Аэрозоли. что это такое и почему именно аэрозоли? ОФС.4.1.0002.15 Аэрозоли и спреи

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Аэрозоли и спреи ОФС.1.4.1.0002.15

Взамен ст. ГФ XI «Аэрозоли»

Аэрозоли – лекарственная форма, представляющая собой растворы, эмульсии или суспензии действующих веществ, находящиеся под давлением пропеллента в герметичной упаковке (аэрозольный баллон), снабженной клапанно-распылительной системой, которая обеспечивает высвобождение лекарственного средства в виде дисперсии твердых или жидких частиц в газе, размер которых соответствует пути введения.

Спреи – это аэрозоли, не содержащие пропеллента, высвобождение содержимого которых происходит за счет давления воздуха, создаваемого с помощью механического распылителя насосного типа или при сжатии полимерной упаковки. По сравнению с аэрозолями спреи являются более грубодисперсной системой.

Аэрозоли представляют собой двухфазные (газ и жидкость) или трехфазные (газ, жидкость и твердое вещество или жидкость) системы. Двухфазные аэрозоли состоят из раствора действующего вещества в сжиженном пропелленте с добавлением растворителей, обеспечивающих растворимость действующих веществ. Трехфазные аэрозоли состоят из суспензии или эмульсии действующих веществ и пропеллента.

К трехфазным аэрозолям относятся пенные аэрозоли, которые представляют собой эмульсии, содержащие действующие вещества, поверхностно-активные вещества, водные или неводные растворители и пропелленты. Если пропеллент входит в состав дисперсной фазы (эмульсия типа «масло в воде»), при выпуске содержимого образуется стабильная пена.

Спреи представляют собой однофазные (жидкость) или двухфазные (жидкость и твердое вещество или жидкость) системы.

ОСОБЕННОСТИ ТЕХНОЛОГИИ

Вспомогательные вещества в составе аэрозолей и спреев (растворители, пропелленты, поверхностно-активные вещества, пленкообразователи, корригенты, антимикробные консерванты, антиоксиданты и др.) должны быть разрешены к медицинскому применению, обеспечивать оптимальные технологические характеристики лекарственной формы, быть совместимы с другими компонентами лекарственной формы и материалом упаковки. Вспомогательные вещества в составе аэрозолей для ингаляций не должны неблагоприятно влиять на функцию слизистой оболочки респираторного тракта.

Растворители: вода, спирт этиловый, жирные масла растительного и животного происхождения, минеральные масла, глицерин, этилацетат, хлористый этил, пропиленгликоль, димексид (диметилсульфоксид), полиэтиленоксиды с различными молекулярными массами, полисилоксановые соединения, этилцеллюлозы и др.

Поверхностно-активные вещества : полисорбаты (твины), спены, пентол, препарат ОС-20, эмульсионные воски, эмульгатор № 1, эмульгатор Т-2, спирты синтетические жирные первичные, триэтаноламиновые соли высших жирных кислот, олеиновая кислота и др.

Пленкообразователи: производные целлюлозы, акриловой кислоты и др.

Корригенты: сахар, лимонная кислота, сорбит, эфирные масла, тимол, ментол и др.

Антимикробные консерванты: метилпарагидроксибензоат, натрия пропилпарагидроксибензоат, этилпарагидроксибензоат, сорбиновая и бензойная кислоты, натрия бензоат, этоний, катамин АБ и др.

Антиоксиданты: бутилокситолуол, бутилоксианизол, витамин Е, аскорбиновая кислота и др.

Пропелленты (используются в аэрозолях): сжиженные газы, например, низкомолекулярные углеводороды парафинового ряда, такие как пропан и бутан, сжатые газы, такие как азот, азота закись, углерода диоксид, и галогенированные углеводороды (фреоны или хладоны). Для создания оптимальных физико-химических характеристик аэрозоля могут быть использованы смеси пропеллентов.

Аэрозоли и спреи помещают в упаковку, которая должна быть изготовлена из материала, инертного по отношению к содержимому упаковки: металла, стекла, пластмассы или их комбинаций. Стеклянные емкости аэрозолей должны быть защищены пластмассовым покрытием. Аэрозольные баллоны должны выдерживать внутреннее давление не менее 1 МПа при 20 ºС.

В зависимости от типа и предназначения упаковки должны быть снабжены распылительным устройством непрерывного действия (недозированные аэрозоли и спреи) или дозирующим распылительным устройством (дозированные аэрозоли и спреи). Материалы, используемые в производстве распылительных устройств (пластмасса, резина, металл), должны быть инертны по отношению к содержимому упаковки.

Распылительное устройство должно регулировать высвобождение содержимого упаковки во время использования: скорость и полноту высвобождения, размер частиц дисперсии, однородность дозирования. Клапанно-распылительное устройство аэрозолей должно обеспечивать герметичность упаковки в нерабочем состоянии.

