Глубинное строение земли. материки и океаны. Происхождение материков и океанов (7 класс). Происхождение материков и океанов: гипотеза, описание и история

1. Глубинное строении Земли

Географическая оболочка взаимодействует, с одной стороны, с глубинным веществом планеты, с другой - с верхними слоями атмосферы. Глубинное строение Земли оказывает существенное влияние на формирование географической оболочки. Термином «строение Земли» обычно обозначается ее внутреннее, т. е. глубинное устройство, начиная от земной коры и до центра планеты.

Масса Земли - 5, 98 х 10 27 г.

Средняя плотность Земли - 5, 517 г/см 3.

Состав Земли. Согласно современным научным представлениям, Земля состоит из следующих химических элементов: железо - 34, 64 %, кислород - 29, 53 %, кремний - 15, 20%, магний - 12, 70 %, никель - 2, 39 %, сера - 1,93 %, хром - 0, 26 %, марганец - 0, 22 %, кобальт - 0, 13 %, фосфор - 0, 10 %, калий - 0, 07 % и др.

Наиболее достоверные данные о внутреннем строении Земли дают наблюдения над сейсмическими волнами, т. е. колебательными движениями земного вещества, вызванными землетрясениями.

Резкое изменение скорости сейсмических волн (фиксируемое на сейсмографах) на глубине в 70 км и 2900 км отражает скачкообразное увеличение плотности вещества на этих пределах. Это дает основание вычленить во внутреннем теле Земли следующие три оболочки (геосферы): до глубины 70 км - земная кора, от 70 км до 2 900 км - мантия, а от нее и до центра Земли - ядро. В ядре выделяются внешнее ядро и внутреннее ядро.

Земля образовалась около 5 млрд. лет назад из некоторой холодной газово-пылевой туманности. После того как масса планеты достигла современного значения (5,98 х 10 27 г) началось ее саморазогревание. Основными источниками тепла являлись: во-первых, гравитационное сжатие, во-вторых, радиоактивный распад. В результате развития этих процессов температура внутри Земли стала повышаться, что привело к плавлению металлов. Так как в центре Земли вещество было сильно сжато, а с поверхности охлаждалось излучением, то плавление происходило главным образом на небольших глубинах. Таким образом образовался расплавленный слой, из которого силикатные материалы, как наиболее легкие, поднимались вверх, давая начало земной коре. На уровне плавления оставались металлы. Так как их плотность выше, чем не дифференцированного глубинного вещества, то они постепенно опускались. Это привело к формированию металлического ядра.

ЯДРО на 85-90 % состоит из железа. На глубине 2 900 км (граница мантии и ядра) вещество находится в сверхтвердом состоянии вследствие огромного давления (1 370 000 атм.). Ученые предполагают, что внешнее ядро расплавлено, а внутреннее ядро находится в твердом состоянии. Дифференциация земного вещества и выделение ядра - это самый мощный на Земле процесс и главный, первый внутренний движущий механизм развития нашей планеты.

Роль ядра в формировании магнитосферы Земли. Ядро оказывает мощное воздействие на формирование магнитосферы Земли, защищающей жизнь от губительного ультрафиолетового излучения. В электропроводящем внешнем жидком ядре быстро вращающейся планеты происходят сложные и интенсивные движения вещества, приводящие к возбуждению магнитного поля. Магнитное поле простирается в околоземное пространство на несколько земных радиусов. Взаимодействуя с солнечным ветром, геомагнитное поле создает магнитосферу Земли. Верхняя граница магнитосферы находится на высоте около 90 тыс. км. Образование магнитосферы и изоляция земной природы от плазмы солнечной короны было первым и одним из важнейших условий зарождения жизни, развития биосферы и становления географической оболочки.

МАНТИЯ состоит преимущественно из Mg, O, FeO и SiO2, которые образуют магму. В состав магмы входят вода, хлор, фтор и другие летучие вещества. В мантии непрерывно протекает процесс дифференциации вещества. Вещества, облегченные удалением металлов, поднимаются в направлении земной коры, а более тяжелые опускаются. Подобные перемещения вещества в мантии определяются термином «конвекционные токи».

Понятие об астеносфере. Верхняя часть мантии (в пределах 100- 150 км) называется астеносферой. В астеносфере сочетание температуры и давления таково, что вещество находится в расплавленном, подвижном состоянии. В астеносфере происходят не только постоянные конвекционные токи, но и горизонтальные астеносферные течения.

Скорость горизонтальных астеносферных течений достигает всего лишь нескольких десятков сантиметров в год. Однако за геологическое время эти течения привели к расколу литосферы на отдельные глыбы и к их горизонтальному перемещению, известному как дрейф материков. В астеносфере находятся очаги вулканов и центры землетрясений. Ученые полагают, что над нисходящими токами образуются геосинклинали, а над восходящими - срединные океанические хребты и рифтовые зоны.

2. Понятие о земной коре. Гипотезы, объясняющие происхождение и развитие земной коры

Земная кора - это комплекс поверхностных слоев твердого тела Земли. В научной географической литературе нет единого представления о происхождении и путях развития земной коры.

Существует несколько гипотез (теорий), объясняющих механизм образования и развития земной коры. Наиболее обоснованными гипотезами являются следующие:

  • 1. Теория фиксизма (от лат. fixus - неподвижный, неизменный) утверждает, что материки всегда оставались на тех местах, которые они занимают в настоящее время. Данная теория отрицает всякое движение материков и крупных частей литосферы (Чарльз Дарвин, А.Уоллес и др.).
  • 2. Теория мобилизма (от лат. mobilis - подвижный) доказывает, что блоки литосферы находятся в постоянном движении. Эта концепция особенно утвердилась в последние годы в связи с получением новых научных данных при исследовании дна Мирового океана.
  • 3. Концепция роста материков за счет дна океана полагает, что первоначальные материки образовались в виде сравнительно небольших массивов, которые теперь составляют древние материковые платформы. В последствии эти массивы разрастались за счет образования гор на океаническом дне, примыкавшем к краям первоначальных ядер суши. Исследование дна океанов, особенно в зоне срединно-океанических хребтов, дало основание сомневаться в правильности этой концепции.
  • 4. Теория геосинклиналей утверждает, что увеличение размеров суши происходит путем образования гор в геосинклиналях. Геосинклинальный процесс, как один из основных в развитии земной коры материков, положен в основу многих современных научных объяснений.
  • 5. Ротационная теория строит свое объяснение на положении о том, что поскольку фигура Земли не совпадает с поверхностью математического сфероида и перестраивается в связи с неравномерным вращением, то зональные полосы и меридиональные секторы на вращающейся планете неизбежно тектонически неравнозначны. Они с разной степенью активности реагируют на тектонические напряжения, вызванные внутриземными процессами.

Океанская и материковая земная кора. Существует два основных типа земной коры: океанская и материковая. Выделяется также ее переходный тип.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

  • 1) верхний тонкий слой морских осадков (мощность не более 1 км);
  • 2) средний базальтовый слой (мощность от 1,0 до 2,5 км);
  • 3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит из следующих трех слоев:

  • 1)нижний слой (базальтовый), сложенный базальтами (мощность около 20 км);
  • 2)средний слой (гранитный), образованный в основном гранитами и гнейсами; формирует основную толщу материковой коры, под океаны не распространяется;
  • 3)верхний слой (осадочный) мощностью около 3 км.

В некоторых районах мощность осадков достигает 10 км: например в Прикаспийской низменности. В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходит слой гранита. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада. На этой границе скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов земной коры (океанского и материкового) существуют также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) распространена земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, т. е. до глубины примерно 100 км.

Понятие об изостазии. Изучение распределения силы тяжести показало, что все части земной коры - материки, горные страны, равнины - уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis - положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия - это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 см в год. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 600 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Поэтому земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо (подошвы земной коры): возвышенным участкам соответствуют углубления в мантию, пониженным - более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности - около 30 км.

Термические свойства земной коры. Суточные колебания температуры почвогрунтов распространяются на глубину 1,0 - 1,5 м, а годовые колебания в умеренных широтах в странах с континентальным климатом - до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем. Ниже изотермического слоя в глубь Земли температура повышается. Но это повышение температуры вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло практически не участвует. Однако оно служит единственной энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины, называется геотермическим градиентом.

Расстояние в метрах, при опускании на которое температура возрастает на 10С, называется геотермической ступенью. Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего 5 м, а в геологически спокойных областях (на платформах) она может достигать 100 м.

3. Структурно-тектонический принцип выделения материков. Понятие о материках и частях света

Двум качественно различным типам земной коры - материковому и океаническому - соответствуют два основных уровня планетарного рельефа - поверхности материков и ложе океанов. Выделение материков в современной географии осуществляется на основе структурно-тектонического принципа.

Структурно-тектонический принцип выделения материков.

Принципиально качественное различие материковой и океанической коры, а также некоторые существенные отличия в строении верхней мантии под материками и океанами обязывают выделять континенты не по видимому окружению их океанами, а по структурно-тектоническому принципу.

Структурно-тектонический принцип утверждает, что, во-первых, материк включает в себя материковую отмель (шельф) и материковый склон; во-вторых, в основе каждого материка находится ядро или древняя платформа; в-третьих, каждая материковая глыба изостатически уравновешена в верхней мантии.

С точки зрения структурно-тектонического принципа, материком называется изостатически уравновешенный массив континентальной земной коры, имеющий структурное ядро в виде древней платформы, к которому примыкают более молодые складчатые структуры.

Всего на Земле имеется шесть материков: Евразия, Африка, Северная Америка, Южная Америка, Антарктида и Австралия. В составе каждого материка лежит одна какая-либо платформа и только в основе Евразии их шесть: Восточноевропейская, Сибирская, Китайская, Таримская (Западный Китай, пустыня Такла-Макан), Аравийская и Индостанская. Аравийская и Индостанская платформы представляют собой части древней Гондваны, примкнувшие к Евразии. Таким образом, Евразия - гетерогенный аномальный материк.

Границы между материками вполне очевидны. Граница между Северной Америкой и Южной Америкой проходит по Панамскому каналу. Граница между Евразией и Африкой проводится по Суэцкому каналу. Берингов пролив отделяет Евразию от Северной Америки.

Два ряда материков. В современной географии выделяется следующие два ряда материков:

  • 1. Экваториальный ряд материков (Африка, Австралия и Южная Америка).
  • 2. Северный ряд материков (Евразия и Северная Америка).

Вне этих рядов остается Антарктида - самый южный и холодный континент.

Современное расположение материков отражает длительную историю развития материковой литосферы.

Южные материки (Африка, Южная Америка, Австралия и Антарктида) представляют собой части («осколки») единого в палеозое мегаконтинента Гондваны. Северные материки в то время были объединены в другой мегаконтинент - Лавразию. Между Лавразией и Гондваной в палеозое и мезозое находилась система обширных морских бассейнов, получившая название океана Тетис. Этот океан протягивался от Северной Африки (через южную Европу, Кавказ, Переднюю Азию, Гималаи в Индокитай) до современной Индонезию. В неогене (около 20 млн. лет назад) на месте этой геосинклинали возник альпийский складчатый пояс.

Соответственно своим большим размерам суперконтинет Гондвана, по закону изостазии, имел мощную (до 50 км) земную кору, которая была глубоко погружена в мантию. Под этим суперконтинентом в астеносфере особенно интенсивными были конвекционные токи; размягченное вещество мантии двигалось весьма активно. Это привело сначала к образованию вздутия в средине континента, а затем к расколу его на отдельные глыбы, которые под действием тех же конвекционных токов стали горизонтально перемещаться. Известно, что перемещение контура на поверхности сферы всегда сопровождается его поворотом (Эйлер и др.). Поэтому части Гондваны не только перемещались, но и разворачивались в географическом пространстве.

