Из чего состоит водяной газ. Газификация древесины. Отрывок, характеризующий Водяной газ

Водяно́й газ - газовая смесь, состав которой (в среднем, об. %) - 44, N 2 - 6, CO 2 - 5, H 2 - 45.

Водяной газ получают продуванием водяного пара сквозь слой раскалённого угля или кокса . Реакция идёт по уравнению:

\mathsf{H_2O + C \rightarrow H_2 + CO}

Реакция эндотермическая, идёт с поглощением тепла - 31 ккал /моль (132 кДж /моль), поэтому для поддержания температуры в газогенератор время от времени для накаливания слоя кокса пропускают воздух (или кислород), либо в водяной пар добавляют воздух или кислород.

Именно поэтому водяной газ обычно имеет не стехиометрический состав , то есть 50 об.% H 2 + 50 об.% CO, а содержит также другие газы (см. выше).

Продукты реакции имеют в 2 раза больший объём относительно объёма водяного пара. Именно на увеличение объёма затрачивается, согласно термодинамике, значительная часть внутренней энергии реакции.

Представляет интерес установка, которая может рекуперировать эту энергию (турбинная или поршневая). Часть энергии, в виде электроэнергии может быть потрачена на подогрев твёрдого топлива. В такой установке подогрев может производиться за счёт адиабатического сжатия водяного пара.

Если газогенераторная установка должна питать электростанцию, то её отработавшие газы могут подогревать водяной пар.

Применение

Водяной газ используется в качестве горючего газа (теплота сгорания 2800 ккал/м³), а также применяется в химическом синтезе - для получения синтетического топлива , смазочных масел , аммиака , метанола , высших спиртов и т. п.

См. также

Напишите отзыв о статье "Водяной газ"

Отрывок, характеризующий Водяной газ

– C"est pour me dire que je n"ai pas sur quoi manger… Je puis au contraire vous fournir de tout dans le cas meme ou vous voudriez donner des diners, [Вы хотите мне сказать, что мне не на чем есть. Напротив, могу вам служить всем, даже если бы вы захотели давать обеды.] – вспыхнув, проговорил Чичагов, каждым словом своим желавший доказать свою правоту и потому предполагавший, что и Кутузов был озабочен этим самым. Кутузов улыбнулся своей тонкой, проницательной улыбкой и, пожав плечами, отвечал: – Ce n"est que pour vous dire ce que je vous dis. [Я хочу сказать только то, что говорю.]
В Вильне Кутузов, в противность воле государя, остановил большую часть войск. Кутузов, как говорили его приближенные, необыкновенно опустился и физически ослабел в это свое пребывание в Вильне. Он неохотно занимался делами по армии, предоставляя все своим генералам и, ожидая государя, предавался рассеянной жизни.
Выехав с своей свитой – графом Толстым, князем Волконским, Аракчеевым и другими, 7 го декабря из Петербурга, государь 11 го декабря приехал в Вильну и в дорожных санях прямо подъехал к замку. У замка, несмотря на сильный мороз, стояло человек сто генералов и штабных офицеров в полной парадной форме и почетный караул Семеновского полка.
Курьер, подскакавший к замку на потной тройке, впереди государя, прокричал: «Едет!» Коновницын бросился в сени доложить Кутузову, дожидавшемуся в маленькой швейцарской комнатке.
Через минуту толстая большая фигура старика, в полной парадной форме, со всеми регалиями, покрывавшими грудь, и подтянутым шарфом брюхом, перекачиваясь, вышла на крыльцо. Кутузов надел шляпу по фронту, взял в руки перчатки и бочком, с трудом переступая вниз ступеней, сошел с них и взял в руку приготовленный для подачи государю рапорт.

Водяной газ, горючая газовая смесь, в главной массе состоящая из окиси углерода и водорода и образующаяся при разложении паров воды раскаленным углем. Для добывания водяного газа употребляется чаще всего кокс или антрацит. Теоретически водяной газ должен содержать 50% окиси углерода и 50% водорода, но на практике, так как трудно поддерживать в генераторе необходимую температуру (1 200°С), в газе всегда содержится 3-5% углекислоты, немного метана, азота и, если топливо содержало серу, то также в незначительном количестве и сероводород.