ИСПЫТАНИЯ

В зависимости от лекарственной формы контроль качества аэрозолей и спреев включает в себя оценку давления в упаковке, герметичности упаковки, проверку клапана, определение процента выхода содержимого упаковки, средней массы дозы, количества доз в упаковке, однородности дозирования, однородности массы. Для неингаляционных аэрозолей и спреев, содержащих суспензию действующих веществ, определяют размер частиц, для ингаляционных аэрозолей – респирабельную фракцию.

Для аэрозолей и спреев, представляющих собой эмульсии и суспензии, допускается расслаивание в процессе хранения, однако они должны легко реэмульгироваться и ресуспендироваться при встряхивании для обеспечения равномерного распределения действующего вещества в лекарственном средстве.

Аэрозоли, предназначенные для ингаляций, должны соответствовать .

Давление в упаковке

Измерение давления проводят только для аэрозолей, в которых пропеллентами являются сжатые газы.

Упаковки выдерживают при комнатной температуре в течение 1 ч и манометром (класс точности 2.5) измеряют давление внутри упаковки, которое должно соответствовать требованиям фармакопейной статьи или нормативной документации, но не должно превышать 0,8 МПа (8 кгc/см 2).

Герметичность упаковки (для аэрозолей)

Метод 1 . Аэрозольный баллон без колпачка и распылителя или насадки полностью погружают в водяную баню при температуре (45 ± 5) °С не менее чем на 15 мин и не более чем на 30 мин для стеклянного баллона и не менее чем на 10 мин и не более чем на 20 мин для металлического. Толщина слоя воды над штоком клапана должна быть не менее 1 см. Не должно наблюдаться выделение пузырьков газа.

Метод 2 . Отбирают 12 ранее не использовавшихся аэрозольных упаковок. Каждую упаковку без колпачка и распылителя или насадки взвешивают с точностью до 0,001 г (m 0) и оставляют в вертикальном положении при комнатной температуре на срок не менее 3 сут. Затем аэрозольную упаковку опять взвешивают с точностью до 0,001 г (m 1).

Отмечают продолжительность испытания в часах (Т ).

Освобождают аэрозольную упаковку от содержимого в соответствии со способом, указанным в фармакопейной статье или нормативной документации. Взвешивают пустую упаковку с точностью до 0,001 г (m 2), рассчитывают среднюю массу содержимого с точностью до 0,001 г (m 3) по формуле:

n – количество аэрозольных упаковок, подвергшихся испытанию.

Рассчитывают скорость утечки содержимого упаковки в граммах в год (V m ) по формуле:

Рассчитывают скорость утечки содержимого упаковки в год в процентах от средней массы (V % ) по формуле:

Если не указано иначе в фармакопейной статье или нормативной документации, среднегодовая скорость утечки для 12 упаковок не должна превышать 3,5 % от средней массы содержимого упаковки и ни для одной из них не должна превышать 5,0 %. Если хотя бы для одной упаковки скорость утечки превышает 5,0 % в год, но ни для одной из упаковок не превышает 7,0 %, испытание на утечку проводят еще на 24 упаковках. Не более 2 упаковок из 36 могут иметь скорость утечки больше 5,0 % и ни для одной из них скорость утечки не должна превышать 7,0 % в год.

Если масса содержимого упаковки менее 15 г, средняя скорость утечки для 12 упаковок не должна превышать 525 мг/год и ни для одной из них не должна превышать 750 мг/год. Если хотя бы для одной упаковки скорость утечки превышает 750 мг/год (но не более 1,1 г/год), то испытание на утечку проводят еще на 24 упаковках. Не более 2 упаковок из 36 могут иметь скорость утечки больше 750 мг/год и ни для одной упаковки из 36 скорость утечки не должна превышать 1,1 г/год.

Выход содержимого упаковки

Испытание проводят для недозированных аэрозолей и спреев. Упаковку взвешивают вместе с распылителем или насадкой с точностью до 0,01 г (m 4). Нажатием на распылитель или насадку из упаковки удаляют все содержимое и снова взвешивают упаковку вместе с распылителем или насадкой с точностью до 0,01 г (m 5).

Выход содержимого в процентах (X ) вычисляют по формуле:

где m 6 – масса содержимого, указанная на этикетке, г (или полученная путем умножения номинального объема на плотность препарата).

Если не указано иначе в фармакопейной статье или нормативной документации, процент выхода содержимого упаковки должен составлять не менее 90 %, и результатом считают среднее арифметическое, полученное при определении процента выхода содержимого из 3 упаковок.

Однородность массы дозы

Испытание проводят для дозированных аэрозолей и спреев, содержащих растворы. Испытание для ингаляционных аэрозолей проводят в соответствии с (испытание «Однородность доставляемой дозы»).

