Аккумуляции теплоты вытяжного потока воздуха. Как сделать расчет вентиляции: формулы и пример расчёта приточно-вытяжной системы. Пошаговая инструкция по определению производительности системы

Главным назначением вытяжной вентиляции является устранение отработанного воздуха из обслуживаемого помещения. Вытяжная вентиляция, как правило, работает в комплексе с приточной, которая, в свою очередь, отвечает за подачу чистого воздуха.

Для того чтобы в помещении был благоприятный и здоровый микроклимат, нужно составить грамотный проект системы воздухообмена, выполнить соответствующий расчет и сделать монтаж необходимых агрегатов по всем правилам. Планируя , нужно помнить о том, что от нее зависит состояние всего здания и здоровье людей, которые в нем находятся.

Малейшие ошибки приводят к тому, что вентиляция перестает справляться со своей функцией так, как нужно, в комнатах появляется грибок, отделка и стройматериалы разрушаются, а люди начинают болеть. Поэтому важность правильного расчета вентиляции нельзя недооценивать ни в коем случае.

Главные параметры вытяжной вентиляции

В зависимости от того, какие функции выполняет вентиляционная система, существующие установки принято делить на:

  1. Вытяжные. Необходимы для забора отработанного воздуха и его отведения из помещения.
  2. Приточные. Обеспечивают подачу свежего чистого воздуха с улицы.
  3. Приточно-вытяжные. Одновременно удаляют старый затхлый воздух и подают новый в комнату.

Вытяжные установки преимущественно используются на производстве, в офисах, складских и прочих подобных помещениях. Недостатком вытяжной вентиляции является то, что без одновременного устройства приточной системы она будет работать очень плохо.

В случае если из помещения будет вытягиваться больше воздуха, чем поступает, образуются сквозняки. Поэтому приточно-вытяжная система является наиболее эффективной. Она обеспечивает максимально комфортные условия и в жилых помещениях, и в помещениях промышленного и рабочего типа.

Современные системы комплектуются различными дополнительными устройствами, которые очищают воздух, нагревают или охлаждают его, увлажняют и равномерно распространяют по помещениям. Старый же воздух безо всяких затруднений выводится через вытяжку.

Прежде чем приступать к обустройству вентиляционной системы, нужно со всей серьезностью подойти к процессу ее расчета. Непосредственно расчет вентиляции направлен на определение главных параметров основных узлов системы. Лишь определив наиболее подходящие характеристики, вы можете сделать такую вентиляцию, которая будет в полной мере выполнять все поставленные перед ней задачи.

По ходу расчета вентиляции определяются такие параметры, как:

  1. Расход.
  2. Рабочее давление.
  3. Мощность калорифера.
  4. Площадь сечения воздуховодов.

При желании можно дополнительно выполнить расчет расхода электроэнергии на работу и обслуживание системы.

Вернуться к оглавлению

Пошаговая инструкция по определению производительности системы

Расчет вентиляции начинается с определения ее главного параметра — производительности. Размерная единица производительности вентиляции — м³/ч. Для того чтобы расчет расхода воздуха был выполнен правильно, вам нужно знать следующую информацию:

  1. Высоту помещений и их площадь.
  2. Главное назначение каждой комнаты.
  3. Среднее количество человек, которые будут одновременно пребывать в комнате.

Чтобы произвести расчет, понадобятся следующие приспособления:

  1. Рулетка для измерений.
  2. Бумага и карандаш для записей.
  3. Калькулятор для вычислений.

Чтобы выполнить расчет, нужно узнать такой параметр, как кратность обмена воздуха за единицу времени. Данное значение устанавливается СНиПом в соответствии с типом помещения. Для жилых, промышленных и административных помещений параметр будет различаться. Также нужно учитывать такие моменты, как количество отопительных приборов и их мощность, среднее число людей.

Для помещений бытового назначения кратность воздухообмена, использующаяся в процессе расчета, составляет 1. При выполнении расчета вентиляции для административных помещений используйте значение воздухообмена, равное 2-3 — в зависимости от конкретных условий. Непосредственно кратность обмена воздуха указывает на то, что, к примеру, в бытовом помещении воздух будет полностью обновляться 1 раз за 1 час, чего более чем достаточно в большинстве случаев.