Для получения 1 куб. метра водяного газа указанного теоретического состава надо 0,4 килограмма водяного пара; в действительности обыкновенно расходуется больше, так как часть пара проходит через генератор неразложенным и тем в большем количестве, чем ниже температура, при которой происходит газование. Так как при низкой температуре (ниже 900°С) в генераторе сильно возрастает содержание в нем углекислоты, то отсюда ясно, какое большое значение для правильности работы генератора имеет непрерывное поддержание в нем достаточно высокой температуры. Из 1 килограмма кокса получается обыкновенно от 1,4 до 2 куб. метров водяного газа с теплотворной способностью от 2 300 до 2 600 калорий на куб. метр. Водяной газ горюч, но в обыкновенных разрезных горелках горит бесцветным пламенем; в Ауэровских же горелках, с накаливающимся чулочком из окислов редких металлов, горит, давая довольно значительный свет. С целью увеличить световую способность водяного газа, его нередко карбюрируют, и это делается или непосредственно, в одном и том же приборе (системы Лау, Гемфри-Глазго), или в отдельных карбюраторах (системы Страхэ, Дельвик-Флейшера и др.). Для карбюрации водяного газа употребляются или дешевые нефтяные масла в количестве 0,3-0,4 литра на куб. метр (чаще всего соляровое масло), причем карбюрация ведется при высокой температуре распыливанием масла в камере с накаленной пористой кладкой, через которую проходит карбюрируемый газ, или же бензол, причем в этом случае карбюрация делается холодным путем, и бензола тратится 80-90 граммов на куб. метр.

В виду значительного содержания окиси углерода водяной газ очень ядовит и не имеет запаха, так что утечку его не всегда легко обнаружить. С целью придать ему запах, его парфюмируют каким-нибудь пахучим веществом: меркаптаном или карбил-амином. Очень большое значение водяной газ получил в металлургии, в сталелитейном деле, на пушечных и оружейных заводах, на стеклянных, фаянсовых и химических заводах. Если водяной газ употребляется для освещения, то он подвергается очистке от парообразных примесей, а также углекислых и сернистых соединений, для чего проходит через холодильник, скруббер и очиститель, заполненный болотной рудой. Пройдя через очиститель с окисью железа, газ содержит летучее соединение окиси углерода с железом, которое при сжигании газа в Ауэровских горелках обусловливает быструю порчу накаливающегося чулочка. Для удаления этого соединения из газа, последний, пройдя очиститель, направляется еще через концентрированную серную кислоту.

В Соединенных Штатах, Англии и Германии водяной газ часто примешивается к светильному газу (до 30%), причем он вводится в гидравлику и проходит вместе с каменноугольным газом все очистительные станции газового завода.


Модель полностью основана на патенте Хиллари Элдридж, США
603 058 "Electrical Retort" представленный 26 апреля 1898.


Горючий газ произведен электрической дугой полученной
графитовыми стержнями, погруженными в дистиллированную, питьевую, соленую или
другой тип воды, которая по существу состоит из водорода, кислорода, углерода и
других веществ.


Генератор производит смесь угарного газа и водорода (COH2),
которая сгорает очень чисто с кислородом воздуха, и может использоваться как
топливо для двигателя внутреннего сгорания. При сгорании COH2 образуется
углекислый газ и водяной пар, поэтому загрязнение окружающей среды крайне
незначительно.


Анализ газа, проведенный НАСА: Водород 46.483 %


Углекислый газ 9.329


Этилен 0.049



Ацетилен 0.616


Кислород 1.164



Метан 0.181


Угарный газ 38.370


Общее количество 100.015

Этот простой эксперимент предназначен исключительно для
доказательства основной концепции. Данный генератор не может быть использован для
длительного использования, и служит лишь для демонстрации.

Вам потребуется немного материалов, генератор очень просто построить и проверить....

Будьте осторожны, генератор производит взрывчатый газ, Вы
обязаны проводить этот опыт в хорошо проветриваемом помещении или на открытом
воздухе. Вы не должны курить в течение опыта.. Не забудьте, что угарный газ
(CO) - очень ядовит, не вдыхать его! Эксперимент предназначен только для
опытных. Экспериментатор должен быть очень осторожен во время опыта! Опыты
проводятся вами на свой страх и риск. Я не принимаю на себя никакой
ответственности за все, что может случиться при неправильном использовании
данной информации.

Вам понадобится только:


Небольшая пластмассовая бутылка из под газированной воды,


Два графитовых стержня (70 mm длина, 6 mm диаметр)


Один 1 ом 50Watts резистор


Трансформатор постоянного тока, который в состоянии
обеспечить 35v / 10A


Провода, разьемы и кремниевый цемент, либо любой другой
водостойкий состав.