Высвобождают одну дозу и отбрасывают ее. Спустя не менее 5 с встряхивают упаковку в течение 5 с, снова высвобождают и отбрасывают одну дозу. Повторяют указанную процедуру еще 3 раза, если иначе не указано в фармакопейной статье или нормативной документации. Взвешивают упаковку. Встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу, снова взвешивают упаковку. По разности вычисляют массу высвободившейся дозы.

Испытание повторяют еще для 9 доз, указанных в фармакопейной статье или нормативной документации. Рассчитывают среднюю массу дозы и отклонения индивидуальных значений от средней массы дозы.

Лекарственное средство считают выдержавшим испытание, если не более 1 из 10 индивидуальных масс отклоняется от средней массы на величину, превышающую 25 %, при этом не более чем на 35 %. Если 2 или 3 результата выпадают из пределов 75 – 125 %, испытание повторяют с 20 другими дозами. Не более 3 из 30 значений могут выходить за пределы 75 – 125 %, и все значения должны быть в пределах от 65 до 135 %.

Количество доз в упаковке

Испытание проводят для дозированных аэрозолей и спреев.

Метод 1. Выпускают содержимое одной упаковки, высвобождая дозы с интервалом не менее 5 с. Регистрируют количество высвобожденных доз.

Допускается проводить испытание одновременно с определением однородности дозирования.

Метод 2. Упаковку взвешивают вместе с распылителем или насадкой с точностью до 0,01 г (m 2). Нажимая на распылитель или насадку, из упаковки выпускают все содержимое и снова взвешивают упаковку вместе с распылителем или насадкой с точностью до 0,01 г (m 5).

Среднее количество доз (n ср) в одной упаковке вычисляют по формуле:

где m ср – cредняя масса одной дозы, г.

Полученное в результате испытания количество доз должно быть не менее указанного на этикетке.

Размер частиц

Испытание проводят для неингаляционных аэрозолей и спреев, содержащих суспензию действующих веществ. Методики определения и требования к размеру частиц должны быть указаны в фармакопейной статье или нормативной документации.

Респирабельная фракция

Испытание проводят для ингаляционных аэрозолей в соответствии с .

Однородность дозирования

Испытание проводят для дозированных аэрозолей и спреев, содержащих эмульсии или суспензии. Испытание для ингаляционных аэрозолей проводят в соответствии с .

Контроль данного показателя должен проводиться не только для доз, высвобождаемых из одной упаковки, но и для доз, полученных из разных упаковок. Процедура отбора доз должна включать в себя отбор доз в начале, в середине и в конце использования препарата.

Испытание проводят с использованием аппарата или установки, способных к количественному удерживанию дозы, выпущенной из распылительного устройства. Встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу. Спустя не менее 5 с снова встряхивают упаковку в течение 5 с, высвобождают и отбрасывают одну дозу. Повторяют указанную процедуру еще 3 раза, если иначе не указано в фармакопейной статье или нормативной документации. Через 5 с выпускают одну дозу в приемник аппарата. Содержимое приемника собирают путем последовательных промываний и определяют содержание действующего вещества в объединенных промывных водах.

Испытание повторяют еще для 9 доз, указанных в фармакопейной статье или нормативной документации.

Препарат выдерживает испытание, если 9 из 10 результатов находятся в пределах от 75 до 125 % от среднего значения, а все результаты находятся в пределах от 65 до 135 %. Если 2 или 3 результата выпадают из пределов 75 — 125 %, испытание повторяют с 20 другими дозами. Не более 3 из 30 значений могут выходить за пределы 75 – 125 %, и все значения должны быть в пределах от 65 до 135 %.

Для аэрозолей и спреев, содержащих несколько действующих веществ, тест на однородность дозирования должен быть выполнен для каждого вещества.

УПАКОВКА

В соответствии с требованиями .

МАРКИРОВКА

В соответствии с требованиями . В маркировке аэрозолей должны быть предусмотрены предупредительные надписи: «Хранить вдали от отопительной системы и прямых солнечных лучей», «Не вскрывать», «Предохранять от падений и ударов» и другие при необходимости.

ХРАНЕНИЕ

В соответствии с требованиями . В упаковке, обеспечивающей стабильность в течение указанного срока годности лекарственного препарата, в защищенном от света месте при температуре от 8 до 15°С, если нет других указаний в фармакопейной статье или нормативной документации.

В современной медицине лекарственные препараты выпускаются в различных формах, удобных для доставки действующего вещества к больному органу.

Одной из таких форм для наружного применения сегодня является спрей. Набрызгивание лекарственного состава на кожу, слизистую оболочку горла или другую пораженную зону позволяет равномерно нанести лекарство, не беспокоя больного прикосновениями и не рискуя внести инфекцию. Спрей является довольно новой формой лекарственных препаратов, и далеко не все потребители знают, что это такое и чем спреи отличаются от аэрозолей.

Что такое спрей?