Первый раскол Гондваны произошел на границе триаса и юры (около 190-195 млн. лет назад); отделилась Афро-Америка. Затем на границе юры и мела (около 135-140 млн. лет назад) Южная Америка отделилась от Африки. На границе мезозоя и кайнозоя (около 65-70 млн. лет назад) Индостанская глыба столкнулась с Азией, а Антарктида отошла от Австралии. В настоящую геологическую эпоху литосфера, по мнению ученых, разбита на шесть плит-блоков, которые продолжают двигаться.

Распадом Гондваны удачно объясняются форма, геологическое сходство, а также история растительного покрова и животного мира южных материков. История раскола Лавразии так тщательно, как Гондваны, не изучена.

Закономерности расположения материков. Современное расположение материков характеризуется следующими закономерностями:

  • 1. Большая часть суши располагается в Северном полушарии. Северное полушарие является материковым, хотя и здесь на сушу приходится только 39 %, а на океан около 61%.
  • 2. Северные материки расположены достаточно компактно. Южные материки расположены весьма разбросано и разобщено.
  • 3. Рельеф планеты антисеммитричен. Материки расположены так, что каждому их них на противоположной стороне Земли непременно соответствует океан. Лучше всего это можно видеть на сопоставлении арктического океана и антарктической суши. Если глобус установить так, чтобы на одном из полюсов был любой из материков, то на другом полюсе обязательно будет океан. Есть только одно незначительное исключение: окончание Южной Америки антиподально Юго-Восточной Азии. Антиподальность, поскольку она почти не имеет исключений, не может быть явлением случайным. В основе этого явления лежит уравновешенность всех участков поверхности вращающейся Земли.

Понятие о частях света. Кроме геологически обусловленного деления суши на континенты, существует также сложившееся в процессе культурно-исторического развития человечества деление земной поверхности на отдельные части света. Всего насчитывается шесть частей света: Европа, Азия, Африка, Америка, Австралия с Океанией, Антарктида. На одном материке Евразии располагается две части света (Европа и Азия), а два материка западного полушария (Северная Америка и Южная Америка) образуют одну часть света - Америку.

Граница между Европой и Азией весьма условна и проводится по водораздельной линии Уральского хребта, реке Урал, северной части Каспийского моря и Кума-Манычской впадине. По Уралу и Кавказу проходят линии глубинных разломов, отделяющих Европу от Азии.

Площадь материков и океанов. Площадь суши высчитывается в пределах современной береговой линии. Площадь поверхности земного шара составляет примерно 510, 2 млн. км 2. Около 361, 06 млн. км2 занимает Мировой океан, что составляет примерно 70,8 % общей поверхности Земли. На сушу приходится примерно 149, 02 млн. км 2 , т.е. около 29, 2 % поверхности нашей планеты.

Площадь современных материков характеризуется следующими величинами:

Евразия - 53, 45 км2, в том числе Азия - 43, 45 млн. км2, Европа - 10, 0 млн. км2;

Африка - 30, 30 млн. км2;

Северная Америка - 24, 25 млн. км2;

Южная Америка - 18, 28 млн. км2;

Антарктида - 13, 97 млн. км2;

Австралия - 7, 70 млн. км2;

Австралия с Океанией - 8, 89 км2.

Современные океаны имеют площадь:

Тихий океан - 179, 68 млн. км2;

Атлантический океан - 93, 36 млн. км2;

Индийский океан - 74, 92 млн. км2;

Северный Ледовитый океан - 13, 10 млн. км2.

Между северными и южными материками (в соответствии с различным их происхождением и развитием) имеется значительная разница в площади и характере поверхности. Основные географические различия между северными и южными материками сводятся к следующему:

  • 1. Несравнима по величине с другими материками Евразия, которая сосредоточивает более 30 % суши нашей планеты.
  • 2. У северных материков значителен по площади шельф. Особенно значителен шельф в Северном Ледовитом океане и Атлантическом океанах, а также в Желтом, Китайском и Беринговом морях Тихого океана. Южные материки, за исключением подводного продолжения Австралии в Арафурском море, почти лишены шельфа.
  • 3. Большая часть южных материков приходится на древние платформы. В Северной Америке и Евразии древние платформы занимают меньшую часть общей площади, а большая часть приходится на территории, образованные палеозойским и мезозойским горообразованием. В Африке около 96 % ее территории приходится на платформенные участки и только 4 % - на горы палеозойского и мезозойского возраста. В Азии только 27 % территории занимают древние платформы и 77 % - горы различного возраста.
  • 4. Береговая линия южных материков, образованная большей частью тектоническими разломами, относительно прямолинейна; полуостровов и материковых островов мало. Для северных же материков характерна исключительно извилистая береговая линия, обилие островов, полуостровов, часто далеко идущих в океан. Из общей площади на острова и полуострова приходится в Европе около 39 %, Северной Америке - 25 %, Азии - 24 %, Африке - 2,1 %, Южной Америке - 1,1 % и Австралии (без Океании) - 1,1 %.
  • 4. Вертикальное расчленение суши

Каждый из основных планетарных уровней - поверхности материков и океанического ложа - распадается на ряд второстепенных уровней. Формирование как основных, так и второстепенных уровней происходило в процессе длительного развития земной коры и продолжается в настоящее геологическое время. Остановимся на современном расчленении материковой земной коры на высотные ступени. Счет ступеней ведется от уровня моря.

  • 1. Депрессии - участки суши, лежащие ниже уровня моря. Наибольшей на Земле депрессией является южная часть Прикаспийской низменности с минимальной отметкой -28 м. Внутри Центральной Азии находится чрезвычайно сухая Турфанская впадина с глубиной около -154 м. Самой глубокой депрессией на Земле является котловина Мертвого моря; берега Мертвого моря лежат на 392 м ниже уровня моря. Депрессии, занятые водой, уровни которых лежат выше уровня океана, называются криптодепрессиями. Типичными примерами криптодепрессий являются озеро Байкал и Ладожское озеро. Каспийское море и Мертвое море не являются криптодепрессиями, т.к. уровень воды в них не достигает уровня океана. Площадь, занятая депрессиями (без криптодепрессий) относительно невелика и составляет около 800 тыс. км2.
  • 2. Низменности (низменные равнины) - участки суши, лежащие на высоте от 0 до 200 м над уровнем моря. Низменности многочисленны на каждом материке (за исключением Африки) и занимают большую площадь, чем любая другая ступень суши. Общая площадь всех низменных равнин земного шара составляет около 48,2 млн. км2.
  • 3. Возвышенности и плато лежат на высоте от 200 до 500 м и различаются между собой преобладающими формами рельефа: на возвышенностях рельеф пересеченный, на плато - сравнительно плоский. Возвышенности над низменностями поднимаются постепенно, а плато - заметным уступом. Возвышенности и плато различаются между собой и геологическим строением. Площадь, занятая возвышенностями и плато, составляет около 33 млн. км2.

Выше 500 м располагаются горы. Они могут иметь различное происхождение и возраст. По высоте горы подразделяются на низкие, средние и высокие.

  • 4. Низкие горы поднимаются не выше 1 000 м. Обычно низкие горы представляют собой либо древние разрушенные горы, либо предгорья современных горных систем. Низкогорья занимают около 27 млн. км 2.
  • 5. Средние горы имеют высоту от 1 000 до 2 000 м. Примерами средневысотных гор являются: Урал, Карпаты, Забайкалье, некоторые хребты Восточной Сибири и многие другие горные страны. Площадь, занятая средними горами, составляет около 24 млн. км 2.
  • 6. Высокие (альпийские) горы поднимаются выше 2 000 м. Термин «альпийские горы» часто применяется по отношению только к горам кайнозойского возраста, лежащим на высоте более 3 000 м. На высокие горы приходится около 16 млн. км2.

Ниже уровня океана продолжается материковая низменность, затопленная водой, - шельф, или материковая отмель. До недавнего времени по тому же условному счету, что и ступени суши, шельфом называли подводные равнины с глубинами до 200 м. Теперь границу шельфа проводят не по формально избранной изобате, а по линии фактического, геологически обусловленного окончания материковой поверхности и перехода ее к материковому склону. Поэтому шельф продолжается в океане до разных глубин в каждом море, часто превышающих 200 м и достигающих 700 и даже 1 500 м.

У внешнего края относительно плоского шельфа происходит резкий перелом поверхности к материковому склону и материковому подножью. Шельф, склон и подножье вместе образуют подводную окраину материков. Она продолжается в среднем до глубины 2 450 м.

Материки, включая их подводную окраину, занимают около 40 % поверхности Земли, тогда как площадь суши составляет около 29,2 % общеземной.

Каждый материк изостатически уравновешен в астеносфере. Между площадью материков, высотой их рельефа и глубиной погружения в мантию есть прямая зависимость. Чем больше площадь континента, тем больше его средняя высота и мощность литосферы. Средняя высота суши составляет 870 м. Средняя высота Азии - 950 м, Европы - 300 м, Австралии - 350 м.

Понятие о гипсометрической (батиграфической) кривой. Обобщенный профиль земной поверхности представляется гипсометрической кривой. Часть ее, относящуюся к океану, называют батиграфической кривой. Кривая строится следующим образом. Размеры площадей, лежащих на различных высотах и глубинах, снимаются с гипсометрических и батиграфических карт и откладываются в системе координатных осей: по линии ординат откладываются от 0 вверх высоты, а вниз - глубины; по линии абсцисс - площади в миллионах квадратных километров.

5. Рельеф и строение дна Мирового океана. Острова

Средняя глубина Мирового океана составляет 3 794 м.

Дно Мирового океана состоит из следующих четырех планетарных морфоскульптурных форм:

  • 1) подводная окраина материков,
  • 2) переходные зоны,
  • 3) ложе океана,
  • 4) срединно-океанические хребты.

Подводная окраина материков состоит из шельфа, материкового склона, материкового подножья. Она опускается до глубины 2 450 м. Земная кора здесь имеет материковый тип. Общая площадь подводной окраины материков составляет около 81,5 млн. км2.

Материковый склон погружается в океан сравнительно круто, уклоны в среднем составляют около 40 , но иногда они достигают 400.

Материковое подножье представляет собой прогиб на границе материковой и океанической земной коры. Морфологически это аккумулятивная равнина, образованная осадками, снесенными с материкового склона.

Срединно-океанические хребты представляют собой единую и непрерывную систему, охватывающую все океаны. Они представляют собой огромные горные сооружения, достигающие в ширину 1-2 тыс. км и поднимающиеся над океаническим ложем на 3-4 тыс. км. Иногда срединно-океанические хребты возвышаются над уровнем океана и образуют многочисленные острова (остров Исландия, Азорские острова, Сейшельские острова и др.). По грандиозности они значительно превосходят горные страны материков и соизмеримы с континентами. Например, Срединно-Атлантический хребет в несколько раз больше самой крупной наземной горной системы Кордильер и Анд. Для всех срединно-океанических хребтов характерна повышенная тектоническая активность.

Система срединно-океанических хребтов включает в себя следующие структуры:

  • - Срединно-Атлантический хребет (протягивается от Исландии вдоль всего Атлантического океана до острова Тристан-да-Кунья);
  • - Срединно-Индийский хребет (его вершины выражены Сейшельскими островами);
  • - Восточно-Тихоокеанское поднятие (простирается к югу от полуострова Калифорния).

По рельефу и особенностям тектонической активности срединно-океанические хребты бывают: 1) рифтовые и 2) нерифтовые.

Рифтовые хребты (например, Срединно-Атлантический) характеризуются наличием «рифтовой» долины - глубокого и узкого ущелья с крутыми склонами (ущелье идет по гребню хребта вдоль его оси). Ширина рифтовой долины составляет 20-30 км, а глубина разлома может располагаться ниже ложа океана до 7 400 м (впадина Романш). Рельеф рифтовых хребтов сложный, пересеченный. Для всех хребтов этого типа характерны рифтовые долины, узкие горные хребты, гигантские поперечные разломы, межгорные впадины, вулканические конусы, подводные вулканы, острова. Все рифтовые хребты отличаются большой сейсмической активностью.