Расчет производительности требует наличия таких данных, как величина обмена воздуха по кратности и количеству людей. Необходимо будет взять самое большое значение и, уже отталкиваясь от него, подобрать подходящую мощность вытяжной вентиляции. Расчет кратности воздухообмена выполняется по простой формуле. Достаточно умножить площадь помещения на высоту потолка и значение кратности (1 для бытовых, 2 для административных и т.д.).

Чтобы выполнить расчет обмена воздуха по числу людей, проводится умножение количества воздуха, которое потребляет 1 человек, на число людей в помещении. Что касается объема потребляемого воздуха, то в среднем при минимальной физической активности 1 человек потребляет 20 м³/ч, при средней активности этот показатель поднимается до 40 м³/ч, а при высокой составляет уже 60 м³/ч.

Чтобы было понятнее, можно привести пример расчета для обыкновенной спальни, имеющей площадь, равную 14 м². В спальне находится 2 человека. Потолок имеет высоту 2,5 м. Вполне стандартные условия для простой городской квартиры. В первом случае расчет покажет, что обмен воздуха равняется 14х2,5х1=35 м³/ч. При выполнении расчета по второй схеме вы увидите, что он равен уже 2х20=40 м³/ч. Нужно, как уже отмечалось, брать большее значение. Поэтому конкретно в данном примере расчет будет выполняться по числу людей.

По этим же формулам рассчитывается расход кислорода для всех остальных помещений. В завершение останется сложить все значения, получить общую производительность и выбрать вентиляционное оборудование на основании этих данных.

Стандартные значения производительности систем вентиляции составляют:

  1. От 100 до 500 м³/ч для обычных жилых квартир.
  2. От 1000 до 2000 м³/ч для частных домов.
  3. От 1000 до 10000 м³/ч для помещений промышленного назначения.

Вернуться к оглавлению

Определение мощности воздухонагревателя

Чтобы расчет вентиляционной системы был выполнен в соответствии со всеми правилами, необходимо обязательно учитывать мощность воздухонагревателя. Это делается в том случае, если в комплексе с вытяжной вентиляцией будет организована приточная. Устанавливается калорифер для того, чтобы поступающий с улицы воздух подогревался и поступал в комнату уже теплым. Актуально в холодную погоду.

Расчет мощности воздухонагревателя определяется с учетом такого значения, как расход воздуха, необходимая температура на выходе и минимальная температура поступающего воздуха. Последние 2 значения утверждены в СНиП. В соответствии с этим нормативным документом, температура воздуха на выходе калорифера должна составлять не меньше 18°. Минимальную температуру внешнего воздуха следует уточнять в соответствии с регионом проживания.

В состав современных вентиляционных систем включаются регуляторы производительности. Такие приспособления созданы специально для того, чтобы можно было снижать скорость циркуляции воздуха. В холодное время это позволит уменьшить количество энергии, потребляемой воздухонагревателем.

Для определения температуры, на которую устройство сможет нагреть воздух, используется несложная формула. Согласно ей, нужно взять значение мощности агрегата, разделить его на расход воздуха, а затем умножить полученное значение на 2,98.

К примеру, если расход воздуха на объекте составляет 200 м³/ч, а калорифер имеет мощность, равную 3 кВт, то, подставив эти значения в приведенную формулу, вы получите, что прибор нагреет воздух максимум на 44°. То есть если в зимнее время на улице будет -20°, то выбранный воздухонагреватель сможет подогреть кислород до 44-20=24°.

Вернуться к оглавлению

Рабочее давление и сечение воздуховода

Расчет вентиляции предполагает обязательное определение таких параметров, как рабочее давление и сечение воздуховодов. Эффективная и полноценная система включает в свой состав распределители воздуха, воздуховоды и фасонные изделия. При определении рабочего давления нужно учитывать такие показатели:

  1. Форма вентиляционных труб и их сечение.
  2. Параметры вентилятора.
  3. Число переходов.

Расчет подходящего диаметра можно выполнять с использованием следующих соотношений:

  1. Для здания жилого типа на 1 м пространства будет достаточно трубы с площадью сечения, равной 5,4 см².
  2. Для частных гаражей — труба сечением 17,6 см² на 1 м² площади.

С сечением трубы напрямую связан такой параметр, как скорость воздушного потока: в большинстве случаев подбирают скорость в пределах 2,4-4,2 м/с.

Таким образом, выполняя расчет вентиляции, будь то вытяжная, приточная или приточно-вытяжная система, нужно учитывать ряд важнейших параметров. От правильности этого этапа зависит эффективность всей системы, поэтому будьте внимательны и терпеливы. При желании можно дополнительно определить расход электроэнергии на работу устраиваемой системы.