Для местного применения спрей является одной из наиболее удобных форм, так как представляет собой дисперсию мельчайших твердых и жидких частиц лекарства в газовой среде.

Он используется для нанесения лечебных составов на поверхность кожи, раневую или ожоговую поверхность, на слизистые оболочки полости рта, носоглотки, вагины и т.д. Кроме того, спрей чрезвычайно удобен для ингаляций.

В чем разница между спреем и аэрозолем?

Иногда даже врачи не совсем уверенно различают спреи и аэрозоли. Между тем, разница имеется, и достаточно заметная. Основное отличие между ними заключается в способе извлечения препарата из флакона:

— в аэрозоле лекарство поступает наружу благодаря избыточному давлению внутри баллона, после открытия выпускного клапана;

— спрей подается путем механического выжимания поршневым микронасосом мелкодисперсной взвеси препарата в воздухе, при этом внутри флакона давление приближается к обычному атмосферному давлению.

Разница заключается и в размере частиц диспергированного вещества: в аэрозоле их диаметр составляет от 1 до 5 мкм, в спрее – от 10 до 50 мкм, причем их скорость невысока. Поэтому выпускное отверстие флакона спрея следует располагать ближе к поверхности кожи, чем при распылении аэрозоля из баллончика.

Преимущества спреев как лекарственной формы

Спрей оказался чрезвычайно эффективной и удобной лекарственной формой наружного, местного интраназального действия, обладающей широким рядом достоинств.


— Распыленный на больное или пораженное место, спрей оказывает чрезвычайно быстрый терапевтический эффект. Скорость воздействия и действенность лекарства в ряде случаев сравнима с внутривенной инъекцией.

— Дисперсная форма повышает химическую и фармакологическую активность лекарства, что дает возможность обходиться более низкими дозами действующего вещества. Это, в свою очередь, обеспечивает щадящий эффект лечения.

— Благодаря микроскопическим размерам частицы лекарства намного легче проникают в складки, полости и карманы дыхательных путей, впитываются поверхностью кожи и слизистыми оболочками.

— Спрей может применяться в тех случаях, когда пероральный способ приема лекарств не дает нужного эффекта, поскольку действующее вещество разрушается желудочным соком.

— Распыление лекарственного состава уменьшает негативные побочные эффекты от его воздействия на организм.

— До распыления лекарство находится в стерильном, чистом состоянии в герметично закрытом флаконе. Препарат не пересыхает и не вбирает в себя влагу воздуха, находясь в той форме, которую фармацевты сочли оптимальной для воздействия на организм больного.

— При помощи дозирующего клапана лекарство распыляется точно отмеренными порциями, исключающими передозировку.

— Удобный и быстрый способ применения доступен практически каждому больному, независимо от его физического состояния.

Следует заметить, что обычно аэрозоли более активно способствуют проявлению побочных эффектов лечения, чем спреи. В то же время они распыляют препарат наиболее мелкими частицами, что в некоторых случаях является важным фактором лечения.

Благодаря отсутствию специального газа-носителя, характерного для аэрозоля, спреи более приятны на вкус, если речь идет о лекарствах для верхних дыхательных путей. Прозрачный флакон позволяет видеть, сколько препарата осталось неиспользованным и каково его качество: не появился ли осадок или помутнение состава.


В настоящее время спрей является оптимальной, наиболее практичной и эффективной формой применения лекарственных средств наружного применения. Многие препараты, ранее выпускавшиеся в виде аэрозолей, сегодня переведены в форму спреев, что не замедлило позитивно сказаться на интенсивности их продаж.

АЭРОЗОЛИ

[от греч. аёг- и лат. sol(utio)-раствор], с газовой дисперсионной средой и твердой или жидкой дисперсной фазой. Классификация. По способу образования различают конденсационные и диспергационные А. Первые возникают в результате присоединения друг к другу молекул в-ва в пересыш. паре (т. наз. гомог. нуклеация) или конденсации на присутствующих в нем ионах или мельчайших частицах др. в-ва - ядрах конденсации (гетерог. нуклеация). Конденсац. А. с жидкой дисперсной фазой наз. туманами, с твердой - дымами.

К конденсационным относятся и А., образующиеся при горении, хим. и фотохим. р-циях в газовой фазе, напр. при получении оксидов Si и Ti термич. гидролизом их хлоридов в пламени. Важнейший из таких А. - смог, возникающий в атмосфере в результате фотохим. р-ций между газообразными примесями под действием интенсивного солнечного освещения. Особенность конденсации продуктов хим. р-ций - возможность каталитич. действия конденсиров. частиц на превращ. исходных в-в. Конденсац. А. могут образоваться также вследствие испарения тел, в т. ч. в результате воздействия плазмы и лазерного излучения, с послед. конденсацией паров.