Нерифтовые хребты (например, Восточно-Тихоокеанское поднятие) характеризуются отсутствием «рифтовой» долины и имеют менее сложный рельеф. Сейсмическая активность для нерифтовых хребтов не характерна. Однако им свойственна общая черта всех срединно-океанических хребтов - наличие грандиозных поперечных разломов.

Наиболее важные геофизические особенности срединно-океанических хребтов сводятся к следующему:

  • -повышенная величина потока тепла из недр Земли;
  • -специфическое строение земной коры;
  • -аномалии магнитного поля;
  • -вулканизм;
  • -сейсмическая активность.

Распределение осадков, слагающих верхний слой земной коры, в срединно-океанических хребтах подчиняется следующей закономерности: на самом хребте осадки маломощны или отсутствуют вообще; по мере удаления от гребня возрастает мощность осадков (до нескольких километров) и их возраст. Если в самой расселине возраст лав составляет примерно 13 тыс. лет, то в 60 км - уже 8 млн. лет. Горные породы, имеющие возраст более 160 млн. лет, на дне Мирового океана не обнаружены. Указанные факты свидетельствуют о постоянном обновлении срединно-океанических хребтов.

Механизмы образования срединно-океанических хребтов. Образование срединно-океанических хребтов связано с верхней магмой. Верхняя магма - это огромная конвекционная система. Согласно ученым, образование срединно-океанических хребтов вызывает подъем внутреннего вещества Земли. По рифтовым долинам лава вытекает наружу и образует базальтовый слой. Присоединяясь к старой коре, новые порции лавы вызывают горизонтальное смещение блоков литосферы и расширение океанического дна. Скорость горизонтальных движений в разных местах Земли колеблется от 1 до 12 см в год: в Атлантическом океане - около 4 см/ год; в Индийском океане - около 6 см/ год, в Тихом океане - до 12 см/год. Эти ничтожные значения, умноженные на миллионы лет, дают огромные расстояния: за 150 млн. лет, прошедших со времени раскола Южной Америки и Африки, эти материки разошлись на 5 тыс. км. Северная Америка отделилась от Европы 80 млн. лет назад. А 40 млн. лет назад Индостан столкнулся с Азией и началось образование Гималаев.

В результате разрастания океанического дна в зоне срединно-океанических хребтов происходит вовсе не приращение земного вещества, но только его перетекание и преобразование. Базальтовая кора, нарастающая вдоль срединно-океанических хребтов и растекающаяся от них горизонтально, в течение миллионов лет проходит тысячи километров и у некоторых краев континентов опускается вновь в недра Земли, унося с собой и океанические осадки. Данный процесс и объясняет различный возраст пород на гребне хребтов и в других частях океанов. Этот процесс также вызывает также дрейф материков.

Переходные зоны включают в себя глубоководные желоба, островные дуги и котловины окраинных морей. В переходных зонах сложно сочетаются участки материковой и океанической коры.

Глубоководные океанические желоба находятся в следующих четырех областях Земли:

  • - в Тихом океане вдоль берегов Восточной Азии и Океании: Алеутский желоб, Курило-Камчатский желоб, Японский желоб, Филиппинский желоб, Марианский желоб (с максимальной для Земли глубиной 11 022 м), Западномеланезийский желоб, Тонга;
  • - в Индийском океане - Яванский желоб;
  • - в Атлантическом океане - Пуэрто-Риканский желоб;
  • - в Южном океане - Южный Сандвичев.

Ложе океанов, на которое приходится около 73 % общей площади Мирового океана, занято глубоководными (от 2 450 до 6 000 м) равнинами. В целом эти глубоководные равнины соответствуют океаническим платформам. Между равнинами располагаются срединно-океанические хребты, а также возвышенности и поднятия другого генезиса. Эти поднятия разделяют ложе океанов на отдельные котловины. Например, от Северо-Атлантического хребта к западу располагается Северо-Американская котловина, а к востоку - Западно-Европейская и Канарская котловины. На дне океана имеются многочисленные вулканические конусы.

Острова. В процессе развития земной коры и ее взаимодействия с Мировым океаном сформировались большие и малые острова. Общее количество островов непрерывно меняется. Одни острова возникают, другие исчезают. Образуются и размываются, например, дельтовые острова, тают ледяные массивы, принимавшиеся ранее за острова («земли»). Морские косы приобретают островной характер и, наоборот, острова присоединяются к суше и превращаются в полуострова. Поэтому площадь островов подсчитывается лишь приблизительно. Она составляет около 9,9 млн.км2. Около 79 % всей островной суши приходится на 28 крупных острова. Самый большой остров - Гренландия (2,2 млн.км2).

В число 28 самых больших островов земного шара входят следующие:

  • 1. Гренландия;
  • 2. Новая Гвинея;
  • 3. Калимантан (Борнео);
  • 4. Мадагаскар;
  • 5. Баффинова Земля;
  • 6. Суматра;
  • 7. Великобритания;
  • 8. Хонсю;
  • 9. Виктория (Канадский Арктический архипелаг);
  • 10. Земля Элсмира (Канадский Арктический архипелаг);
  • 11. Сулавеси (Целебес);
  • 12. Южный остров Новой Зеландии;
  • 13. Ява;
  • 14. Северный остров Новой Зеландии;
  • 15. Ньюфаунленд;
  • 16. Куба;
  • 17. Люсон;
  • 18. Исландия;
  • 19. Минданао;
  • 20. Новая Земля;
  • 21. Гаити;
  • 22. Сахалин;
  • 23. Ирландия;
  • 24. Тасмания;
  • 25. Банкс (Канадский Арктический архипелаг);
  • 26. Шри-Ланка;
  • 27. Хоккайдо;
  • 28. Девон.

Как крупные, так и мелкие острова располагаются или одиночно, или группами. Группы островов называются архипелагами. Архипелаги могут быть компактными (например, Земля Франца Иосифа, Шпицберген, Большие Зондские острова) или вытянутыми (например, Японские, Филиппинские, Большие и Малые Антильские острова). Вытянутые архипелаги иногда называют грядами (например, Курильская гряда, Алеутская гряда). Архипелаги небольших островов, разбросанных по просторам Тихого океана, объединяют в следующие три большие группы: Меланезия, Микронезия (Каролинские острова, Марианские острова, Маршалловы острова), Полинезия.

По происхождение все острова можно сгруппировать следующим образом:

I. Материковые острова:

  • 1) платформенные острова,
  • 2) острова материкового склона,
  • 3) орогенические острова,
  • 4) островные дуги,
  • 5)прибрежные острова: а) шхеры, б) далматинские, в) фьордовые, г) косы и стрелки, д) дельтовые.

II. Самостоятельные острова:

  • 1)вулканические острова, в т. ч. а) трещинного излияния лавы, б) центрального излияния лавы - щитовые и конические;
  • 2)коралловые острова: а) береговые рифы, б) барьерные рифы, в) атоллы.

Материковые острова генетически связаны с материками, но связи эти имеют различный характер, что сказывается на природе и возрасте островов, на их флоре и фауне.

Платформенные острова лежат на материковой отмели и геологически представляют собой продолжение материка. От основного массива суши платформенные острова отделены неглубокими проливами. Примерами платформенных островов являются: Британские острова, архипелаг Шпицберген, Земля Франца Иосифа, Северная Земля, Новосибирские острова, Канадский Арктический архипелаг.

Образование проливов и превращение части материков в острова относится к недавнему геологическому времени; поэтому природа островной суши мало отличается от материковой.

Острова материкового склона также являются частями континентов, но разделение их произошло раньше. Эти острова от прилегающих материков отделяются не пологим прогибом, а глубоким тектоническим разломом. Причем проливы имеют океанический характер. Флора и фауна островов материкового склона сильно отличается от материковой и носит в целом островной характер. Примерами островов материкового склона являются: Мадагаскар, Гренландия и др.

Орогенические острова представляют собой продолжение горных складок континентов. Так, например, Сахалин - одна из складок Дальневосточной горной страны, Новая Зеландия - продолжение Урала, Тасмания - Австралийских Альп, острова Средиземного моря - ветви альпийских складок. Архипелаг Новая Зеландия также имеет орогеническое происхождение.

Островные дуги гирляндами окаймляют Восточную Азию, Америку и Антарктиду. Самый большой район островных дуг находится у берегов Восточной Азии: Алеутская гряда, Курильская гряда, Японская гряда, гряда Рюкю, Филиппинская гряда и др. Второй район островных дуг находится у берегов Америки: Большие Антильские острова, Малые Антильские острова. Третий район - островная дуга, расположенная между Южной Америкой и Антарктидой: архипелаг Огненная Земля, Фолклендские острова и др. В тектоническом отношении все островные дуги приурочены к современным геосинклиналям.

Материковые прибрежные острова имеют различное происхождение и представляют собой разные типы береговой линии.

Самостоятельные острова никогда не были частями материков и в большинстве случаев образовались независимо от них. Самую обширную группу самостоятельных остров составляют вулканические.

Вулканические острова есть во всех океанах. Однако особенно их много в зонах срединно-океанических хребтов. Размеры и особенности вулканических островов определяются характером извержения. Трещинные излияния лавы создают крупные острова, по величине не уступающие платформенным. Самым большим на Земле островом вулканического происхождения является Исландия (103 тыс. км2).

Главная масса вулканических островов образована извержениями центрального типа. Естественно, что эти острова не могут быть очень большими. Их площадь зависит от характера лавы. Основная лава растекается на большие расстояния и образует щитовые вулканы (например Гавайские острова). Извержение кислой лавы формирует острый конус небольшой площади.

Коралловые острова представляют собой продукты жизнедеятельности коралловых полипов, диатомовых водорослей, фораминифер и других морских организмов. Коралловые полипы довольно требовательны к условиям обитания. Они могут жить только в теплых водах с температурой не ниже 200С. Поэтому коралловые постройки распространены только в тропических широтах и выходят за их пределы только в одном месте - в районе Бермудских островов, омываемых Гольфстримом.

В зависимости от расположения по отношению к современной суше коралловые острова делятся на следующие три группы:

  • 1)береговые рифы,
  • 2)барьерные рифы,
  • 3)атоллы.

Береговые рифы начинаются непосредственно у берега материка или острова в полосе отлива и окаймляют его в виде широкой террасы. Близ устьев рек и около мангровых зарослей они прерываются по причине пониженной солености воды.

Барьерные рифы находятся на некотором удалении от суши, отделены от нее полосой воды - лагуной. Самый большой в настоящее время риф - Большой Барьерный риф. Его длина составляет около 2 000 км; ширина лагуны колеблется от 35 до 150 км при глубине 30-70 м. Береговые и барьерные рифы окаймляют почти все острова экваториальных и тропических вод Тихого океана.

Атоллы расположены среди океанов. Это - низкие острова в форме незамкнутого кольца. Диаметр атолла колеблется от 200 м до 60 км. Внутри атолла находится лагуна глубиной до 100 м. Такова же глубина и пролива между лагуной и океаном. Внешний склон атолла всегда крутой (от 9 до 450). Склоны, обращенные к лагуне, пологи; на них поселяются разнообразные организмы.

Генетическая связь трех типов коралловых построек представляет собой еще нерешенную научную проблему. По теории Чарльза Дарвина, барьерные рифы и атоллы образуются из береговых рифов при постепенном погружении островов. При этом рост кораллов компенсирует опускание своего основания. На месте вершины острова появляется лагуна, а береговой риф превращается в кольцевой атолл.

Земля состоит из нескольких оболочек: атмосфера, гидросфера, биосфера, литосфера.

