Элементы конуса. Конус. Основные понятия. Площадь поверхности конуса. Обработка конических поверхностей с применением конусной линейки

Рассмотрим какую-либо линию l (кривую или ломаную), лежащую в некоторой плоскости (рис. 386, а, б), и произвольную точку М, не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками линии образуют поверхность а; такая поверхность называется конической поверхностью, точка вершиной, линия - направляющей, прямые образующими. На рис. 386 мы не ограничиваем поверхность а ее вершиной, но представляем себе ее простирающейся неограниченно в обе стороны от вершины.

Если коническую поверхность рассечь какой-либо плоскостью, параллельной плоскости направляющей , то в сечении получим линию (кривую или ломаную, в зависимости от того, была ли кривой или ломаной линия ), гомотетичную линии l, с центром гомотетии в вершине конической поверхности. Действительно, отношение любых соответствующих отрезков образующих будет постоянным:

Итак, сечения коническои поверхности плоскостями, параллельными плоскости направляющей, подобны и подобно расположены, с центром подобия в вершине конической поверхности; это же верно для любых параллельных плоскостей, не проходящих через вершину поверхности.

Пусть теперь направляющая - замкнутая выпуклая линия (кривая на рис. 387, а, ломаная на рис. 387, б). Тело, ограниченное с боков конической поверхностью, взятой между ее вершиной и плоскостью направляющей, и плоским основанием в плоскости направляющей, называется конусом (если -кривая линия) или пирамидой (если -ломаная).

Пирамиды классифицируются по числу сторон многоугольника, лежащего в их основании. Говорят о треугольной, четырехугольной и вообще -угольной пирамидах. Заметим, что -угольная пирамида имеет грань: боковых граней и основание. При вершине пирамиды мы имеем -гранный угол с плоскими и двугранными углами.

Они соответственно называются плоскими углами при вершине и двугранными углами при боковых ребрах. При вершинах основания мы имеем трехгранных углов; их плоские углы, образованные боковыми, ребрами и сторонами основания, называются плоскими углами при основании, двугранные углы между боковыми гранями и плоскостью основания - двугранными углами при основании.

Треугольная пирамида иначе называется тетраэдром (т. е. четырехгранником). Любая из ее граней может быть принята за основание.

Пирамида называется правильной при выполнении двух условий: 1) в основании пирамиды лежит правильный многоугольник,

2) высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).

Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником!

Отметим некоторые свойства правильной -угольной пирамиды. Проведем через вершину такой пирамиды высоту SO (рис. 388).

Повернем всю пирамиду как целое вокруг этой высоты на угол При таком повороте многоугольник основания перейдет сам в себя: каждая из его вершин займет положение соседней. Вершина пирамиды и ее высота (ось вращения!) останутся на месте, и поэтому пирамида как целое совместится сама с собой: каждое боковое ребро перейдет в соседнее, каждая боковая грань совместится с соседней, каждый двугранный угол при боковом ребре также совместится с соседним.

Отсюда вывод: все боковые ребра равны между собой, все боковые грани суть равные равнобедренные треугольники, все двугранные углы при основании равны, все плоские углы при вершине равны, все плоские углы при основании равны.

Из числа конусов в курсе элементарной геометрии мы изучаем прямой круговой конус, т. е. такой конус, основание которого круг, а вершина проектируется в центр этого круга.

Прямой круговой конус показан на рис. 389. Если проведем через вершину конуса высоту SO и повернем конус вокруг этой высоты на произвольный угол, то окружность основания будет скользить сама по себе; высота и вершина останутся на месте, поэтому при повороте на любой угол конус совместится сам с собой. Отсюда видно, в частности, что все образующие конуса равны между собой и одинаково наклонены к плоскости основания. Сечения конуса плоскостями, проходящими через его высоту, будут равнобедренными треугольниками, равными между собой. Весь конус получается от вращения прямоугольного треугольника SOA вокруг его катета (который становится высотой конуса). Поэтому прямой круговой конус является телом вращения и также называется конусом вращения. Если не оговорено противное, мы для краткости в дальнейшем говорим просто «конус», понимая под этим конус вращения.