Диспергационные А. с твердыми частицами () образуются в атмосфере в прир. условиях, а также при измельчении твердых тел в шахтах, пересыпании порошков (муки, мела) и т. п. А. с жидкой дисперсной фазой (иногда их наз. спреями) возникают при распаде струй или пленок жидкости, напр. при распылении жидкого в двигателях внутр. сгорания. Важные практич. случаи образования жидких А.-распыление жидкости под воздействием расположенного в ней источника акустич. колебаний, разрушение струй при воздействии поля электрич. потенциала.

Часто возникают смешанные А., состоящие из частиц разл. происхождения. Так, при взрывном разрушении твердых тел происходит, как правило, в-ва и его испарение с послед. конденсацией паров и образованием А.

Основные характеристики. Дисперсионную среду характеризуют хим. составом, т-рой, давлением, степенью ионизации, параметрами внеш. физ. полей, полем скоростей течения, наличием турбулентности и ее параметрами, наличием и величиной градиентов т-ры и концентрации компонентов. Важнейшие параметры дисперсной фазы А. - объемная доля частиц и их массовая доля , число частиц в единице объема (счетная ) n р, средний размер частицы и ее электрич. заряд. Параметры дисперсной фазы атм. А. при нормальных т-ре и давлении составляют: d p 1-10 8 см -3 , 10 -18 -10 -1 , 10 -19 В верх. слоях атмосферы п р = 10 5 -10 14 см -3 , 10 -19 -10 -33 . Наряду с усредненными величинами дисперсную фазу характеризуют распределением частиц по размерам и по величине электрич. заряда (последнее даже для монодисперсных А.). Если в-во дисперсной фазы радиоактивно, необходимо знать также уд. частиц.

Взаимод. между дисперсной фазой и дисперсионной средой определяется процессами переноса массы, энергии, импульса, электрич. заряда и др., а также явлениями на границе раздела фаз. Процессы переноса описываются ур-ниями, конечный вид к-рых зависит от числа Кнудсена Кп =, где -длина своб. пробега газовых молекул, диаметр частицы А. При Кп 1 и, следовательно, > дисперсионная среда может рассматриваться как сплошная; в этом случае говорят о континуальном режиме процессов переноса. Если Кп 1, А. можно рассматривать как смесь двух газов, молекулы одного из к-рых - частицы А. - намного тяжелее молекул дисперсионной среды. В такой системе процессы переноса описываются с помощью ур-ний газокинетич. теории (т. наз. свободномолекулярный режим). Наконец, при Кп 1 (диаметр частиц при атм. давл. 0,01-1,0 мкм) процессы переноса рассчитываются приближенными методами динамики разреженных газов (переходный режим). Точность ур-ний, описывающих процессы переноса в свободномолекулярном и континуальном режимах на границах указанного интервала размера частиц, определяющего значения Кп, составляет ок. 10%. На процессы переноса в А. влияет движение частиц относительно среды под действием внеш. сил или по инерции; оно характеризуется числом Маха Ма=, где и р -скорость частиц относительно среды, -скорость теплового движения молекул среды. При анализе характера переноса импульса вместо числа Маха часто используют число Рейнольдса Re = 4Ma/Kn.

Свойства. Важнейшие св-ва А. - способность частиц сохраняться во взвешенном состоянии, перемещаться преим. как единое целое и при столкновении прилипать друг к другу или к к.-л. пов-сти с вероятностью, равной единице. В покоящейся среде частицы А. поддерживаются во взвешенном состоянии в поле гравитации благодаря их собств. тепловому движению, энергия к-рого для частиц любой массы равна 3 / 2 kT,> где k - постоянная Больцмана, T - абс. т-ра, и вследствие обмена энергией с молекулами среды. Распределение концентрации частиц по высоте обычно характеризуют параметром (перреновской высотой), где

Ускорение силы тяжести, -масса частицы. Для достаточно малых частиц, когда Н р намного превосходит их линейный размер, энергии теплового движения достаточно для поддержания частиц во взвешенном состоянии даже в отсутствие дисперсионной среды. Если же размер частиц сравним с Нр или больше него, то для поддержания частиц во взвешенном состоянии необходима дополнит. энергия, получаемая при соударениях с молекулами среды. Соотношение между двумя этими видами энергии характеризуется числом Шмидта , где -концентрация газовых молекул, -длина их своб. пробега. При Sc < 10 7 существен лишь вклад собств. теплового движения частиц; при атм. давлении этому условию соответствуют частицы единичной плотности размером ~2 мкм. При So > 10 5 имеет значение лишь обмен энергией между частицами и средой. При 10 7 < Sc < 10 5 оба вклада соизмеримы. В турбулентной среде частицам А. присущи две осн. формы движения - увлечение дисперсионной средой и смещение относительно нее. Поддержание частиц во взвешенном состоянии определяется их инерционностью и характеризуется т. наз. турбулентным числом Шмидта Sc T , равным отношению коэффициентов турбулентной диффузии частиц и молекул соеды D T . Величина наз. степенью обтекания, -степенью увлечения частиц. Способность частиц А. сохраняться во взвешенном состоянии без приложения возмущающего воздействия к дисперсионной среде отличает А. от псевдоожиженного (кипящего) слоя, к-рый также является двухфазной системой с газовой дисперсионной средой.