Биосфера – особая оболочка земли, область жизнедеятельности живых организмов. Она включает в себя нижнюю часть атмосферы, всю гидросферу и верхнюю часть литосферы. Литосфера – наиболее твердая оболочка земли:

Строение:

1. земная кора

2. мантия (Si, Ca, Mg, O, Fe)

3. внешнее ядро

4. внутреннее ядро

центр земли – температура 5-6 тыс о С

Состав ядра – Ni\Fe; плотность ядра – 12,5 кг/см 3 ;

Кимберлиты - (от названия г. Кимберли в Южной Африке), магматическая ультраосновная брекчиевидная горная порода эффузивного облика, выполняющая трубки взрыва. Состоит в основном из оливина, пироксенов, граната пироп-альмандинового ряда, пикроильменита, флогопита, реже - циркона, апатита и др. минералов, включенных в мелкозернистую основную массу, обычно измененную поствулканическими процессами до серпентин-карбонатного состава с перовскитом, хлоритом и т.д.

Эклогит - метаморфическая горная порода состоящая из пироксена с высоким содержанием жадеитового минала (омфацита) и граната гроссуляр-пироп-альмандинового состава, кварца и рутила. По химическому составу эклогиты идентичны магматическим породам основного состава - габбро и базальтам.

Строение земной коры

Толщина слоя =5-70 км; высокогорье -70 км, дно моря- 5-20 км, в среднем 40-45 км. Слои: осадочный, гранитно-гнейсовый (в океанической коре нет), гранитно-бозитовый (базальтовый)

Земная кора – это комплекс горных пород, залегающих выше границы Мохоровичича. Горные породы представляют собой закономерные агрегаты минералов. Последние состоят из различных химических элементов. Химический состав и внутренняя структура минералов зависят от условий их образования и определяют свойства. В свою очередь, строение и минеральный состав горных пород указывают на происхождение последних и позволяют определять породы в полевых условиях.

Выделяют два типа земной коры – континентальную и океаническую, резко различающихся составом и строением. Первая, более легкая, формирует возвышенные участки – континенты с их подводными окраинами, вторая занимает дно оеканиеских впадин(2500-3000м). Континентальная кора состоит из трех слоев - осадочного, гранито- гнейсового и гранулито-базитового, мощностью от 30-40 км на равнинах до 70-75 км под молодыми горами. Океанская кора мощностью до 6-7 км имеет трехслойное строение. Под маломощным слоем рыхлых осадков залегает второй океанский слой, состоящий из базальтов, третий слой сложен габбро с подчиненными ультрабазитами. Континентальная кора обогащена кремнеземом и легкими элементами – Al, натрием, калием, С, по сравнению с океаническиой.


Континентальная (материковая) земная кора характеризуется большой мощностью – в среднем 40 км, местами достигая 75 км. Она состоит из трех «слоев». Сверху залегает осадочный слой, образованный осадочными породами различного состава, возраста, генезиса и степени дислоцированности. Мощность его изменяется от нуля (на щитах) до 25 км (в глубоких впадинах, например, Прикаспийской). Ниже залегает «гранитный» (гранитно-метаморфический) слой, состоящий главным образом из кислых пород, по составу близких к граниту. Наибольшая мощность гранитного слоя отмечается под молодыми высокими горами, где она достигает 30 км и более. В пределах равнинных участков материков мощность гранитного слоя уменьшается до 15-20 км.
Под гранитным слоем залегает третий, «базальтовый», слой, получивший свое название также условно: сейсмические волны проходят через него с такими же скоростями, с которыми в экспериментальных условиях они проходят через базальты и близкие к ним породы. Третий слой мощностью 10-30 км сложен сильно метаморфизованными породами преимущественно основного состава. Поэтому его еще называют гранулито-базитовым.

Кора океанического типа резко отличается от континентальной. На большей части площади дна океана мощность ее колеблется от 5 до 10 км. Своеобразно и ее строение: под осадочным слоем мощностью от нескольких сотен метров (в глубоководных котловинах) до 15 км (вблизи континентов) залегает второй слой, сложенный подушечными лавами с тонкими прослоями осадочных пород. Нижняя часть второго слоя сложена своеобразным комплексом параллельных даек базальтового состава. Третий слой океанической коры мощностью 4-7 км представлен кристаллическими магматическими породами преимущественно основного состава (габбро). Таким образом, важнейшей специфической особенностью океанической коры являются ее малая мощность и отсутствие гранитного слоя.

1. Образование материков и океанов

Миллиард лет назад Земля уже была покрыта прочной оболочкой, в которой выделялись континентальные выступы и океанические впадины. Тогда площадь океанов была примерно в 2 раза больше площади материков. Но количество материков и океанов с тех пор существенно изменилось, изменилось и их расположение. Примерно 250 млн. лет назад на Земле был один материк – Пангея. Площадь его составляла примерно столько же, сколько площадь всех современных материков и островов вместе взятых. Этот суперконтинент омывался океаном, называемым Панталассой и занимавшим все остальное пространство на Земле.

Однако Пангея оказалась непрочным, недолговечным образованием. Со временем течения мантии внутри планеты поменяли направление, и теперь, поднимаясь из глубин под Пангеей и растекаясь в разные стороны, вещество мантии стало растягивать материк, а не сжимать его, как раньше. Примерно 200 млн. лет назад Пангея раскололась на 2 материка: Лавразию и Гондвану. Между ними появился океан Тетис (ныне это глубоководные части Средиземного, Черного, Каспийского морей и мелководный Персидский залив).

Течения мантии продолжали покрывать Лавразию и Гондвану сетью трещин и разваливать их на множество осколков, которые не оставались на определенном месте, а постепенно расходились в разные стороны. Их двигали течения внутри мантии. Некоторые исследователи считают, что именно эти процессы стали причиной гибели динозавров, но вопрос этот остается пока открытым. Постепенно между расходившимися осколками – материками – пространство заполнялось мантийным веществом, которое поднималось из недр Земли. Остывая, оно образовало дно будущих океанов. Со временем здесь появились три океана: Атлантический, Тихий, Индийский. По мнению многих ученых, Тихий океан – это остаток древнего океана Панталассы.

Позднее новые разломы охватили Гондвану и Лавразию. От Гондваны сначала обособилась суша, составляющая ныне Австралию и Антарктиду. Она начала дрейфовать на юго-восток. Потом и она раскололась на две неравные части. Меньшая – Австралия – устремилась на север, большая – Антарктида – на юг и заняла место внутри Южного полярного круга. Остальная часть Гондваны раскололась на несколько плит, наиболее крупные из них – Африканская и Южно-Американская. Эти плиты расходятся сейчас друг от друга со скоростью 2 см в год (см. Литосферные плиты).

Разломы охватили и Лавразию. Она раскололась на две плиты – Северо-Американскую и Евразиатскую, составляющую большую часть материка Евразия. Возникновение этого материка – величайший катаклизм в жизни нашей планеты. В отличие от всех других материков, в основе которых лежит по одному осколку древнего континента, в состав Евразии входят 3 части: Евразиатская (часть Лавразии), Аравийская (выступ Гондваны) и Индо-станская (часть Гондваны) литосферные плиты. Сближаясь друг с другом, они почти уничтожили древний океан Тетис. В формировании облика Евразии участвует и Африка, литосферная плита которой хоть и медленно, но сближается с Евразиатской. Результатом этого сближения являются горы: Пиренеи, Альпы, Карпаты, Судеты и Рудные горы (см. Литосферные плиты).

Сближение Евразиатской и Африканской литосферных плит происходит до сих пор, об этом напоминает деятельность вулканов Везувий и Этна, нарушающих спокойствие жителей Европы.

Сближение Аравийской и Евразиатской литосферных плит привело к дроблению и смятию в складки горных пород, попавшихся на пути их следования. Это сопровождалось сильнейшими вулканическими извержениями. В результате сближения этих литосферных плит возникло Армянское нагорье и Кавказ.

Сближение Евразиатской и Индостанской литосферных плит заставило содрогнуться весь континент от Индийского океана до Северного Ледовитого, при этом сам Индостан, отколовшийся изначально от Африки, пострадал незначительно. Итогом этого сближения явилось возникновение высочайшего в мире нагорья Тибет, окруженного еще более высокими цепями гор – Гималаев, Памира, Каракорума. Не удивительно, что именно здесь, в месте сильнейшего сжатия земной коры Евразиатской литосферной плиты, расположена самая высокая вершина Земли – Эверест (Джомолунгма), вздымающаяся на высоту 8848 м.

«Шествие» Индостанской литосферной плиты могло бы привести к полному расколу Евразиатской плиты, если бы внутри ее не существовало частей, способных выдержать напор с юга. В качестве достойного «защитника» выступила Восточная Сибирь, но земли, расположенные к югу от нее, сминались в складки, дробились и передвигались.

Итак, борьба между континентами и океанами продолжается уже не одну сотню миллионов лет. Главными участниками в ней выступают континентальные литосферные плиты. Каждый горный хребет, островная дуга, глубочайшая океаническая впадина – результат этой борьбы.

2. Строение материков и океанов

Материки и океаны являются наиболее крупными элементами в строении Земной коры. Говоря об океанах, следует иметь в виду строение коры в пределах участков, занимаемых океанами.

По составу земная кора континентальная и океаническая отличаются. Это в свою очередь накладывает отпечаток и на особенности их развития и строения.

Граница между материком и океаном проводится по подножию материкового склона. Поверхность этого подножия представляет собой аккумулятивную равнину с крупными холмами, которые образуются за счет подводных оползней и конусов выноса.

В строении океанов выделяют участки по степени тектонической подвижности, которая выражается в проявлениях сейсмической активности. По этому признаку выделяют:

· сейсмически активные области (океанские подвижные пояса),

· асейсмические области (океанские котловины).

Подвижные пояса в океанах представлены срединно-океаническими хребтами. Протяженность их до 20000 км, ширина – до 1000 км, высота достигает 2–3 км от дна океанов. В осевой части таких хребтов почти непрерывно прослеживаются рифтовые зоны. Они отмечаются высокими значениями теплового потока. Срединно-океанические хребты рассматриваются как участки растяжения земной коры или зоны спрединга.

Вторая группа структурных элементов – океанские котловины или талассократоны. Это равнинные, слабо всхолмленные участки морского дна. Мощность осадочного покрова здесь не более 1000 м.

Другим крупным элементом структуры является переходная зона между океаном и материком (континентом), часть геологов называют её подвижным геосинклинальным поясом. Это область максимального расчленения земной поверхности. Сюда входят:

1-островные дуги, 2 – глубоководные желоба, 3 – глубоководные впадины окраинных морей.

Островные дуги – это протяженные (до 3000 км) горные сооружения, образованные цепочкой вулканических сооружений с современным проявлением андезитобазальтового вулканизма. Пример островных дуг – Курило-Камчатская гряда, Алеутские острова и др. Со стороны океана островные дуги сменяются глубоководными желобами, которые представляют собой глубоководные депрессии протяженностью 1500–4000 км, глубиной 5–10 км. Ширина составляет 5–20 км. Днища желобов покрыты осадками, которые приносятся сюда мутьевыми потоками. Склоны желобов ступенчатые с разными углами наклона. Осадков на них не обнаружено.

Граница между островной дугой и склоном желоба представляет зону концентрации очагов землетрясений и называется зоной Вадати-Заварицкого-Беньофа.

Рассматривая признаки современных океанских окраин, геологи, опираясь на принцип актуализма, проводят сравнительно-исторический анализ подобных структур, формировавшихся в более древние периоды. К таким признакам относятся:

· морской тип осадков с преобладанием глубоководных отложений,

· линейная форма структур и тел осадочных толщ,

· резкое изменение мощностей и вещественного состава осадочных и вулканических толщ в крест простирания складчатых структур,

· высокая сейсмичность,

· специфический набор осадочных и магматических формаций и наличие формаций – индикаторов.