Сечения конуса плоскостями, параллельными плоскости его основания, суть круги (хотя бы потому, что они гомотетичны кругу основания).

Задача. Двугранные углы при основании правильной треугольной пирамиды равны а. Найти двугранные углы при боковых ребрах.

Решение. Обозначим временно сторону основания пирамиды через а. Проведем сечение пирамиды плоскостью, содержащей ее высоту SO и медиану основания AM (рис. 390).



Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Все образующие конуса равны друг другу. Поверхность конуса состоит из основания и боковой поверхности.
Рис. 1
Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис.2).
Рис. 2
Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.
Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 3). В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса (рис. 4).
Рис. 3 Рис. 4

Площадь поверхности конуса
Боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих (рис. 2,а,б). Разверткой боковой поверхности конуса является круговой сектор (рис. 2,6), радиус которого равен образующей конуса, а длина дуги сектора - длине окружности основания конуса.
За площадь боковой поверхности конуса принимается площадь ее развертки. Выразим площадь Sбок боковой поверхности конуса через его образующую l и радиус основания r.
Площадь кругового сектора - развертки боковой поверхности конуса (рис.2) - равна (Пl2а)/360, где а - градусная мера дуги ABA", поэтому
Sбок = (Пl2а)/360. (*)
Выразим а через l и r. Так как длина дуги ABA" равна 2Пr (длине окружности основания конуса), то 2Пr = Пlа/180, откуда a=360r/l. Подставив это выражение в формулу (*), получим:
Sбок = Пrl. (**)
Таким образом, площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. Для вычисления площади Sкон полной поверхности конуса получается формула: Sкон = Пr (l + r). (***)

Усеченный конус
Возьмем произвольный конус и проведем секущую плоскость, перпендикулярную к его оси. Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей представляет собой конус, а другая называется усеченным конусом. Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усеченного конуса, а отрезок, соединяющий их центры, - высотой усеченного конуса.

Часть конической поверхности, ограничивающая усеченный конус, называется его боковой поверхностью, а отрезки образующих конической поверхности, заключенные между основаниями, называются образующими усеченного конуса. Все образующие усеченного конуса равны друг другу (докажите это самостоятельно).
Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую: Sбок = П (r + r1) l.

Дополнительная информация о конусе
1. В геологии существует понятие «конус выноса». Это форма рельефа, образованная скоплением обломочных пород (гальки, гравия, песка), вынесенными горными реками на предгорную равнину или в более плоскую широкую долину.
2. В биологии есть понятие «конус нарастания». Это верхушка побега и корня растений, состоящая из клеток образовательной ткани.
3. «Конусами» называется семейство морских моллюсков подкласса переднежаберных. Раковина коническая (2–16 см), ярко окрашенная. Конусов свыше 500 видов. Живут в тропиках и субтропиках, являются хищниками, имеют ядовитую железу. Укус конусов очень болезнен. Известны смертельные случаи. Раковины используются как украшения, сувениры.
4. По статистике на Земле ежегодно гибнет от разрядов молний 6 человек на 1 млн. жителей (чаще в южных странах). Этого бы не случалось, если бы везде были громоотводы, так как образуется конус безопасности. Чем выше громоотвод, тем больше объем такого конуса. Некоторые люди пытаются спрятаться от разрядов под деревом, но дерево не проводник, на нем заряды накапливаются и дерево может быть источником напряжения.
5. В физике встречается понятие «телесный угол». Это конусообразный угол, вырезанный в шаре. Единица измерения телесного угла – 1 стерадиан. 1 стерадиан – это телесный угол, квадрат радиуса которого равен площади части сферы, которую он вырезает. Если в этот угол поместить источник света в 1 канделу (1 свечу), то получим световой поток в 1 люмен. Свет от киноаппарата, прожектора распространяется в виде конуса.

