зарядами одного знака, т.е. поля двух проводов с одним потенциалом. Наибольший интерес представляют точки на поверхности проводов р 2 и р 1 , в которых, соответственно, наблюдается наибольшая и наименьшая напряженность поля. Точка р 2 находится на поверхности провода в наиболее удаленной от другого провода точке и имеет координаты:

,

С учетом масштабного коэффициента для точки р 2 получаем:

. (2.109)

При s®0 электродная система превращается в систему двух коаксиальных цилиндров (b =0, s =0) (см.(2.18)):

Обычно для линии электропередачи p ³ 200.

Вопросы для самопроверки

1. Приведите фундаментальные уравнения Лапласа в пространстве, однородном и плоскопараллельном поле.

2. Приведите формулы для расчета потенциала и напряженности поля точечного заряда. Определите емкость одиночного металлического шара.

3. Приведите формулы для расчета потенциала и напряженности поля одиночной бесконечно тонкого прямого провода бесконечной длины.

4. Где находятся область с максимальной напряженностью поля у коаксиального кабеля. Найдите оптимальный диаметр внутренней жилы при заданном размере внешней оболочки и разности потенциалов между ними. Определите погонную емкость коаксиального кабеля.

5. Для чего изготовляют кабели с изоляцией из различных типов диэлектриков?

6. Объясните конструкцию конденсаторного ввода и его назначение.

7. В чем состоит метод наложения, и что такое частичная емкость?

8. Что такое электрический диполь, каковы характеристики поля диполя? Для объяснения каких явлений используется понятие диполя?

9. В чем состоит сходство и различие полей двух одноименных и разноименных зарядов?

10. Графически изобразите поле двух разноименно заряженных бесконечных осей. Приведите формулы для расчета такой системы и укажите точки с максимальной напряженностью поля.

11. В чем состоит метод отражения? Объясните сущность метода на примере расчета параметров поля одиночного провода над землей.

12. Приведите методику расчета параметров поля точечного заряда, расположенного вблизи металлического шара.

13. Определите напряженность электрического поля на поверхности одиночного провода, расположенного над землей.

14. Как определить параметры поля трехфазной линии?

15. Определите максимальную напряженность шарового разрядника.

16. Приведите методику нахождения параметров поля, создаваемого проводником конечной длины.

17. Приведите методику нахождения параметров поля, создаваемого кольцевым зарядом.

18. Приведите методику нахождения параметров поля, создаваемого заряженным диском.

19. Как зависят параметры поля от радиуса закругления поверхности электрода? Для чего следует сглаживать и шлифовать поверхности электродов высокого напряжения?

20. Поясните сущность метода конформных отображений и перечислите последовательность расчета по этому методу.

21. Что такое профиль Роговского?

22. Как возникает объемный заряд, и как он изменяет характеристики электрического поля?

23. Какая из характеристик электрического поля является аналогом энергии?

24. Какая из характеристик электрического поля является аналогом силы?

25. С какой целью на линиях электропередач с номинальным напряжением 330 кВ и выше проводник одной фазы выполняют расщеплённым на несколько параллельных проводников? Укажите точки с максимальной напряженностью на расщеплённых проводах. Каковы расстояния между расщепленными проводниками?

26. Где напряженность электрического поля вблизи поверхности земли выше: в углублении (яме, овраге) или на возвышении (холм, бугор)? Ответ поясните графически и расчетом.

27. Как изменяется напряженность электрического поля на уровне земли под одноцепной линией электропередач с горизонтальным расположением фазных проводов?

28. Приведите алгоритм расчета емкости на землю трехфазной ВЛ.

29. С какой целью на аппаратах высокого напряжения ставятся кольцевые экраны?

30. Выведете формулы расчета параметров цилиндрического конденсатора.