Из перечисленных признаков, последний является одним из ведущих. Поэтому определим, что такое геологическая формация. Прежде всего – это вещественная категория. В иерархии вещества земной коры вы знаете такую последовательность:

Геологическая формация – это следующая за горной породой более сложная ступень развития. Она представляет собой закономерные ассоциации горных пород, связанные единством вещественного состава и строения, которое обусловлено общностью их происхождения или сонахождения. Геологические формации выделяются в группах осадочных, магматических и метаморфических пород.

Для формирования устойчивых ассоциаций осадочных пород главными факторами являются тектоническая обстановка и климат. Примеры формаций и условия их формирования рассмотрим при анализе развития структурных элементов материков.

На материках выделяют два типа областей.

I тип совпадает с горными районами, в которых осадочные отложения смяты в складки и разбиты различными разломами. Осадочные толщи прорваны магматическими породами и метаморфизованы.

II тип совпадает с равнинными участками, на которых отложения залегают почти горизонтально.

Первый тип называют складчатой областью или складчатым поясом. Второй тип называют платформой. Это – главные элементы материков.

Складчатые области образуются на месте геосинклинальных поясов или геосинклиналей. Геосинклиналь – это подвижная протяженная область глубокого прогиба земной коры. Для неё характерно накопление мощных осадочных толщ, длительный вулканизм, резкая смена направления тектонических движений с образованием складчатых сооружений.

Геосинклинали подразделяются на:


Континентального типа земной коры океаническим. Поэтому к собственно океаническому дну относятся впадины дна океанов, расположенные за материковым склоном. Эти огромные впадины отличаются от материков не только строением земной коры, но и своими тектоническими структурами. Наиболее обширные площади океанического дна представляют собой глубоководные равнины, расположенные на глубинах 4-6 км и...

И впадин с резкими перепадами высот, измеряемыми сотнями метров. Все эти особенности строения осевой полосы срединных хребтов следует, очевидно понимать как проявление интенсивной глыбовой тектоники, причем осевые впадины представляют собой грабены, а по обе стороны от них срединный хребет разрывами разбит на поднятые и опущенные глыбы. Вся совокупность структурных особенностей, характеризующих...

Образовался первичный базальтовый слой Земли. Для архея было характерно образование первичных крупных водоемов (морей и океанов), появление первых признаков жизни в водной среде, образование древнего рельефа Земли, похожего на рельеф Луны. В архее произошло несколько эпох складчатости. Образовался мелководный океан с множеством вулканических островов. Сформировалась атмосфера, содержащая пары...

Вод в Южном Пассатном течении составляет 22...28 °С, в Восточно-Австралийском зимой с севера на юг меняется от 20 до 11 °С, летом - от 26 до 15 °С. Циркумполярное Антарктическое, или течение Западных ветров, входит в Тихий океан к югу от Австралии и Новой Зеландии и движется в субширотном направлении к берегам Южной Америки, где основная его ветвь отклоняется к северу и, проходя вдоль побережий...

Земная кора составляет самую верхнюю оболочку твердой Земли и одевает планету почти сплошным слоем, изменяя свою мощность от 0 на некоторых участках средин-но-океанических хребтов и океанских разломов до 70-75 км под высокими горными сооружениями (Хаин, Ломизе, 1995). Мощность коры на континентах, определяемая по возраста­нию скорости прохождения продольных сейсмических волн до 8-8,2 км/с (граница Мохоровичича , или граница Мохо ), достигает 30-75 км, а в океанических впадинах 5-15 км. Первый тип земной коры был назван океаническим, вто­рой - континентальным.

Океанская кора занимает 56% земной поверхности и обладает небольшой мощностью – 5–6 км. В ее строении вы­деляется три слоя (Хаин, Ломизе, 1995).

Первый , или осадочный, слой мощностью не более 1 км встречается в центральной части океанов и достигает мощности 10–15 км на их периферии. Он полностью отсут­ствует в осевых зонах срединно-океанических хребтов. В со­став слоя входят глинистые, кремнистые и карбонатные глу­боководные пелагические осадки (рис. 6.1). Карбонатные осадки распространены не глубже критической глубины на­копления карбонатов. Ближе к континенту появляется при­месь обломочного материала, снесенного с суши; это так на­зываемые гемипелагические осадки. Скорость распростра­нения продольных сейсмических волн здесь составляет 2–5 км/с. Возраст осадков этого слоя не превышает 180 млн лет.

Второй слой в своей основной верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелаги-

Рис. 6.1. Разрез литосферы океанов в сравнении с усреднен­ным разрезом офиолитовых аллохтонов. Внизу – модель формирования главных единиц разреза в зоне океанского спрединга (Хаин, Ломизе, 1995). Условные обозначения: 1 –

пелагические осадки; 2 – излившиеся базальты; 3 – комплекс параллельных даек (долериты); 4 – верхние (не расслоенные) габброиды и габбро-долериты; 5, 6 – расслоенный комплекс (кумуляты): 5 – габброиды, 6 – ультрабазиты; 7 – тектонизи-рованные перидотиты; 8 – базальный метаморфический оре­ол; 9 – базальтовая магма смена I–IV – последовательная смена условий кристаллизации в очаге по мере удаления от оси спрединга

ческих осадков; базальты нередко обладают характерной по­душечной (в поперечном сечении) отдельностью (пиллоу-лавы), но встречаются и покровы массивных базальтов. В нижней части второго слоя (2В) развиты параллельные дай­ки долеритов. Общая мощность 2-го слоя 1,5–2 км, а ско­рость продольных сейсмических волн 4,5–5,5 км/с.

Третий слой океанской коры состоит из полнокри­сталлических магматических пород основного и подчиненно ультраосновного состава. В его верхней части обычно разви­ты породы типа габбро, а нижнюю часть составляет «полос­чатый комплекс», состоящий из чередования габбро и ульт-рамафитов. Мощность 3-го слоя 5 км. Скорость продольных волн в этом слое достигает 6–7,5 км/с.

Считается, что породы 2-го и 3-го слоев образовались одновременно с породами 1-го слоя.

Океанская кора, вернее кора океанского типа, не ограни­чивается в своем распространении ложем океанов, а развита также в глубоководных котловинах окраинных морей, таких как Японское море, Южно-Охотская (Курильская) котловина Охотского моря, Филиппинское, Карибское и многие другие

моря. Кроме того, имеются серьезные основания подозре­вать, что в глубоких впадинах континентов и мелководных внутренних и окраинных морей типа Баренцева, где мощ­ность осадочного чехла составляет 10-12 км и более, он подстилается корой океанского типа; об этом свидетельст­вуют скорости продольных сейсмических волн порядка 6,5 км/с.

Выше говорилось, что возраст коры современных океанов (и окраинных морей) не превышает 180 млн лет. Однако в пределах складчатых поясов континентов мы на­ходим и гораздо более древнюю, вплоть до раннедокембрий-ской, кору океанского типа, представленную так называе­мыми офиолитовыми комплексами (или просто офиолита-ми). Термин этот принадлежит немецкому геологу Г. Штейнманну и был предложен им еще в начале XX в. для обозначения характерной «триады» пород, обычно встре­чающихся вместе в центральных зонах складчатых систем, а именно серпентинизированных ультрамафитов (аналог слоя 3), габбро (аналог слоя 2В), базальтов (аналог слоя 2А) и ра­диоляритов (аналог слоя 1). Сущность этого парагенеза по­род долго интерпретировалась ошибочно, в частности, габб­ро и гипербазиты считались интрузивными и более молоды­ми, чем базальты и радиоляриты. Только в 60-г годы, когда были получены первые достоверные сведения о составе оке­анской коры, стало очевидным, что офиолиты-это океан­ская кора геологического прошлого. Это открытие имело кардинальное значение для правильного понимания условий зарождения подвижных поясов Земли.

Структуры земной коры океанов

Области сплошного распространения земной коры океа­нического типа выражены в рельефе Земли океаническими впадинами . В пределах океанических впадин выделяются два крупнейших элемента: океанические платформы и океани­ческие орогенные пояса . Океанические платформы (или та-лассократоны) в рельефе дна имеют вид обширных абис­сальных плоских или холмистых равнин. К океаническим орогенным поясам относятся срединно-океанические хреб­ты, имеющие высоту над окружающей равниной до 3 км (местами поднимаются в виде островов над уровнем океана). Вдоль оси хребта часто прослеживается зона рифтов - уз­ких грабенов шириной 12-45 км при глубине до 3-5 км, указывающих на господство в этих участках растяжения земной коры. Для них характерны высокая сейсмичность, резко повышенный тепловой поток, низкая плотность верх­ней мантии. Геофизические и геологические данные свиде­тельствуют о том, что мощность осадочного покрова умень­шается по мере приближения к осевым зонам хребтов, а океаническая кора испытывает заметное поднятие.

Следующий крупный элемент земной коры - пере­ходная зона между континентом и океаном. Это область максимального расчленения земной поверхности, где нахо­дятся островные дуги , отличающиеся высокой сейсмично­стью и современным андезитовым и андезито-базальтовым вулканизмом, глубоководные желоба и глубоководные впа­дины окраинных морей. Очаги землетрясений образуют здесь сейсмофокальную зону (зону Беньофа-Заварицкого), погружающуюся под континенты. Переходная зона наиболее

ярко проявлена в западной части Тихого океана. Для нее ха­рактерен промежуточный тип строения земной коры.

Континентальная кора (Хаин, Ломизе, 1995) распро­странена не только в пределах собственно континентов, т. е. суши, за возможным исключением наиболее глубоких впа­дин, но и в пределах шельфовых зон континентальных окра­ин и отдельных участков внутри океанских бассейнов-мик­роконтинентов. Тем не менее общая площадь развития кон­тинентальной коры меньше, чем океанской, и составляет 41% земной поверхности. Средняя мощность континенталь­ной коры 35-40 км; она уменьшается к окраинам континен­тов и в пределах микроконтинентов и возрастает под горны­ми сооружениями до 70-75 км.

В общем, континентальная кора , так же как и океан­ская, имеет трехслойное строение, но состав слоев, особенно двух нижних, существенно отличается от наблюдаемых в океанской коре.

1. Осадочный слой, обычно именуемый осадочным чехлом. Его мощность изменяется от нуля на щитах и менее крупных поднятиях фундамента платформ и осевых зон складчатых сооружений до 10 и даже 20 км во впадинах платформ, передовых и межгорных прогибах горных поясов. Правда, в этих впадинах кора, подстилающая осадки и обычно называемая консолидированной, может уже быть ближе по своему характеру к океанской, чем к континен­тальной. В состав осадочного слоя входят различные оса­дочные породы преимущественно континентального или мелководного морского, реже батиального (опять-таки в пределах глубоких впадин) происхождения, а также, далеко

не повсеместно, покровы и силлы основных магматических пород, образующие трапповые поля. Скорость продольных волн в осадочном слое составляет 2,0-5,0 км/с с максиму­мом для карбонатных пород. Возрастной диапазон пород осадочного чехла-до 1,7 млрд лет, т. е. на порядок выше, чем осадочного слоя современных океанов.

2. Верхний слой консолидированной коры выступа­ет на дневную поверхность на щитах и массивах платформ и в осевых зонах складчатых сооружений; он вскрыт на глуби­ну 12 км в Кольской скважине и на значительно меньшую глубину в скважинах в Волго-Уральской области на Русской плите, на плите Мидконтинента США и на Балтийском щите в Швеции. Золотодобывающая шахта в Южной Индии про­шла по данному слою до 3,2 км, в Южной Африке-до 3,8 км. Поэтому состав этого слоя, по крайней мере его верхней части, в общем хорошо известен-главную роль в его сло­жении играют различные кристаллические сланцы, гнейсы, амфиболиты и граниты, в связи с чем он нередко именуется гранито-гнейсовым. Скорость продольных волн в нем со­ставляет 6,0-6,5 км/с. В фундаменте молодых платформ, имеющем рифейско-палеозойский или даже мезозойский возраст, а частично и во внутренних зонах молодых складча­тых сооружений этот же слой сложен менее сильнометамор-физованными (зеленосланцевая фация вместо амфиболито-вой) породами и содержит меньше гранитов; поэтому здесь его часто называют гранитно-метаморфическим слоем, а типичные скорости продольных воли в нем порядка 5,5-6,0 км/с. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях.