Частицы А. могут смещаться относительно среды, гл. обр. под действием внеш. полей, напр. поля силы тяжести, в к-ром частицы оседают, а также сил инерции (если среда движется ускоренно), градиентов т-р и концентраций. Скорость движения частиц определяется внеш. силой и силой сопротивления среды движению частиц. В большинстве случаев эти силы уравновешивают друг друга, и частицы движутся с постоянной скоростью; лишь в средах с сильной турбулентностью и в акустич. полях движение ускоренное. Отношение скорости vстационарного движения частицы к действующей на нее силе наз. подвижностью частицы В. В континуальном режиме , где -вязкость среды (ф-ла Стокса). Эта ф-ла позволяет рассчитывать В с точностью до 10% при Кп > 0,1 и Re < 0,6. При больших Re вводят поправочные множители, являющиеся ф-циями Re. В области 1 < Кп < 0,1 в ф-лу Стокса вводят поправочный множитель Кеннингема, равный (1 + А 1 Кп),> где A 1 - эмпирич. постоянная. В свободномолекулярном режиме при Кп > 10 В = (Ai + Q/3) (ф-ла Эпштейна), где Q - др. эмпирич. постоянная. В переходном режиме для расчета Впредложен ряд эмпирич. ф-л, из к-рых наиб. распространена ф-ла Милликена: , где b-эмпирич. постоянная. Для капель масляного тумана, напр., в ф-ле Эпштейна ( А 1 + Q) => 1,154, в ф-ле Милликена A 1 = 1,246, Q = 0,42, b = 0,87. Значение Вопределяет коэф. тепловой диффузии частиц D = kTB, наз. иногда коэффициентом броуновской диффузии.

При наличии в дисперсионной среде градиентов т-ры или концентрации частицы А. движутся даже при отсутствии внеш. сил; соответствующие явления наз. термо- и диффузиофорезом. В свободномолекулярном режиме аналогичен термодиффузии (см. Диффузия); в континуальном режиме он обусловлен тангенциальной силой, действующей на частицу вследствие возникновения потока газа (термич. скольжения) вблизи неоднородно нагретой пов-сти частицы. Частный случай термофореза - фотофорез: движение частиц под действием светового облучения. Этот эффект обусловлен неравномерным нагревом частиц и среды, гл. обр. из-за различной их способности отражать и поглощать свет. Диффузиофорез, обусловленный градиентом концентрации при постоянном полном давлении, происходит, напр., вблизи пов-стей испарения или конденсации.

Частицы А. размером менее 1 мкм всегда прилипают к твердым пов-стям при столкновении с ними. Столкновение частиц друг с другом при броуновском движении приводит к коагуляции А. Для монодисперсных А. со сферич. частицами скорость коагуляции где n - число частиц в единице объема, К-т. наз. коэф. броуновской коагуляции. В континуальном режиме Крассчитывают по ф-ле Смолуховского , в свободномолекулярном - по ф-ле , где и р -средняя скорость теплового движения аэрозольных частиц, -коэф., учитывающий влияние межмол. сил и для разл. в-в имеющий значение от 1,5 до 4. Для переходного режима точных ф-л для вычисления Кне существует. Помимо броуновского движения А. может иметь и др. причины. Т. наз. градиентная коагуляция обусловлена разностью скоростей частиц в сдвиговом потоке; кинематическая - разл. скоростью движения частиц относительно среды (напр., в поле гравитации); турбулентная и акустическая - тем, что частицы разного размера сближаются и сталкиваются, будучи в разной степени увлечены пульсациями или звуковыми колебаниями среды (последние две причины существенны для инерц. частиц размером не менее 10 -6 м). На скорость коагуляции влияет наличие электрич. заряда на частицах и внеш. электрич. поля.

Аэрозольные частицы способны приобретать электрич. заряд, если они образуются конденсацией на ионах. Незаряженные частицы могут захватывать газовые , направленно движущиеся к частицам во внеш. поле или диффундирующие в среде. Диспергационные частицы могут приобретать заряд и в процессе образования -при разбрызгивании жидкостей (баллоэлектрич. эффект) или распылении порошков (трибоэлектрич. эффект), при освещении (фотоэффект), радиоактивном распаде и т. п. В А., образующихся при высокой т-ре, напр. при испарении и послед. конденсации паров, заряды на частицах возникают также в результате термоэлектронной или термоионной эмиссии.