Сегодня энергосбережение является приоритетным направлением развития мировой экономики. Истощение естественных энергетических запасов, повышение стоимости тепловой и электрической энергии неминуемо приводит нас к необходимости разработки целой системы мероприятий, направленных на повышения эффективности работы энергопотребляющих установок. В этом контексте снижение потерь и вторичное использования затрачиваемой тепловой энергии становится действенным инструментом в решении поставленной проблемы.

В условиях активного поиска резервов экономии топливно-энергетических ресурсов все большее внимание привлекает проблема дальнейшего совершенствования систем кондиционирования воздуха как крупных потребителей тепловой и электрической энергии. Важную роль в решении этой задачи призваны сыграть мероприятия по повышению эффективности работы тепломассообменных аппаратов, составляющих основу подсистемы политропной обработки воздуха, затраты на функционирование которой достигают 50 % всех затрат на эксплуатацию СКВ.

Утилизация тепловой энергии вентиляционных выбросов является одним из ключевых методов экономии энергетических ресурсов в системах кондиционирования воздуха и вентиляции зданий и сооружений различного назначения. На рис. 1 приведены основные схемы утилизации теплоты вытяжного воздуха, реализуемые на рынке современного вентиляционного оборудования.

Анализ состояния производства и применения теплоутилизационного оборудования за рубежом указывает на тенденцию преимущественного использования рециркуляции и четырех типов утилизаторов теплоты вытяжного воздуха: вращающихся регенеративных, пластинчатых рекуперативных, на базе тепловых труб и с промежуточным теплоносителем. Применение этих устройств зависит от условий работы систем вентиляции и кондиционирования воздуха, экономических соображений, взаимного расположения приточных и вытяжных центров, эксплуатационных возможностей .

В табл. 1 приведен сравнительный анализ различных схем утилизации теплоты вытяжного воздуха. Среди основных требований со стороны инвестора к теплоутилизационным установкам следует отметить: цену, эксплуатационные затраты и эффективность работы. Наиболее дешевые решения характеризуются простотой конструкции и отсутствием движущихся частей, что позволяет выделить среди представленных схем установку с перекрестноточным рекуператором (рис. 2) как наиболее соответствующую для климатических условий европейской части России и Польши.

Исследования последних лет в области создания новых и совершенствования существующих теплоутилизационных установок систем кондиционирования воздуха указывают на отчетливую тенденцию разработки новых конструктивных решений пластинчатых рекуператоров (рис. 3), решающим моментом при выборе которых является возможность обеспечения режимов безаварийной работы установки в условиях конденсации влаги при отрицательных температурах наружного воздуха.

Температура наружного воздуха, начиная с которой наблюдается образование инея в каналах вытяжного воздуха, зависит от следующих факторов: температуры и влажности удаляемого воздуха, отношения расходов приточного и удаляемого воздуха, конструктивных характеристик. Отметим особенность работы теплоутилизаторов при отрицательных температурах наружного воздуха: чем выше эффективность теплообмена, тем больше опасность появления инея на поверхности каналов вытяжного воздуха.

В связи с этим низкая эффективность теплообмена в перекрестноточном теплоутилизаторе может оказаться преимуществом с точки зрения снижения опасности обледенения поверхностей каналов вытяжного воздуха. Обеспечение безопасных режимов как правило связано с реализацией следующих традиционных мер по предотвращению обмерзания насадки: периодическое отключение подачи наружного воздуха, его байпасирование или предварительный подогрев, осуществление которых безусловно снижает эффективность утилизации теплоты вытяжного воздуха .

Одним из путей решения этой проблемы является создание теплообменных аппаратов, в которых обмерзание пластин либо отсутствует, либо наступает при более низких температурах воздуха. Особенностью работы воздухо-воздушных утилизаторов теплоты является возможность реализации процессов тепломассопереноса в режимах «сухого» теплообмена, одновременного охлаждения и осушения удаляемого воздуха с выпадением конденсата в виде росы и инея на всей или части теплообменной поверхности (рис. 4).

Рациональное использование теплоты конденсации, величина которой при определенных режимах работы теплоутилизаторов достигает 30 %, позволяет существенно увеличить диапазон изменения параметров наружного воздуха, при которых обледенение теплообменных поверхностей пластин не происходит. Однако решение задачи определения оптимальных режимов работы рассматриваемых теплоутилизаторов, соответствующих определенным эксплуатационным и климатическим условиям, и области его целесообразного применения, требует детальных исследований тепломассообмена в каналах насадки с учетом процессов конденсации и инееобразования.