3. Нижний слой консолидированной коры. Перво­начально предполагалось, что между двумя слоями консоли­дированной коры существует четкая сейсмическая граница, получившая по имени ее первооткрывателя-немецкого геофизика-название границы Конрада. Бурение только что упоминавшихся скважин поставило под сомнение существо­вание такой четкой границы; иногда вместо нее сейсмика обнаруживает в коре не одну, а две (К 1 и К 2) границы, что дало основание выделить в нижней коре два слоя (рис. 6.2). Состав пород, слагающих нижнюю кору, как отмечалось, недостаточно известен, так как скважинами она не достигну­та, а на поверхности обнажается фрагментарно. Исходя из

Рис. 6.2. Строение и мощность континентальной коры (Хаин, Ломизе, 1995). А - главные типы разреза по сейсми­ческим данным: I-II - древние платформы (I - щиты, II

Синеклизы), III - шельфы, IV -молодые орогены. K 1 , К 2 -поверхности Конрада, М-поверхность Мохоровичича, скорости указаны для продольных волн; Б - гистограмма распределения мощностей континентальной коры; В - про­филь обобщенной прочности

общих соображений, В. В. Белоусов пришел к заключению, что в нижней коре должны преобладать, с одной стороны, породы, находящиеся на более высокой ступени метамор­физма и, с другой стороны, породы более основного состава, чем в верхней коре. Поэтому он назвал этот слой коры гра- нулит-базитовым. Предположение Белоусова в общем под­тверждается, хотя обнажения показывают, что в сложении нижней коры участвуют не только основные, но и кислые гранулиты. В настоящее время большинство геофизиков различают верхнюю и нижнюю кору по другому признаку- по их отличным реологическим свойствам: верхняя кора же­сткая и хрупкая, нижняя-пластичная. Скорость продольных волн в нижней коре 6,4-7,7 км/с; принадлежность к коре или мантии низов этого слоя со скоростями более 7,0 км/с нередко спорна.

Между двумя крайними типами земной коры-океан­ским и континентальным - существуют переходные типы. Один из них - субокеанская кора - развит вдоль континен­тальных склонов и подножий и, возможно, подстилает дно котловин некоторых не очень глубоких и широких окраин­ных и внутренних морей. Субокеанская кора представляет собой утоненную до 15-20 км и пронизанную дайками и силлами основных магматических пород континентальную

кору. Она вскрыта скважиной глубоководного бурения у входа в Мексиканский залив и обнажена на побережье Крас­ного моря. Другой тип переходной коры - субконтинен­тальный -образуется в том случае, когда океанская кора в энсима-тических вулканических дугах превращается в кон­тинентальную, но еще не достигает полной «зрелости», об­ладая пониженной, менее 25 км, мощностью и более низкой степенью консолидированности, что отражается в понижен­ных скоростях сейсмических волн - не более 5,0-5,5 км/с в низах коры.

Некоторые исследователи выделяют в качестве особых типов еще две разновидности океанской коры, о которых уже шла речь выше; это, во-первых, утолщенная до 25-30 км океанская кора внутренних поднятий океана (Исландия и др.) и, во-вторых, кора океанского типа, «надстроенная» мощным, до 15-20 км, осадочным чехлом (Прикаспийская впадина и др.).

Поверхность Мохоровичича и состав верхней ман­ тии. Граница между корой и мантией, обычно сейсмически достаточно четко выраженная скачком скоростей продоль­ных волн от 7,5-7,7 до 7,9-8,2 км/с, известна как поверх­ность Мохоровичича (или просто Мохо и даже М), по имени установившего ее хорватского геофизика. В океанах эта гра­ница отвечает переходу от полосчатого комплекса 3-го слоя с преобладанием габброидов к сплошным серпентинизиро-ванным перидотитам (гарцбургитам, лерцолитам), реже ду-нитам, местами выступающим на поверхность дна, а в ска­лах Сан-Паулу в Атлантике против берегов Бразилии и на о. Забаргад в Красном море, возвышающимся над поверхно-

стью океана. Верхи океанской мантии можно наблюдать местами на суше в составе низов офиолитовых комплексов. Их мощность в Омане достигает 8 км, а в Папуа-Новой Гви­нее, возможно, даже 12 км. Сложены они перидотитами, в основном гарцбургитами (Хаин, Ломизе, 1995).

Изучение включений в лавах и кимберлитах из трубок показывает, что и под континентами верхняя мантия в ос­новном сложена перидотитами, причем как здесь, так и под океанами в верхней части это шпинелевые перидотиты, а ниже-гранатовые. Но в континентальной мантии, по тем же данным, кроме перидотитов в подчиненном количестве при­сутствуют эклогиты, т. е. глубокометаморфизованные ос­новные породы. Эклогиты могут представлять собой мета-морфизованные реликты океанской коры, затащенные в ман­тию в процессе поддвига этой коры (субдукции).

Верхняя часть мантии вторично обеднена рядом ком­понентов: кремнеземом, щелочами, ураном, торием, редкими землями и другими некогерентными элементами благодаря выплавлению из нее базальтовых пород земной коры. Эта «истощенная» («деплетированная») мантия простирается под континентами на большую глубину (охватывая всю или почти всю ее литосферную часть), чем под океанами, сменя­ясь глубже «неистощенной» мантией. Средний первичный состав мантии должен быть близок к шпинелевому лерцоли-ту или гипотетической смеси перидотита и базальта в про­порции 3:1, названной австралийским ученым А. Е. Ринг-вудом пиролитом.

На глубине около 400 км начинается быстрое возрас­тание скорости сейсмических волн; отсюда до 670 км про-

стирается слой Голицына, названный так в честь русского сейсмолога Б.Б. Голицына. Его выделяют еще в качестве средней мантии, или мезосферы - переходной зоны между верхней и нижней мантией. Возрастание скоростей упругих колебаний в слое Голицына объясняется увеличением плот­ности вещества мантии примерно на 10% в связи с перехо­дом одних минеральных видов в другие, с более плотной упаковкой атомов: оливина в шпинель, пироксена в гранат.

Нижняя мантия (Хаин, Ломизе, 1995) начинается с глубины порядка 670 км. Нижняя мантия должна быть сло­жена в основном перовскитом (МgSiO 3) и магнезиовюсти-том (Fе, Мg)O - продуктами дальнейшего изменения мине­ралов, слагающих среднюю мантию. Ядро Земли в своей внешней части, по данным сейсмологии, является жидким, а внутреннее-снова твердым. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Состав ядра по­давляющим большинством геофизиков принимается желез­ным. Но опять же по экспериментальным данным приходит­ся допустить некоторую примесь никеля, а также серы, либо кислорода, либо кремния, чтобы объяснить пониженную плотность ядра по сравнению с определенной для чистого железа.

По данным сейсмотомографии, поверхность ядра яв­ляется неровной и образует выступы и впадины с амплиту­дой до 5-6 км. На границе мантии и ядра выделяют пере­ходный слой с индексом D" (кора обозначается индексом А, верхняя мантия-В, среднюю-С, нижнюю - D, верхнюю часть нижней мантии D"). Мощность слоя D" местами дости­гает 300 км.

Литосфера и астеносфера. В отличие от коры и ман­тии, выделяемым по геологическим данным (по веществен­ному составу) и данным сейсмологии (по скачку скоростей сейсмических волн на границе Мохоровичича), литосфера и астеносфера-понятия чисто физические, вернее реологиче­ские. Исходным основанием для выделения астеносферы- ослабленной, пластичной оболочки. подстилающей более же­сткую и хрупкую литосферу,-была необходимость объяс­нения факта изостатической уравновешенности коры, обна­руженного при измерениях силы тяжести у подножия гор­ных сооружений. Первоначально ожидалось, что такие со­оружения, особенно столь грандиозные, как Гималаи, долж­ны создавать избыточное притяжение. Однако когда в сере­дине XIX в. были произведены соответствующие измерения, оказалось, что такого притяжения не наблюдается. Следова­тельно, даже крупные неровности рельефа земной поверх­ности чем-то компенсированы, уравновешены на глубине для того, чтобы на уровне земной поверхности не проявля­лось значительных отклонений от средних значений силы тяжести. Таким образом, исследователи пришли к выводу что имеется общее стремление земной коры к уравновешен­ности за счет мантии; явление это получило название изо-стазии (Хаин, Ломизе, 1995).

Существуют два способа осуществления изостазии. Пер­вый заключается в том, что горы обладают корнями, погру­женными в мантию, т. е. изостазия обеспечивается вариа­циями мощности земной коры и нижняя поверхность по­следней обладает рельефом, обратным рельефу земной по­верхности; это гипотеза английского астронома Дж. Эри

(рис. 6.3). В региональном масштабе она обычно оправдыва­ется, так как горные сооружения действительно обладают более толстой корой и максимальная толщина коры наблю­дается у наиболее высоких из них (Гималаи, Анды, Гинду-куш, Тянь-Шань и др.). Но возможен и другой механизм реализации изостазии: участки повышенного рельефа долж­ны быть сложены менее плотными породами, а участки по­ниженного-более плотными; это гипотеза другого англий­ского ученого-Дж. Пратта. В этом случае подошва земной коры может быть даже горизонтальной. Уравновешенность континентов и океанов достигается комбинацией обоих ме­ханизмов-кора под океанами и много тоньше, и заметно плотнее, чем под континентами.

Большая часть поверхности Земли находится в состоянии, близком к изостатическому равновесию. Наибольшие откло­нения от изостазии-изостатические аномалии-обнаружи­вают островные дуги и сопряженные с ними глубоководные желоба.

Для того чтобы стремление к изостатическому равнове­сию было эффективным, т. е. под дополнительной нагрузкой происходило бы погружение коры, а при снятии нагрузки - ее подъем, надо, чтобы под корой существовал достаточно пластичный слой, способный к перетеканию из областей по­вышенного геостатического давления в области пониженно­го давления. Именно для этого слоя, первоначально выде­ленного гипотетически, американский геолог Дж. Баррелл и предложил в 1916 г. название астеносфера, что оз начает «слабая оболочка». Это предположение было подтверждено лишь много позднее, в 60-е годы, когда сейсмоло-

Рис. 6.3. Схемы изостатического равновесия земной коры:

а - по Дж. Эри, б - по Дж. Пратту (Хаин, Короновский, 1995)

логами (Б. Гутенберг) было обнаружено существование на некоторой глубине под корой зоны понижения или отсутст­вия повышения, естественного при увеличении давления, скорости сейсмических волн. В дальнейшем появился дру­гой метод установления астеносферы-метод магнитотел-лурического зондирования, при котором астеносфера прояв­ляет себя как зона понижения электрического сопротивле­ния. Кроме того, сейсмологи выявили еще один признак ас­теносферы - повышенные затухания сейсмических волн.

Астеносфере принадлежит также ведущая роль в дви­жениях литосферы. Течение астеносферного вещества увле­кает за собой литосферные пластины-плиты и вызывает их горизонтальные перемещения. Подъем поверхности астено­сферы приводит к подъему литосферы, а в предельном слу­чае- к разрыву ее сплошности, образованию раздвига и опусканию. К последнему ведет также отток астеносферы.

Таким образом, из двух оболочек, составляющих тек-тоносферу: астеносфера является активным, а литосфера- относительно пассивным элементом. Их взаимодействием оп­ределяется тектоническая и магматическая «жизнь» земной коры.