А. обладают ярко выраженным рассеянием света, закономерность к-рого определяется диапазоном значений параметра , где -длина волны излучения. При 1 сечение светорассеяния возрастает с уменьшением размера частиц. С уменьшением сечение становится пропорциональным . Поэтому высокодисперсные частицы рассеивают видимое, а тем более ИК-излучение слабо. При фиксиров. размере частицы сечение светорассеяния убывает пропорционально . При рассеянии света частицами А. меняется состояние поляризации излучения. Измерения светорассеяния и состояния поляризации рассеянного света используют для определения размеров частиц и распределения по размерам. См. также Дисперсные системы.

В технике образование А. часто нежелательно, т. к. приводит к загрязнению атмосферы (в т. ч. производственной) и технол. потоков. Кроме того, большую опасность представляют взрывы пылей в сахарном, мукомольном и нек-рых др. произ-вах. Все это вызвало к жизни развитие методов пылеулавливания и туманоулавливания. Вместе с тем хим. пром-сть либо непосредственно использует аэрозольное состояние в-ва в технол. процессах, либо производит продукты в аэрозольной форме для послед. их использования. Через аэрозольное состояние получают мн. высокодисперсные продукты - , пигменты, компоненты высокоэнергетич. топлив. В аэрозольной форме сжигается все жидкое и значит. часть твердого топлива. Аэрозольные препараты используют в медицине и ветеринарии, для защиты посевов от с.-х. вредителей, обработки складских помещений, предотвращения выпадения града. Широкое применение в быту нашли аэрозольные баллончики - устройства, в к-рых жидкий препарат или суспензия выдавливается из резервуара и распыляется давлением хладона (см. Бытовая ).

Аэрозоли - это взвешенные в воздухе твердые или жидкие частицы размерами от 10 -7 до 10 -3 см. Твердые частицы, имеющие размер более 10 -3 см, относятся к пыли (см.). Аэрозоли из твердых частиц называются также дымами, а аэрозоли из жидких частиц - туманами. Аэрозоли классифицируют в зависимости от их природы (органические, неорганические), токсичности и , характера частиц (бактериальные) и других особенностей. Многие эрозолиа (токсические, радиоактивные, бактериальные и др.) могут оказывать вредное влияние на человека как непосредственно (вызывая различные заболевания), так и косвенно (уменьшая прозрачность , вызывая гибель зеленых насаждений).

Для индивидуальной защиты от вредных аэрозолей применяют специальные повязки, (см.), (см.) и костюмы. Для очистки воздуха от аэрозоли используют различные методы и технические устройства (фильтры, циклоны и др.). В связи с тем, что вредные аэрозоли попадают в организм в основном через органы дыхания и могут вызывать массовые заболевания, существенное значение имеют мероприятия по (см.) от промышленных и других загрязнений вредными веществами.

Аэрозоли широко применяют в различных областях медицины - аэрозольтерапия (см.), ингаляционная , и т. д. Аэрозоли получают с помощью специальных распылителей, генераторов, аэрозольных бомб и шашек.

Аэрозоли (греч. aer - воздух и нем. Sole, от лат. solutio - растворение, раствор) - дисперсные системы, состоящие из малых (10 -3 -10 -7 см) твердых или жидких частиц, взвешенных в воздухе или другой газообразной среде. Делятся на дымы (взвесь твердых частиц) и туманы (взвесь жидких частиц). Аэрозоли образуются в природных условиях (пыль, туман), при взрывах, размоле, шлифовке, химических реакциях, возгонке, создаются специально при помощи особых генераторов. Радиоактивные аэрозоли условно делят на «малоактивные» (активность частички менее 10 -13 кюри.), «полугорячие» (10 -13 -10 -10 кюри) и «горячие» (более 10 -10 кюри). По способу образования их подразделяют на естественные (образуются при распаде естественных радиоактивных веществ), бомбовые (при ядерных взрывах) и промышленные (в результате деятельности учреждений и предприятий, применяющих радиоактивные вещества и источники ионизирующего излучения). Около 90% аэрозолей в атмосфере имеют размер частиц менее 0,5 мк (чаще 0,005- 0,035 мк).

В воздухе рабочих помещений обычно преобладают частицы размером до 10 мк (40-90%- менее 2 мк).

При прочих равных условиях (степень токсичности и др.) гигиеническое значение аэрозолей определяется прежде всего степенью дисперсности (размером частиц) и весовой концентрацией (количеством частиц в единице объема воздуха). Характер и скорость оседания аэрозолей определяются метеорологическими условиями, размером и формой частиц, плотностью и др. Скорость оседания частиц, имеющих размеры более 5 мк, под влиянием силы тяжести (без учета турбулентности воздуха и влияния осадков) приближенно определяется законом Стокса. Частицы, имеющие размеры менее 5 мк, перемещаются в соответствии с законами броуновского движения и могут находиться в воздухе длительное время во взвешенном состоянии. 1 см 3 пылинок, диаметр которых равен 1 мк, имеет суммарную поверхность частиц порядка 6 м 2 . Этой огромной удельной поверхностью высокодисперсных аэрозолей во многом объясняется их высокая биологическая активность. Одно из важных свойств аэрозолей - наличие на их частицах электрических зарядов (положительных или отрицательных).