В качестве основного метода исследования выбран численный анализ. Он обладает и наименьшей трудоемкостью, и позволяет определить характеристики и выявить закономерности процесса на основании обработки информации о влиянии исходных параметров. Поэтому экспериментальные исследования процессов тепломассопереноса в рассматриваемых аппаратах проводились в значительно меньшем объеме и, в основном, для проверки и корректировки зависимостей, полученных в результате математического моделирования.

При физико-математическом описании тепломассообмена в исследуемом рекуператоре было отдано предпочтение одномерной модели переноса (ε-NTUмодель). В этом случае течение воздуха в каналах насадки рассматривается как поток жидкости с постоянными по его сечению скоростью, температурой и потенциалом массопереноса, равными среднемассовым значениям . С целью повышения эффективности утилизации теплоты в современных теплообменниках используется оребрение поверхности насадки.

Тип и расположение ребер значительно влияет на характер протекания процессов тепломассообмена. Изменение температуры по высоте ребра приводит к реализации различных вариантов процессов тепломассообмена (рис. 5) в каналах удаляемого воздуха, что существенно усложняет математическое моделирование и алгоритм решения системы дифференциальных уравнений.

Уравнения математической модели процессов тепломассопереноса в перекрестно-точном теплообменнике реализуются в ортогональной системе координат с осями ОX и ОY, направленными параллельно потокам холодного и теплого воздуха соответственно, и осями Z1 и Z2, перпендикулярной поверхности пластин насадки в каналах приточного и удаляемого воздуха (рис. 6), соответственно.

В соответствии с допущениями данной ε-NTU-модели тепломассоперенос в исследуемом утилизаторе описывается дифференциальными уравнениями теплового и материального балансов, составляемых для взаимодействующих потоков воздуха и насадки с учетом теплоты фазового перехода и термического сопротивления образующегося слоя инея. Для получения однозначного решения система дифференциальных уравнений дополняется граничными условиями, устанавливающими значения параметров обменивающихся сред на входах в соответствующие каналы рекуператора.

Сформулированная нелинейная задача не может быть решена аналитически, поэтому интегрирование системы дифференциальных уравнений осуществлялось численными методами. Достаточно большой объем проведенных численных экспериментов, проведенных на ε-NTU-моделе, позволил получить массив данных, который был использован для анализа характеристик процесса и выявления его общих закономерностей.

В соответствии с задачами исследования работы теплоутилизатора выбор изучаемых режимов и диапазоны варьирования параметров обменивающихся потоков осуществлялся так, чтобы наиболее полно моделировались реальные процессы тепломассообмена в насадке при отрицательных значениях температуры наружного воздуха, а также условия протекания наиболее опасных с точки зрения эксплуатации вариантов режимов работы теплоутилизационного оборудования.

Представленные на рис. 7-9 результаты расчета режимов работы исследуемого аппарата, характерных для климатических условий с низкой расчетной температурой наружного воздуха в зимний период времени года, позволяют судить о качественно ожидавшейся возможности образования трех зон активного тепломассообмена в каналах удаляемого воздуха (рис. 6), отличающихся по характеру протекающих в них процессов.

Анализ тепломассообменных процессов, протекающих в этих зонах, позволяет оценить возможные пути реализации эффективного улавливания теплоты удаляемого вентиляционного воздуха и снижения опасности образования инея в каналах насадки теплообменника на основе рационального использования теплоты фазового перехода. На основании проведенного анализа установлены граничные температуры наружного воздуха (табл. 2), ниже которых наблюдается образование инея в каналах вытяжного воздуха.

Выводы

Представлен анализ различных схем утилизации теплоты вентиляционных выбросов. Отмечены преимущества и недостатки рассмотренных (существующих) схем утилизации теплоты вытяжного воздуха в установках вентиляции и кондиционирования воздуха. На основе проведенного анализа предложена схема с пластинчатым перекрестноточным рекуператором:

  • на базе математической модели разработан алгоритм и программа расчета на ЭВМ основных параметров тепломассообменных процессов в исследуемом теплоутилизаторе;
  • установлена возможность образования различных зон конденсации влаги в каналах насадки утилизатора, в пределах которых характер тепломассообменных процессов существенно меняется;
  • анализ полученных закономерностей позволяет установить рациональные режимы работы исследуемых аппаратов и области их рационального использования для различных климатических условий российской территории.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И ИНДЕКСЫ

Условные обозначения: h реб — высота ребра, м; l реб — длина ребра, м; t — температура, °C; d — влагосодержание воздуха, кг/кг; ϕ — относительная влажность воздуха, %; δ реб — толщина ребра, м; δ ин — толщина слоя инея, м.