Конус (с греческого «konos») – сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определения:
Определение 1. Конус
Определение 2. Круговой конус
Определение 3. Высота конуса
Определение 4. Прямой конус
Определение 5. Прямой круговой конус
Теорема 1. Образующие конуса
Теорема 1.1. Осевое сечение конуса

Объем и площади :
Теорема 2. Объем конуса
Теорема 3. Площадь боковой поверхности конуса

Усеченный конус :
Теорема 4. Сечение, параллельное основанию
Определение 6. Усеченный конус
Теорема 5. Объем усеченного конуса
Теорема 6. Площадь боковой поверхности усеченного конуса

Определние
Тело ограниченное с боков конической поверхностью, взятой между её вершиной и плоскостью направляющей, и плоским основанием направляющей, образованным замкнутой кривой, называется конусом.

Основные понятия
Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.

Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.

Рассмотрим какую-либо линию (кривую, ломаную или смешанную)(например, l ), лежащую в некоторой плокости, и произвольную точку (например, М), не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками данной линии l , образуют поверхность, называемую канонической . Точка М является вершиной такой поверхности, а заданная линия l - направляющей . Все прямые соединяющие точку М со всеми точками линии l , называют образующими . Каноническая поверхность не ограничивается ни её вершиной, ни направляющей. Она простирается неограниченно в обе стороны от вершины. Пусть теперь направляющая - замкнутая выпуклая линия. Если направляющая - ломаная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется пирамидой .
Если же направляющая - кривая или смешанная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется конусом или
Определение 1 . Конусом называют тело, состоящее из основания - плоской фигуры, ограниченной замкнутой линией (кривой или смешанной), вершины - точки, не лежащей в плокости основания, и всех отрезков, соединяющих вершину со всевозможными точками основания.
Все прямые, проходящие через вершину конуса и любую из точек кривой, ограничивающей фигуру основания конуса, называются образующими конуса. Чаще всего в геометрических задачах под образующей прямой имеется ввиду отрезок этой прямой, заключенный между вершиной и плоскостью основания конуса.
Основание ограниченной смешанной линией - это очень редкий случай. Он сдесь указан только потому, что он может быть рассмотрен в геометрии. Чаще рассматривается случай с криволинейной направляющей. Хотя, что случай с произвольной кривой, что случай со смешанной направляющей, мало чем полезен и в них сложно вывести какие-любо закономерности. Из числа конусов в курсе элементарной геометрии изучается прямой круговой конус.

Известно, что окружность есть частный случай замкнутой кривой линии. Круг - плоская фигура, ограниченная окружностью. Принимая окружность за направляющую, можно определеить круговой конус.
Определение 2 . Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.
Определение 3 . Высота конуса - перпендикуляр, опущенный из вершины на плокость основания конуса. Можно выделить конус, высота которого падает в центр плоской фигуры основания.
Определение 4 . Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.
Если связать эти два определения, мы получим конус, основание котрого есть круг, а высота падает в центр этого круга.
Определение 5 . Прямым круговым конусом называют конус, основание котрого есть круг, а высота его соединяет вершину и центр основания данного конуса. Такой конус получается вращением прямоугольного треугольника вокруг одного из катетов. Поэтому прямой круговой конус является телом вращения и называется также конусом вращения. Если не оговорено противное, то для краткости в дальнейшем говорим просто конус.
Итак приведем некоторые свойства конуса:
Теорема 1 . Все образующие конуса равны. Доказательство. Высота МО перпендикулярна всем прямым основания по определению перпендикулярной прямой к плокости. Поэтому треугольники МОА, МОВ и МОС являются прямоугольными и равны по двум катетам (МО - общая, ОА=ОВ=ОС - радиусы основания. Поэтому равны и гипотенузы, т.е. образующие.
Радиус основания конуса иногда называют радиусом конуса . Высота конуса называется также осью конуса , поэтому любое сечение, проходящее через высоту называется осевым сечением . Любое осевое сечение пересекает основание по диаметру (т.к. прямая, по которой пересекаются осевое сечение и плокость основания, проходит через центр окружности) и образует равнобедренный треугольник.
Теорема 1.1. Осевое сечение конуса есть равнобедренный треугольник. Так треугольник АМВ является равнобедренным, т.к. две его стороны МВ и МА есть образующие. Угол АМВ является углом при вершине осевого сечения.

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.