Нужно
очень немного материалов.....

1) Высверлить два диаметральных отверстия (10 mm диаметр) в 60 mm от основания бутылки и
вставьте графитовые стержни с (резинками от стиральной машины - для
герметизации) и проклеить резинки кремниевым цементом. Желательно, чтобы конец
одного из графитовых стержней был конусным. Два стержня должны быть перед
включением в слабом контакте (см. ниже).

Топливо из воды – Газ Броуна Жюль Верн в своей книге “Таинственный остров” (1874) написал следующее:

«Вода разлагается на примитивные элементы водорода и кислорода, и, несомненно, превращается в электроэнергию, которая затем становится мощной и управляемой силой. Да, друзья мои, я считаю, что вода в один прекрасный день будет использована в качестве топлива».

Газ Броуна.

Это самое совершенное топливо для наших транспортных средств. Получается он из воды (то есть водорода и кислорода), так же как и чистый водород, но сгорает в ДВС так, что, в зависимости от регулировки, может отдавать кислород в атмосферу. На выхлопе получается кислород и водяной пар (как и в случае топливных баков), однако кислород здесь берется из воды, используемой для получения газа. Поэтому при сжигании газа Броуна в атмосферу поступает дополнительный кислород.

Таким образом, использование газа Броуна помогает решить очень важную для нас проблему уменьшения кислорода в окружающей среде.

С этой точки зрения газ Броуна представляет собой идеальное топливо для автомобилей будущего. Новая технология применения газа Броуна

Почему газ Броуна – как топливо, лучше чистого водорода?

В настоящее время окружающая среда испытывает серьезнейшие проблемы, и одна из них – это потеря атмосферного кислорода. Содержание его в воздухе становится таким низким, что в некоторых регионах это представляет угрозу самому существованию человека. Нормальное содержание кислорода в воздухе – 21 процент, но в некоторых регионах оно в несколько раз ниже! Так, например, в Японии в Токио оно упало до 6-7 процентов. Если содержание в воздухе кислорода достигнет 5 процентов, люди начнут умирать. В Токио на углах улиц даже установили пункты продажи кислородных подушек, чтобы в случае необходимости человек мог подышать кислородом. Если мы не примем меры, то, в конце концов, уменьшение содержания кислорода в воздухе повлияет на каждого из нас.

Получаемый электролизным способом, газ Броуна может поставлять в атмосферу кислород, в то время как другие технологии либо никак не влияют на атмосферу (как при использовании чистого водорода или топливных баков), либо загрязняют ее (как при использовании ископаемого топлива). Поэтому, мы считаем, что именно эта технология в ближайшем будущем должна быть выбрана для обеспечения топливом транспортных средств.

Газа Броуна / HHO газа = Вода разлагается на водород и кислород в электроэнергию

Газ Броуна также называют: коричневый газ / HHO газ / водяной газ / ди-гидроксид / гидроксид / зеленый газ / клейн газа / оксигидроген.

Каждый литр воды расширяется на 1866 литра горючего газа.

Рабочая модель газового генератора, Американского некомерческого университета

Оценка информации


Записи на схожие темы


Воздуха, а из воды ». А дальше больше, заменить топливо водой полностью, и дело... правда, не автомобильная, начала использовать газ Брауна, уникальные свойства которого активно... даже углекислый газ не образуется в результате горения такого топлива . И, возможно...


Которой топлива вообще не требуется, где используется только энергия падающей воды ?Да... от слова «вообще», поэтому приготовьтесь.Газ фторида урана для начала пропускают... мог удерживать внутри себя радиоактивные газы , образующиеся в процессе ядерного распада...

Газификация есть процесс превращения органической части твердого, а иногда и жидкого топлива в газообразное состояние. Главными составными частями полученного генераторного газа являются СО, Н2, СН4 и тяжелые углеводороды.

Газообразное топливо в технике находит весьма широкое при­менение вследствие ряда преимуществ.

Для газификании, с получением газа высокой калорийности, могут быть использованы разное малоценное твердое топливо и его отбросы.

Газы можно сжигать при незначительном избытке воздуха с предварительным его подогревом теплотой отходящих продуктов горения; при сжигании газов развивается высокая температура (1500--1900е), вследствие чего коэффициент полезного действия печи или другого нагревательного аппарата получается высоким н возрастает производительность печи.