Индексы: 1 — наружный воздух; 2 — удаляемый воздух; e — на входе в каналы насадки; р еб — ребро; ин — иней, o — на выходе из каналов насадки; рос — точка росы; sat — состояние насыщения; w — стенка канала.

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).

Часть 1. Теплоутилизирующие устройства

Использование тепла отходящих дымовых газов
технологических печей.

Технологические печи являются крупнейшими потребителями энергии на нефтеперерабатывающих и нефтехимических предприятиях, в металлургии, а также во многих других отраслях промышленности. На НПЗ в них сжигается 3 – 4 % от всей перерабатываемой нефти.

Средняя температура дымовых газов на выходе из печи, как правило, превышает 400 °С. Количество теплоты, уносимой с дымовыми газами, составляет 25 –30 % от всей теплоты, выделяющейся при сгорании топлива. Поэтому утилизация тепла уходящих дымовых газов технологических печей приобретает исключительно большое значение.

При температуре дымовых газов выше 500 °С следует применять котлы-утилизаторы – КУ.

При температуре дымовых газов менее 500 °С рекомендуется применять воздухоподогреватели – ВП.

Наибольший экономический эффект достигается при наличии двухагрегатной установки, состоящей из КУ и ВП (в КУ газы охлаждаются до 400 °С и поступают в воздухоподогреватель на дальнейшее охлаждение) – чаще применяется на нефтехимических предприятиях при высокой температуре дымовых газов.

Котлы-утилизаторы.

В КУ теплота дымовых газов используется для получения водяного пара. КПД печи повышается на 10 – 15.

Котлы-утилизаторы могут выполняться встроенными в конвекционную камеру печи, или выносными.

Выносные котлы утилизаторы делятся на два типа:

1) котлы газотрубного типа;

2) котлы пакетно-конвективного типа.

Выбор требуемого типа осуществляется в зависимости от требуемого давления получаемого пара. Первые используют при выработке пара относительно низкого давления – 14 – 16 атм., вторые – для выработки пара давлением до 40 атм. (однако они рассчитаны на начальную температуру дымовых газов около 850 °С).

Давление вырабатываемого пара необходимо выбирать с учетом того, потребляется ли весь пар на самой установке или же имеется избыток, который необходимо выводить в общезаводскую сеть. В последнем случае давление пара в барабане котла необходимо принимать в соответствии с давлением пара в общезаводской сети с тем, чтобы выводить избыток пара в сеть и избегать неэкономичного дросселирования при выводе его в сеть низкого давления.

Котлы-утилизаторы газотрубного типа конструктивно напоминают теплообменники «труба в трубе». Дымовые газы пропускаются через внутреннюю трубу, а водяной пар вырабатывается в межтрубном пространстве. Несколько таких устройств располагается параллельно.


Котлы-утилизаторы пакетно-конвективного типа имеют более сложную конструкцию. Принципиальная схема работы КУ этого типа приведена на рис. 5.4.

Здесь используется естественная циркуляция воды и представлена наиболее полная конфигурация КУ с экономайзером и пароперегревателем.

Принципиальная схема работы котла-утилизатора

пакетно-конвективного типа

Химочищенная вода (ХОВ) поступает в колонну-деаэратор для удаления растворенных в ней газов (главным образом кислорода и диоксида углерода). Вода стекает по тарелкам вниз, а навстречу ей противотоком пропускается небольшое количество водяного пара. Вода нагревается паром до 97 – 99 °С и за счет снижения растворимости газов с повышением температуры основная их часть выделяется и отводится сверху деаэратора в атмосферу. Пар, отдавая свое тепло воде, конденсируется. Деаэрированная вода снизу колонны забирается насосом и им нагнетается необходимое давление. Вода пропускается через змеевик экономайзера, в котором подогревается почти до температуры кипения воды при заданном давлении, и поступает в барабан (паросепаратор). Вода в паросепараторе имеет температуру, равную температуре кипения воды при заданном давлении. Через змеевики выработки пара вода циркулирует за счет разности плотностей (естественная циркуляция). В этих змеевиках часть воды испаряется, и парожидкостная смесь возвращается в барабан. Насыщенный водяной пар отделяется от жидкой фазы и отводится сверху барабана в змеевик пароперегревателя. В пароперегревателе насыщенный пар перегревается до нужной температуры и отводится потребителю. Часть полученного пара используется для деаэрации питательной воды.