В осевых зонах срединно-океанских хребтов, особенно на Восточно-Тихоокеанском поднятии, кровля астеносферы на­ходится на глубине всего 3-4 км, т. е. литосфера ограничи­вается лишь верхней частью коры. По мере движения к пе­риферии океанов толщина литосферы увеличивается за счет

низов коры, а в основном верхов мантии и может достигать 80-100 км. В центральных частях континентов, особенно под щитами древних платформ, таких как Восточно­Европейская или Сибирская, мощность литосферы измеря­ется уже 150-200 км и более (в Южной Африке 350 км); по некоторым представлениям, она может достигать 400 км, т. е. здесь вся верхняя мантия выше слоя Голицына должна входить в состав литосферы.

Трудность обнаружения астеносферы на глубинах бо­лее 150- 200 км породила у некоторых исследователей со­мнения в ее существовании под такими областями и привела их к альтернативному представлению, что астеносферы как сплошной оболочки, т. е. именно геосферы, не существует, а имеется серия разобщенных «астенолинз». С этим выводом, который мог бы иметь важное значение для геодинамики, нельзя согласиться, так как именно указанные области де­монстрируют высокую степень изостатической уравнове­шенности, ведь к ним относятся приведенные выше примеры областей современного и древнего оледенения-Гренландия и др.

Причина того, что астеносферу не везде легко обнару­жить, состоит, очевидно, в изменении ее вязкости но латера-ли.

Основные структурные элементы земной коры континентов

На континентах выделяются два структурных элемента земной коры: платформы и подвижные пояса (Историческая геология, 1985).

Определение: платформа – стабильный жесткий уча­сток земной коры континентов, имеющий изометричную форму и двухэтажное строение (рис. 6.4). Нижний (первый) структурный этаж – кристаллический фундамент , представ­ленный сильно дислоцированными метаморфизованными породами, прорванными интрузиями. Верхний (второй) структурный этаж – полого залегающий осадочный чехол , слабодислоцированный и неметаморфизованный. Выходы на дневную поверхность нижнего структурного этажа называ­ются щитом . Участки фундамента, перекрытые осадочным чехлом называются плитой . Мощность осадочного чехла плиты составляет первые километры.

Пример : на Восточно-Европейской платформе выде­ляются два щита (Украинский и Балтийский) и Русская пли­та.

Структуры второго этажа платформы (чехла) бывают отрицательные (прогибы, синеклизы) и положительные (ан-теклизы). Синеклизы имеют форму блюдца, а антеклизы – перевернутого блюдца. Мощность отложений всегда больше на синеклизе, а на антеклизе – меньше. Размеры этих струк­тур в поперечнике могут достигать сотен или первых тысяч километров, а падение слоев на крыльях обычно - первые метры на 1 км. Существуют два определения этих структур.

Определение: синеклиза – геологическая структура, падение слоев которой направлено от периферии к центру. Антеклиза - геологическая структура, падение слоев которой направлено от центра к периферии.

Определение: синеклиза – геологическая структура, в ядре которой выходят более молодые отложения, а по краям

Рис. 6.4. Схема строения платформы. 1 - складчатый фундамент; 2 - платформенный чехол; 3 разломы (Историческая геология, 1985)

– более древние. Антеклиза – геологическая структура, в яд­ре которой выходят более древние отложения, а по краям – более молодые.

Определение: прогиб – вытянутое (удлиненное) гео­логическое тело, имеющее в поперечном сечении вогнутую форму.

Пример: на Русская плите Восточно-Европейской платформы выделяются антеклизы (Белорусская, Воронеж­ская, Волго-Уральская и др.), синеклизы (Московская, При­каспийская и др.) и прогибы (Ульяновско-Саратовский, Приднестровско-Причерноморский и др.).

Существует структура нижних горизонтов чехла - ав-лакоген.

Определение: авлакоген – узкая вытянутая впадина, протягивающаяся через платформу. Авлакогены располага­ются в нижней части верхнего структурного этажа (чехла) и могут достигать в длину до сотен километров, в ширину – десятки километров. Авлакогены формируются в условиях горизонтального растяжения. В них накапливаются мощные толщи осадков, которые могут быть смяты в складки и близ­кие по составу к формациям миогеосинклиналей. В нижней части разреза присутствуют базальты.

Пример: Пачелмский (Рязано-Саратовский) авлако-ген, Днепрово-Донецкий авлакоген Русской плиты.

История развития платформ. В истории развития мож­но выделить три этапа. Первый – геосинклинальный, на ко­тором происходит формирование нижнего (первого) струк­турного элемента (фундамента). Второй - авлакогенный, на котором в зависимости от климата происходит накопление

красноцветных, сероцветных или угленосных осадков в ав-лакогенах. Третий – плитный, на котором осадконакопление происходит на значительной площади и формируется верх­ний (второй) структурный этаж (плита).

Процесс накопления осадков, как правило, происходит циклично. Сначала накапливается трансгрессивная морская терригенная формация, затем – карбонатная формация (максимум трансгрессии, табл. 6.1). При регрессии в услови­ях аридного климата формируется соленосная красноцвет-ная формация, а в условиях гумидного климата – параличе-ская угленосная формация. В конце цикла осадконакопления формируются осадки континентальной формации. В любой момент этап может прерваться формированием трапповой формации.

Таблица 6.1. Последовательность накопления плитных

формаций и их характеристика.

Окончание таблицы 6.1.

Для подвижных поясов (складчатых областей) харак­терны:

    линейность их контуров;

    громадная мощность накопившихся отложений (до 15-25 км);

    выдержанность состава и мощности этих отложе­ний по простиранию складчатой области и резкие изменения вкрест ее простирания ;

    наличие своеобразных формаций- комплексов по­род, образовавшихся на определенных стадиях раз­вития этих районов (аспидная , флишевая , спилито- кератофировая , молассовая и другие формации);

    интенсивный эффузивный и интрузивный магма­тизм (особенно характерны крупные гранитные ин­трузии-батолиты);

    сильный региональный метаморфизм;

7) сильная складчатость, обилие разломов, в том числе

надвигов, указывающих на господство сжатия. Складчатые области (пояса) возникают на месте гео­синклинальных областей (поясов).

Определение: геосинклиналь (рис. 6.5) - подвижная область земной коры, в которой первоначально накаплива­лись мощные осадочные и вулканогенные толщи, затем про­исходило их смятие в сложные складки, сопровождающееся образованием разломов, внедрением интрузий и метамор­физмом. В развитии геосинклинали различают две стадии.

Первая стадия (собственно геосинклинальная) харак­теризуется преобладанием опускания. Большая мощность осадков в геосинклинали - это результат растяжения земной коры и ее прогибания. В первую половину первой стадии обычно накапливаются песчано-глинистые и глини­стые осадки (в результате метаморфизма они потом образу­ют черные глинистые сланцы, выделяемые в аспидную фор­мацию) и известняки. Прогибание может сопровождаться разрывами, по которым поднимается магма основного соста­ва и изливается в подводных условиях. Возникшие породы после метаморфизма вместе с сопровождающими субвулка­ническими образованиями дают спилит-кератофировую формацию. Одновременно с ней обычно образуются кремни­стые породы, яшмы.

океаническая

Рис. 6.5. Схема строения геосинк-

линали на схемати­ческом разрезе че­рез Зондскую дугу в Индонезии (Струк­турная геология и тектоника плит, 1991). Условные обозначения: 1 – осадки и осадочные породы; 2 – вулка-

нические породы; 3 – фундамент конти-метаморфические породы

Указанные формации накапливаются одновременно , но на разных площадях . Накопление спилито-кератофировой формации обычно происходит во внутрен­ней части геосинклинали - в эвгеосинклинали . Для эвгео- синклинали характерны формирование мощных вулканоген­ных толщ, обычно основного состава, и внедрение интрузии габбро, диабазов и ультраосновных пород. В краевой части геосинклинали, по ее границе с платформой, обычно распо­лагаются миогеосинклинали. Здесь накапливаются главным образом терригенные и карбонатные толщи; вулканические породы отсутствуют, интрузии не типичны.

В первую половину первой стадии большая часть геосинклинали представляет собой море со значительными глубинами . Доказательством служат тонкая зернистость осадков и редкость находок фауны (преимущественно нек­тона и планктона).

К середине первой стадии вследствие разных скоро­стей опускания в различных частях геосинклинали образу­ются участки относительного поднятия (интрагеоантик-линали ) и относительного опускания (интрагеосинклина-ли ). В это время может происходить внедрение небольших интрузий плагиогранитов.

Во вторую половину первой стадии в результате по­явления внутренних поднятий море в геосинклинали мелеет. Теперь это архипелаг , разделенный проливами. Море из-за обмеления наступает на смежные платформы. В геосинкли­нали накапливаются известняки, мощные песчано-глинистые ритмично построенные толщи, образующие флишевую фор-216

мацию; происходит излияние лав среднего состава, слагаю­щих порфиритовую формацию.

К концу первой стадии интрагеосинклинали исчеза­ют, интрагеоантиклинали сливаются в одно центральное поднятие. Это - общая инверсия; она соответствует глав­ной фазе складчатости в геосинклинали. Складчатость обычно сопровождается внедрением крупных синорогенных (одновременных со складчатостью) гранитных интрузий. Происходит смятие пород в складки, часто осложняющееся надвигами. Все это вызывает региональный метаморфизм. На месте интрагеосинклиналей возникают синклинории - сложно построенные структуры синклинального типа, а на месте интрагеоантиклиналей - антиклинории . Геосинкли­наль «закрывается», превращаясь в складчатую область.

В строении и развитии геосинклинали очень важная роль принадлежит глубинным разломам - длительно живу­щим разрывам, которые рассекают все земную кору и уходят в верхнюю мантию. Глубинные разломы определяют конту­ры геосинклиналей, их магматизм, разделение геосинклина­ли на структурно-фациальные зоны, различающиеся соста­вом осадков, их мощностью, магматизмом и характером структур. Внутри геосинклинали иногда выделяют средин­ные массивы, ограниченные глубинными разломами. Это блоки более древней складчатости, сложенные породами то­го основания, на котором заложилась геосинклиналь. По со­ставу осадков и их мощности срединные массивы близки платформам, но их отличают сильный магматизм и складча­тость пород, преимущественно по краям массива.

Вторая стадия развития геосинклинали называется орогенной и характеризуется преобладанием поднятий. Осадконакопление происходит на ограниченных площадях по периферии центрального поднятия - в краевых прогибах, возникающих по границе геосинклинали и платформы и час­тично накладывающихся на платформу, а также в межгор­ных прогибах, образующихся иногда внутри центрального поднятия. Источник осадков - разрушение постоянно воз­дымающегося центрального поднятия. В первую половину второй стадии это поднятие, вероятно, имеет холмистый рельеф; при его разрушении накапливаются морские, иногда лагунные осадки, образующие нижнюю молассовую форма­цию. В зависимости от климатических условий это могут быть угленосные паралические или соленосные толщи. В это же время обычно происходит внедрение крупных гранитных интрузий - батолитов.

Во вторую половину стадии резко возрастает ско­рость воздымания центрального поднятия, что сопровожда­ется его расколами и обрушением отдельных участков. Это явление объясняется тем, что вследствие складчатости, ме­таморфизма, внедрения интрузий складчатая область (уже не геосинклиналь!) становится жесткой и на продолжающееся поднятие реагирует расколами. Море покидает эту террито­рию. В результате разрушения центрального поднятия, кото­рое в это время представляло собой горную страну, накапли­ваются континентальные грубообломочные толщи, обра­зующие верхнюю молассовую формацию. Раскалывание сво­довой части поднятия сопровождается наземным вулканиз­мом; обычно это лавы кислого состава, которые вместе с

субвулканическими образованиями дают порфировую фор­мацию. С ней бывают связаны трещинные щелочные и ма­лые кислые интрузий. Таким образом, в результате развития геосинклинали возрастает мощность континентальной коры.