Предоставляется возможным получать газы на центральной газогенераторной станции.

При сжигании газов достигается удобство обслуживания печей, простота конструкции горелок, возможность точного регулирова­ния процесса горения.

Твердое топливо, превращенное в газообразное состояние, мо­жет быть использовано как хорошее и экономически выгодное горючее для двигателей внутреннего сгорания.

Но наряду с большими достоинствами генераторный газ при применении его как горючего имеет и недостатки, к числу кото­рых следует отнести дополнительные капиталовложения на уста­новку газогенераторов и потерю физического тепла генераторного таза при охлаждении его в процессе очистки.

Однако вследствие весьма больших преимуществ газообраз­ного топлива все крупные современные заводы, имеющие много печей и других нагревательных устройств, расположенных на большой площади, имеют свои центральные газогенераторные станции.

На уральских металлургических заводах и на стеклоплавиль­ных заводах во многих районах СССР газогенераторные уста­новки работают на древесном топливе. За последние годы при­обрели большое значение газогенераторные установки на автомо­билях и тракторах, работающие на древесных чурках.

Генераторный газ быв я воздушны и, с меша нны и, к од я но и 11 оксигаз.

Получение воздушного газа достигается продуванием сухого воздуха через слой раскаленного топлива. Смешанный газ полу­чают продуванием смеси воздуха и водяного пара через слой рас­каленного топлива. Водяной газ можно получить пропусканием через слой раскаленного топлива паров воды и воздуха при пе­риодической подаче то водяных паров, то воздуха. Получение окси - газа достигается пропусканием через слой раскаленного топлива паров воды в смеси с кислородом.

Воздушный газ. При интенсивной подаче воздуха через слой раскаленного топлива получается воздушный газ. При его обра­ботке развивается очень высокая температура (1400-1500°). являющаяся крайне нежелательной, так как вызывает шлакова­ние в газогенераторе, вследствие чего нарушается нормальный его ход.

Смешанный газ. Способ газификации, при котором получается смешанный генераторный газ, является наиболее приемлемым для промышленности, так как позволяет использовать для разложе­ния паров воды тот избыток тепла, который получается при об­разовании воздушного газа. Водяной пар вводится одновременно с воздушным дутьем.

Соотношение между количеством воздуха и паров воды уста­навливается опытным путем, причем оно должно быть таково, чтобы генератор чрезмерно не остывал и не шлаковался. О со­держании влаги, вводимой с дутьем, судят по температуре паро­воздушной смеои, которую обычно измеряют термометром, пока­зывающим точку росы подаваемой паровоздушной смеси. Эта тем­пература обычно держится в пределах 38-52°.

Водяной газ. В связи с развитием синтеза аммиака, метанола, жидкого топлива и других веществ, находит большое применение водяной газ. Его используют в смеси со светильным или другим высококалорийным газом и снабжают им население для исполь­зования, как горючее.

В состав водяного газа входят в основном СО и Н: при неболь­шом содержании СО^, N2 и СН4.

Водяной газ в промышленном масштабе можно получать пу­тем накопления тепла в газогенераторе (первый способ) или под­водом тепла в газогенератор с газифицирующей парогазовой смесью (второй способ).

Процесс получения водяного газа по первому способу, т. е. по способу накопления тепла в газогенераторе, состоит в том, что через раскаленный слой кокса или древесного угля снизу шахты газогенератора продувается воздух; слой топлива постепенно разо­гревается, а получающийся газ при этом выбрасывается обычно в атмосферу. Как только температура в зоне газификации повы­сится до 1100-1200°, доступ воздуха прекращают и пускают перегретый пар сверху вниз. Водяные пары, проходя через раска­ленный слой топлива, разлагаются по указанным ниже реак­циям, давая водяной газ, направляемый к потребителю.

Процесс разложения водяных паров есть процесс эндотерми­ческий; поэтому температура в шахте газогенератора постепенно падает. После понижения температуры до известного предела (800°) подачу пара прекращают и в шахту снова подают воздух. Обычно работу ведут так, что в течение 10 минут вдувают воз­дух, а затем в течение 5 минут - пары воды.

Второй способ получения водяного газа, т. е. путем подвода тепла в газогенератор с газифицирующей парогазовой смесью, является более новым; он может быть осуществлен двояко: либо смесью кислорода с водяным паром, либо смесью водяного пара с циркуляционным газом, предварительно нагретой до высокой температуры.