Надежность и экономичность работы КУ в значительной степени зависит от правильной организации водного режима. При неправильной эксплуатации интенсивно образуется накипь, протекает коррозия поверхностей нагрева, происходит загрязнение пара.

Накипь – это плотные отложения, образующиеся при нагреве и испарении воды. Вода содержит гидрокарбонаты, сульфаты и другие соли кальция и магния (соли жесткости), которые при нагревании преобразуются в бикарбонаты и выпадают в осадок. Накипь, имеющая на несколько порядков меньшую, чем металл, теплопроводность, приводит к снижению коэффициента теплопередачи. За счет этого снижается мощность теплового потока через поверхность теплообмена и, естественно, снижается эффективность работы КУ (уменьшается количество вырабатываемого пара). Температура отводимых из КУ дымовых газов возрастает. Кроме того, происходит перегрев змеевиков и их повреждение вследствие снижения несущей способности стали.

Для предупреждения образования накипи в качестве питательной воды используют предварительно химочищенную воду (можно брать на ТЭС). Помимо этого производится непрерывная и периодическая продувка системы (удаление части воды). Продувка предупреждает рост концентрации солей в системе (вода постоянно испаряется, а содержащиеся в ней соли – нет, поэтому концентрация солей растет). Непрерывная продувка котла составляет обычно 3 – 5 % и зависит от качества питательной воды (не должна превышать 10 %, так как с продувкой связана потеря тепла). При эксплуатации КУ высокого давления, работающих с принудительной циркуляцией воды, дополнительно применяют внутрикотловое фосфатирование. При этом катионы кальция и магния, входящие в состав образующих накипь сульфатов, связываются с фосфатными анионами, образуя соединения малорастворимые в воде и выпадающие в толще водяного объема котла, в виде легко удаляемого при продувке шлама.

Растворенные в питательной воде кислород и углекислый газ вызывают коррозию внутренних стенок котла, причем скорость коррозии возрастает с повышением давления и температуры. Для удаления газов из воды применяют термическую деаэрацию. Также мерой защиты против коррозии является поддержание такой скорости в трубах, при которой пузырьки воздуха не могут удерживаться на их поверхности (выше 0,3 м/с) .

В связи с повышением гидравлического сопротивления газового тракта и снижением силы естественной тяги возникает необходимость установки дымососа (искусственная тяга). При этом температура дымовых газов не должна превышать 250 °С во избежание разрушения этого аппарата. Но чем ниже температура отводимых дымовых газов, тем более мощный необходимо иметь дымосос (растет потребление электроэнергии).

Срок окупаемости КУ обычно не превышает одного года.

Воздухоподогреватели. Используются для подогрева воздуха, подаваемого в печь на сжигание топлива. Подогрев воздуха позволяет снизить расход топлива в печь (КПД повышается на 10 – 15 %).

Температура воздуха после воздухоподогревателя может достигать 300 – 350 °С. Это способствует улучшению процесса горения, повышению полноты сгорания топлива, что является очень важным преимуществом при использовании высоковязких жидких топлив.

Также преимуществами воздухоподогревателей по сравнению с КУ является простота их конструкции, безопасность эксплуатации, отсутствие необходимости устанавливать дополнительное оборудование (деаэраторы, насосы, теплообменники и т. д.). Однако воздухоподогреватели при действующем соотношении цен на топливо и на водяной пар оказываются менее экономичными, чем КУ (цена на пар у нас очень высокая – в 6 раз выше за 1 ГДж). Поэтому выбирать способ утилизации тепла дымовых газов нужно, исходя из конкретной ситуации на данной установке, предприятии и т. д.

Применяются воздухоподогреватели двух типов: 1) рекуперативные (передача тепла через стенку); 2) регенеративные (аккумулирование тепла).

Часть 2. Утилизация тепла вентиляционных выбросов

На отопление и вентиляцию производственных и коммунально-бытовых зданий и сооружений расходуется большое количество теплоты. Для отдельных отраслей промышленности (в основном легкая промышленность) эти расходы достигают 70 – 80 % и более от общей потребности в тепловой энергии. На большинстве предприятий и организаций теплота удаляемого воздуха от систем вентиляции и кондиционирования не используется.