К концу второй стадии складчатая горная область, возникшая на месте геосинклинали, разрушается, территория постепенно выравнивается и становится платформой. Гео­синклиналь из области накопления осадков превращается в область разрушения, из подвижной территории - в мало­подвижную жесткую выровненную территорию. Поэтому амплитуды движений на платформе невелики. Обычно море, даже мелкое, покрывает здесь обширные площади. Эта тер­ритория уже не испытывает столь сильного прогибания, как раньше, поэтому и мощность осадков значительно меньше (в среднем 2-3 км). Опускание неоднократно прерывается, поэтому наблюдаются частые перерывы в осадконакопле-нии; тогда могут образовываться коры выветривания. Не происходит и энергичных поднятий, сопровождаемых складчатостью. Поэтому вновь образованные маломощные, обычно мелководные осадки на платформе не метамор-физованы и залегают горизонтально или слабо наклонно. Из­верженные породы редки и представлены обычно наземны­ми излияниями лав базальтового состава.

Кроме геосинклинальной модели существует модель тектоники литосферных плит.

Модель тектоники литосферных плит

Тектоника плит (Структурная геология и тектоника плит, 1991) – модель, которая создана с целью объяснения наблю­даемой картины распределения деформаций и сейсмичности во внешней оболочке Земли. Она основывается на обширных геофизических данных, полученных в 1950-е и 1960-е годы. Теоретические основы тектоники плит базируются на двух предпосылках.

    Самая внешняя оболочка Земли, называемая литосфе­рой, непосредственно залегает на слое, называемом ас­ теносферой, которая является менее прочной, чем лито­сфера.

    Литосфера разбита на ряд жестких сегментов, или плит (рис. 6.6), которые постоянно движутся относительно друг друга и площадь поверхности которых также не­прерывно меняется. Большая часть тектонических про­цессов с интенсивным обменом энергией действует на границах между плитами.

Хотя мощность литосферы нельзя измерить с большой точ­ностью, исследователи согласны в том, что внутри плит она меняется от 70-80 км под океанами до максимальной вели­чины более 200 км под некоторыми частями континентов при среднем значении около 100 км. Подстилающая лито­сферу астеносфера распространяется вниз до глубины около 700 км (предельная глубина распространения очагов глубо­кофокусных землетрясений). Ее прочность растет с глуби­ной, и некоторые сейсмологи считают, что ее нижняя грани-

Рис. 6.6. Литосфер-ные плиты Земли и их активные гра­ницы. Двойными линиями показаны дивергентные гра­ницы (оси спредин-га); линиями с зуб­цами - конвергент­ные гпянины П.ПИТ

одинарными линиями - трансформные разломы (сдвиги); крапом покрыты участки континентальной ко­ры, подвергающиеся активному разломообразованию (Структурная геология и тектоника плит, 1991)

ца расположена на глубине 400 км и совпадает с небольшим изменением физических параметров.

Границы между плитами делятся на три типа:

    дивергентные;

    конвергентные;

    трансформные (со смещениями по простиранию).

На дивергентных границах плит, представленных пре­имущественно рифтами, происходит новообразование лито­сферы, что приводит к раздвиганию океанического дна (спредингу). На конвергентных границах плит литосфера по­гружается в астеносферу, т. е. поглощается. На трансформ­ных границах две литосферные плиты скользят относитель­но друг друга, и вещество литосферы на них не создается и не разрушается.

Все литосферные плиты непрерывно перемещают­ся относительно друг друга . Предполагается, что общая площадь всех плит остается неизменной в течение значи­тельного периода времени. При достаточном удалении от окраин плит горизонтальные деформации внутри них незна­чительны, что позволяет считать плиты жесткими. Посколь­ку смещения по трансформным разломам происходят вдоль их простирания, движение плит должно быть параллельным современным трансформным разломам. Так как все это про­исходит на поверхности сферы, то в соответствии с теоремой Эйлера, каждый участок плиты описывает траекторию, экви­валентную вращению на сферической поверхности Земли. Для относительного перемещения каждой пары плит в лю­бой момент времени можно определить ось, или полюс вра­щения. По мере удаления от этого полюса (вплоть до угло-

вого расстояния в 90°) скорости спрединга, естественно, воз­растают, но угловая скорость для любой данной пары плит относительно их полюса вращения постоянна. Отметим так­же, что в геометрическом отношении полюсы вращения единственны для любой пары плит и никак не связаны с по­люсом вращения Земли как планеты.

Тектоника плит является эффективной моделью про­исходящих в коре процессов, так как она хорошо согласует­ся с известными данными наблюдений, дает изящное объяс­нение ранее несвязанным явлениям и открывает возможно­сти для прогноза.

Цикл Уилсона (Структурная геология и тектоника плит, 1991). В 1966 г. профессор Уилсон из Университета Торонто опубликовал статью, в которой он доказывал, что континентальный дрейф происходил не только после ранне-мезозойского раскола Пангеи, но и в допангейские времена. Цикл раскрытия и закрытия океанов относительно смежных континентальных окраин называется теперь циклом Уилсона.

На рис. 6.7 приведено схематическое пояснение ос­новной концепции цикла Уилсона в рамках представлений об эволюции литосферных плит.

Рис. 6.7, а представляет начало цикла Уилсона на­чальную стадию раскола континента и формирования аккреционной окраины плиты. Известно, что жесткая

Рис. 6.7. Схема цикла Уилсона развития океанов в рамках эволюции литосферных плит (Структурная геология и тек­тоника плит, 1991)

литосфера покрывает более слабую, частично расплавлен­ную зону астеносферы – так называемый слой низких скоро­стей (рис 6.7, б). При продолжении разделения континентов развиваются рифтовая долина (рис. 6.7, 6) и небольшой оке­ан (рис. 6.7, в). Это – стадии раннего раскрытия океана в цикле Уилсона . Подходящими примерами служат Афри­канский рифт и Красное море. С продолжением дрейфа ра­зобщенных континентов, сопровождающегося симметрич­ной аккрецией новой литосферы на окраинах плит, на грани­це континента с океаном за счет размыва континента накап­ливаются шельфовые осадки. Полностью сформировав­шийся океан (рис. 6.7, г) со срединным хребтом на границе плит и развитым континентальным шельфом называется океаном атлантического типа.

Из наблюдений океанических желобов, их связи с сейсмичностью и реконструкцией по рисунку океанических магнитных аномалий вокруг желобов известно, что океани­ческая литосфера расчленяется и погружается в мезосферу. На рис. 6.7, д показан океан с плитой , имеющей простые окраины приращения и поглощения литосферы, – это на­чальная стадия закрытия океана в цикле Уилсона . Расчле­нение литосферы по соседству с континентальной окраиной ведет к превращению последней в ороген андского типа в результате тектонических и вулканических процессов, про­исходящих на поглощающей границе плит. Если это расчле­нение происходит на значительном расстоянии от континен­тальной окраины в сторону океана, то образуется островная дуга типа Японских островов. Поглощение океанической литосферы приводит к изменению геометрии плит и в конце

концов к полному исчезновению аккрециопной окраины плиты (рис. 6.7, е). В течение этого времени противополож­ный континентальный шельф может продолжать разрастать­ся, превращаясь в полуокеан атлантического типа. По мере сокращения океана противоположная континентальная ок­раина в конечном счете вовлекается в режим поглощения плиты и участвует в развитии аккреционного орогена анд-ского типа . Это – ранняя стадия столкновения двух кон­тинентов (коллизии ) . На следующей стадии благодаря пла­вучести континентальной литосферы, поглощение плиты прекращается. Литосферная пластина отрывается внизу, под растущим орогеном гималайского типа, и наступает завер­шающая орогенная стадия цикла Уилсона с зрелым гор­ным поясом , представляющим собой шов между вновь со­единившимися континентами. Антиподом аккреционного орогена андского типа является коллизионный ороген гима­лайского типа .

Земной корой, имеющей в среднем мощность около 40 км и составляющей всего лишь 1/160 от радиуса Земли. Земная кора вместе с частью верхней мантии до астеносферного слоя называется литосферой, а литосфера, вместе с астеносферой образует тектоносферу, верхнюю оболочку земного шара во многом ответственную за процессы, происходящие в земной коре. Строение земной коры, мощность которой изменяется практически от 0 до 70-75 км и повсеместно имеет четкую нижнюю границу – поверхность Мохоровичича или «М», принципиально отличается на континентах и в океанах.

Сведения о коре мы получаем от непосредственного наблюдения пород на поверхности Земли, особенно на щитах древних платформ, из керна глубоких и сверхглубоких скважин, как на суше, так и в океанах; ксенолитов в вулканических породах; драгированием океанского дна и сейсмических исследований, дающих наиболее важную информацию о глубоких горизонтах земной коры.

Океаническая кора обладает 3-х слойным строением (сверху вниз) (рис. 2.7.1):

1-й слой представлен осадочными породами, в глубоководных котловинах не превышающей в мощности 1 км и до 15 км вблизи континентов.

Рис. 2.7.1. Схемы строения земной коры. I – континентальная кора, слои: 1 – осадочный, 2

- ранитно-метаморфический, 3 – гранулито-базитовый, 4 – перидотиты верхней мантии. II – океаническая кора, слои: 1 – осадочный, 2 – базальтовых подушечных лав, 3 – комплекса параллельных даек, 4 – габбро, 5 – перидотиты верхней мантии. М – граница Мохоровичича

Породы представлены карбонатными, глинистыми и кремнистыми породами. Важно подчеркнуть, что нигде в океанах возраст осадков не превышает 170-180 млн. лет.

2-й слой сложен, в основном, базальтовыми пиллоу (подушечными) лавами, с тонкими прослоями осадочных пород. В нижней части этого слоя располагается своеобразный комплекс параллельных даек базальтового состава, служившим подводящими каналами для подушечных лав.

3-й слой представлен кристаллическими магматическими породами, главным образом, основного состава – габбро и реже ультраосновного, располагающимся в нижней части слоя, глубже которого располагается поверхность М и верхняя мантия.

Очень важно подчеркнуть, что кора океанического типа развита не только в океанах и глубоководных впадинах внутренних морей, но встречается также и в складчатых поясах на суше в виде фрагментов пород офиолитовой ассоциации, парагенезис (сонохождение) которых (кремнистые породы – базальтовые лавы – основные и ультраосновные породы) был впервые выделен в 20-х годах ХХ в. Г.Штейнманом в Лигурийских Альпах на СЗ Италии.

Рис. 2.7.2. Строение океанической земной коры.


Континентальная земная кора также имеет 3-х членное строение, но структура ее иная (сверху вниз):

1-й осадочно-вулканогенный слой обладает мощностью от 0 на щитах платформ до 25 км в глубоких впадинах, например, в Прикаспийской. Возраст осадочного слоя колеблется от раннего протерозоя до четвертичного.

2-й слой образован различными метаморфическими породами: кристаллическими сланцами и гнейсами, а также гранитными интрузиями. Мощность слоя изменятся от 15 до 30 км в различных структурах.

3-й слой , образующий нижнюю кору, сложен сильно метаморфизованными породами, в составе которых преобладают основные породы. Поэтому он называется гранулито-базитовым. Частично он был вскрыт Кольской сверхглубокой скважиной. Нижняя кора обладает изменчивой мощностью в 10-30 км. Граница раздела между 2-ым и

3-м слоем континентальной коры нечеткая, в связи с чем иногда в консолидированной части коры (ниже осадочного слоя) выделяют 3, а не 2 слоя.

Поверхность М выражена повсеместно и достаточно четко скачком скоростей сейсмических волн от 7,5 – 7,7 до 7,9 – 8,2 км/с. Верхняя мантия в составе нижней части литосферы сложена ультраосновными породами, в основном, перидотитами, как, впрочем, и астеносфера, характеризующаяся пониженной скоротью сейсмических волн, что интерпретируется как пониженная вязкость и, возможно, плавление до 2-3%.