Второй способ получения водяного газа имеет перед первым то преимущество, что при нем процесс ведется непрерывно, при постоянном режиме работы газогенератора.

Аппараты, в которых газифицируется топливо, называются газогенераторами.

В качестве топлива для газификации служит кокс, каменный уголь, торф, дрова и др. Мы рассмотрим лишь газогенераторы, ра­ботающие на древесном топливе.

Топливо поступает в шахту газогенератора сверху и, спускаясь вниз навстречу нагретому газовому потоку, постепенно превра­щается в парогазовые продукты.

В низ шахты газогенератора (рис. 44) под колосниковую ре­шетку, при получении смешанного газа, подводят воздух и водя­ной пар, которые, поднимаясь вверх, проходят сначала через слой шлака (зона V), за счет теплоты которого они несколько подогре­ваются, и затем - через слой раскаленного горючего, вступая в реакцию с его углеродом. В зоне IV горения (в кислородной зоне) получается и С02, и СО; пары воды частично реагируют с угле­родом.

Образовавшаяся в зоне горения (кислородной зоне) СОг и неразложившиеся пары воды, поднимаясь выше и проходя через слой раскаленного углерода топлива, восстанавливаются с обра­зованием СО и Н2.

Слой топлива, в котором происходит образование СО и Н2, называется зоной восстановления (зона III). В составе газового потока на выходе из зоны восстановления преобладает СО, но не С02.

Обе зоны, кислородная и восстановления, обычно называются зонами газификации.

Выше, непосредственно над зоной восстановления ///, нахо­дится зона II сухой перегонки. В этой зоне происходит выделение

/-зона сшкн; //-зона сухой перегонки: ///- зона восстановления: VI- Зона горения (кислородная); V -зона шлака-, /-шахта газогенера­тора; 2-фартук шахты-, 3-загрузочное устройство; -^-колосниковая решетка; 5-вращающаяся чаша; 6-подвижные опоры чаши; 7-привод чашн-, 8- шлаковый нож; У- шуровочное отверстие; 10-выводной пат­рубок; 11 -воздо-.опронод-, 12 -дутьевая камера; 13- Нижний гидравли­ческий затвор; 14 -люк для розжига

Летучей парогазовой смеси, в состав которой входят неконден­сирующиеся газы, кислоты, спирты, смолы и другие парообразные органические вещества.

В верху шахты газогенератора, в зоне /, происходит сушка топ­лива.

Зона II сухой перегонки и зона I сушки топлива носят назва­ние зоны подготовки топлива.

ОСНОВНЫЕ РЕАКЦИИ ГАЗИФИКАЦИИ

В кислородной зоне. По вопросу взаимодействия углерода с кислородом существуют три гипотезы.

1. Редукционная гипотеза предполагает, что в результате взаимодействии углерода и кислорода образуется непосредственно С02 по уравнению:

TOC o "1-3" h z С - 02 = CO., ; Q, (97)

Причем наличие в вышележащих зонах СО по этой гипотезе рас­сматривается, как результат восстановления С02 раскаленным углеродом топлива по реакции:

CO.. С = 2СО - Q. (98)

2. Гипотеза первичного образования СО предполагает, что к результате взаимодействия С и (): образуется сначала СО но уравнению:

2С а::СО -Q, (99)

Которая потом может окисляться по уравнению:

2С0--0, = 2С02 Q. (100)

3. Гипотеза комплекса предполагает, что сначала образуется сложный углеродно-кислородный комплекс, а затем из него обра­зуется С02 и СО по реакциям:

Л-С -^-0, = Cr0v (10!)

CxOv = mCO, л СО. (102

Наиболее вероятной нз указанных грех гипотез в настоящее время считается третья гипотеза.

В зоне восстановления. Она начинается там, где исчезают по­следние следы кислорода. В зоне восстановления имеют место сле­дующие эндотермические реакции:

А) взаимодействия С с С02:

С CO., -- 2СО; (103)

Б) взаимодействия водяных паров с раскаленным углеродом топлива:

С 211 О - CO. 2Н, (104

С - !1<> С> Н.. (105)

Возможно, что частично эти две последние реакции проте­кают и в кислородной зоне. При температурах выше 900° преоб­ладает вторая из этих двух реакций, а ниже 900° - первая.

Процессы восстановления успевают достаточно полно пройти, если высота восстановительной зоны составляет 12-15 диамет­ров кусков угля.

Таким образом высота слоя топлива в газогенераторе является основным конструктивным размером.