Вообще, вентиляция используется очень широко. Системы вентиляции сооружаются в квартирах, общественных заведениях (школах, больницах, спортклубах, бассейнах, ресторанах), производственных помещениях и т. д. Для различных целей могут применяться различные типы вентиляционных систем. Обычно, если объем воздуха, который должен заменяться в помещении в единицу времени (м 3 /ч), невелик, то применяется естественная вентиляция . Такие системы реализованы в каждой квартире и большинстве общественных учреждений и организаций. При этом используется явление конвекции – нагретый воздух (имеет пониженную плотность) уходит через вентиляционные отверстия и отводится в атмосферу, а на его место, через неплотности в окнах, дверях и т. д., подсасывается свежий холодный (более высокой плотности) воздух с улицы. При этом неизбежны потери тепла, так как на подогрев поступающего в помещение холодного воздуха необходим дополнительный расход теплоносителя. Поэтому применение даже самых современных теплоизоляционных конструкций и материалов при строительстве не может полностью устранить тепловые потери. В наших квартирах 25 – 30 % тепловых потерь связано именно с работой вентиляции, во всех остальных случаях эта величина гораздо выше.

Системы принудительной (искусственной) вентиляции применяются при необходимости интенсивного обмена больших объемов воздуха, что обычно связано с предупреждением роста концентрации опасных веществ (вредных, токсичных, пожаровзрывоопасных, имеющих неприятный запах) в помещении. Принудительная вентиляция реализуется в производственных помещениях, на складах, в хранилищах с/х продуктов и т. д.

Используются системы принудительной вентиляции трех типов :

Приточная система состоит из воздуходувки, нагнетающей свежий воздух в помещение, приточного воздуховода и системы равномерного распределения воздуха в объеме помещения. Избыточный объем воздуха при этом вытесняется через неплотности в окнах, дверях и т. д.

Вытяжная система состоит из воздуходувки, откачивающей воздух из помещения в атмосферу, вытяжного воздуховода и системы для равномерного отвода воздуха из объема помещения. Свежий воздух в этом случае подсасывается в помещение сквозь различные неплотности или специальные системы подвода.

Комбинированные системы представляют собой совмещенные приточно-вытяжные системы вентиляции. Используются, как правило, при необходимости очень интенсивного обмена воздуха в крупных помещениях; при этом потребление тепла на подогрев свежего воздуха максимально.

Применение систем естественной вентиляции и отдельных систем вытяжной и приточной вентиляции не позволяет использовать тепло отводимого воздуха для подогрева свежего воздуха, поступающего в помещение. При эксплуатации же комбинированных систем существует возможность утилизации тепла вентиляционных выбросов для частичного подогрева приточного воздуха и снижения потребления тепловой энергии. В зависимости от разности температур воздуха в помещении и на улице расход тепла на подогрев свежего воздуха может быть снижен на 40 – 60 %. Подогрев может осуществляться в регенеративных и рекуперативных теплообменниках. Первые предпочтительнее, так как имеют меньшие габариты, металлоемкость и гидравлическое сопротивление, обладают большей эффективностью и продолжительным сроком службы (20 – 25 лет).

Воздуховоды подводятся к теплообменным аппаратам, и тепло передается напрямую от воздуха к воздуху через разделяющую стенку или аккумулирующую насадку. Но в некоторых случаях существует необходимость в разносе приточного и вытяжного воздуховодов на значительное расстояние. В таком случае может быть реализована схема теплообмена с промежуточным циркулирующим теплоносителем. Пример работы такой системы при температуре в помещении 25 °С и температуре окружающей среды – 20 °С показан на рис. 5.5.

Схема теплообмена с промежуточным циркулирующим теплоносителем:

1 – вытяжной воздуховод; 2 – приточный воздуховод; 3,4 – оребренные
трубчатые змеевики; 5 – трубопроводы циркуляции промежуточного теплоносителя
(в качестве промежуточного теплоносителя в таких системах обычно используются концентрированные водные растворы солей – рассолы); 6 – насос; 7 – змеевик для
дополнительного подогрева свежего воздуха водяным паром или горячей водой

Система работает следующим образом. Теплый воздух (+ 25 °С) из помещения выводится по вытяжному воздуховоду 1 через камеру, в которой установлен оребренный змеевик 3 . Воздух омывает наружную поверхность змеевика и передает тепло холодному промежуточному теплоносителю (рассолу), протекающему внутри змеевика. Воздух охлаждается до 0 °С и выбрасывается в атмосферу, а подогретый до 15 °С рассол по трубопроводам циркуляции 5 поступает в камеру подогрева свежего воздуха на приточном воздуховоде 2 . Здесь промежуточный теплоноситель отдает тепло свежему воздуху, подогревая его от – 20 °С до + 5 °С. Сам промежуточный теплоноситель при этом охлаждается от + 15 °С до – 10 °С. Охлажденный рассол поступает на прием насоса и снова возвращается в систему на рециркуляцию.

Свежий приточный воздух, подогретый до + 5 °С, может сразу вводиться в помещение и подогреваться до требуемой температуры (+ 25 °С) с помощью обычных радиаторов отопления, а может подогреваться непосредственно в вентиляционной системе. Для этого на приточном воздуховоде устанавливается дополнительная секция, в которой размещается оребренный змеевик. Внутри трубок протекает горячий теплоноситель (теплофикационная вода или водяной пар), а воздух омывает наружную поверхность змеевика и нагревается до + 25 °С, после этого теплый свежий воздух распределяется в объеме помещения.

Применение такого способа обладает рядом преимуществ. Во-первых, вследствие высокой скорости воздуха в секции подогрева, значительно (в несколько раз) повышается коэффициент теплопередачи по сравнению с обычными радиаторами отопления. Это приводит к существенному снижению общей металлоемкости системы отопления – снижению капитальных затрат. Во-вторых, помещение не загромождается радиаторами отопления. В-третьих, достигается равномерное распределение температур воздуха в объеме помещения. А при использовании радиаторов отопления в крупных помещениях сложно обеспечить равномерный прогрев воздуха. В локальных областях воздух может иметь температуру существенно выше или ниже нормы.

Единственный недостаток – несколько повышается гидравлическое сопротивление воздушного тракта и расход электроэнергии на привод приточной воздуходувки. Но преимущества настолько значительны и очевидны, что предварительный подогрев воздуха непосредственно в вентиляционной системе можно рекомендовать в подавляющем большинстве случаев.

Для того, чтобы обеспечить возможность утилизации тепла в случае использования систем приточной или вытяжной систем вентиляции в отдельности, необходимо организовать централизованный соответственно отвод или подвод воздуха через специально смонтированные воздуховоды. При этом необходимо устранить все щели и неплотности, чтобы исключить неуправляемый выдув, или подсос воздуха.

Системы теплообмена между удаляемым из помещения воздухом и свежим можно использовать не только для подогрева приточного воздуха в холодное время года, но и для охлаждения его летом, если помещение (офис) оборудовано кондиционерами. Охлаждение до температур ниже температуры окружающей среды всегда связано с высокими затратами энергии (электроэнергии). Поэтому снизить расход электроэнергии на поддержание комфортной температуры в помещении в жаркое время года можно предварительным охлаждением свежего воздуха, отводимым холодным воздухом.

Тепловые ВЭР.

К тепловым ВЭР относится физическая теплота отходящих газов котельных установок и промышленных печей, основной или промежуточной продукции, других отходов основного производства, а также теплота рабочих тел, пара и горячей воды, отработавших в технологических и энергетических агрегатах. Для утилизации тепловых ВЭР используют теплообменники, котлы-утилизаторы или тепловые агенты. Рекуперация теплоты отработанных технологических потоков в теплообменниках может проходить через разделяющую их поверхность или при непосредственном контакте. Тепловые ВЭР могут поступать в виде концентрированных потоков теплоты или в виде теплоты, рассеиваемой в окружающую среду. В промышленности концентрированные потоки составляют 41 %, а рассеиваемая теплота – 59 %. Концентрированные потоки включают теплоту уходящих дымовых газов печей и котлов, сточных вод технологических установок и жилищно-коммунального сектора. Тепловые ВЭР делятся на высокотемпературные (с температурой носителя выше 500 °С), среднетемпературные (при температурах от 150 до 500 °С) и низкотемпературные (при температурах ниже 150 °С). При использовании установок, систем, аппаратов небольшой мощности потоки теплоты, отводимые от них, составляют небольшую величину и рассредоточены в пространстве, что затрудняет их утилизацию из-за низкой рентабельности.

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции - основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире . Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.