Аэрозоли находят широкое применение в медицине (ингаляционная иммунизация, аэрозольтерапия, дезинфекция, дезинсекция и дератизация, гигиенические и токсикологические исследования и т. п.), сельском хозяйстве (аэрозоли инсектифунгицидов и др.) и других областях науки и техники.

Для получения аэрозолей служат специальные распылители, генераторы, аэрозольные бомбы и аэрозольные шашки.

Наибольшее значение имеет действие токсических аэрозолей на органы дыхания. Как правило, аэрозоли с частицами значительных размеров (5-10 мк) задерживаются в бронхах, в альвеолы проникают только частицы меньших размеров. Частицы размером менее 0,2 мк мало задерживаются в альвеолах и почти полностью выводятся при выдохе. Несмотря на это, они могут представлять значительную опасность для здоровья. Аэрозоли, имеющие форму пластинок (слюда, полевой шпат) или волокон (стеклянное или минеральное волокно, текстильные волокна), могут проникать в альвеолы, имея большие размеры. Количество частиц аэрозолей, остающееся в легких, зависит от их особенностей и может достигать значительных величии (см. Пневмокониозы). Попадание в легкие «горячих» радиоактивных частиц может привести к очаговой некротизации клеток. По-видимому, возможно последующее злокачественное перерождение прилегающих тканей.

Для защиты от вредных аэрозолей применяются специальные респираторы (см.), противогазы (см.) и костюмы (см. Одежда защитная). Для очистки воздуха от аэрозолей применяется ряд специальных методов (см. Санитарная охрана атмосферного воздуха). См. также Пыль, Радиоактивные отходы.

Жидких) частиц, взвешенных в воздухе или любой другой газовой среде. Совокупность этих частиц - дисперсная фаза - перемещается вместе с газовой дисперсионной средой. Частицы аэрозолей могут также смещаться относительно самой среды в результате броуновского движения, направленного движения под действием сил инерции, гравитации, электрического поля, давления света, под влиянием разности температур или концентраций частиц в различных местах системы.

При столкновении аэрозольных частиц происходит их коагуляция с образованием хлопьевидных скоплений (агрегатов), оседающих на поверхности твёрдого тела или жидкости. Однако частицы аэрозолей, несущие одноимённые электрические заряды (главным образом вследствие адсорбции на аэрозольных частицах присутствующих в газовой фазе ионов), взаимно отталкиваются и не склонны к коагуляции; такая система способна длительно сохранять агрегативную устойчивость. Свойства аэрозолей зависят от размера и формы частиц, их химической природы и структуры, величины и знака электрического заряда, температуры, давления, скорости и характера движения газовой среды. Размеры частиц аэрозолей находятся приблизительно в пределах от 1 до 10 5 нм.

Аэрозоли образуются путём диспергирования (тонкого измельчения сравнительно крупных кусков твёрдого тела, распыления жидкости) или путём конденсации паров вещества в первоначально однородной (гомогенной) газовой среде.

В последнем случае в результате спонтанного скопления молекул (флуктуации плотности) в объёме пересыщенных паров формируются зародыши новой дисперсной фазы, которые затем превращаются в устойчивые жидкие или твёрдые микрочастицы. Путём диспергирования идёт образование атмосферной пыли в процессе выветривания горных пород, эрозии почвы, вулканических извержений; аналогично образуются аэрозольные загрязнения при механической обработке строительных материалов, добыче твёрдых полезных ископаемых, производстве и переработке порошкообразных продуктов. Диспергированием, используя различные средства распыления, получают аэрозоли с жидкой дисперсной фазой разного промышленного и бытового назначения. Путём конденсации в природных условиях при пересыщении атмосферного воздуха влагой возникают облака и туманы. При неполном сгорании топлива и в некоторых химических процессах образуется дым - аэрозоли с твёрдыми микрочастицами, в атмосфере экологически неблагоприятных промышленный районов - смог с разнородными аэрозольными частицами, находящимися как в жидком, так и твёрдом агрегатном состоянии.

Аэрозоли широко распространены в природе (смотри, например, Атмосферный аэрозоль), играют большую роль в различных технологических процессах, влияют на здоровье и повседневный быт человека. В виде аэрозолей используют лакокрасочные материалы для создания декоративных и защитных покрытий в машиностроении и строительстве. Распылением с помощью форсунок в аэрозоль превращают жидкое и твёрдое топливо при сжигании в тепловых энергетических установках, реактивных двигателях. Аэрозольные баллончики с различными препаратами бытовой химии широко применяются в повседневной жизни человека. В аэрозольном виде используют средства борьбы с бытовыми насекомыми и сельскохозяйственными вредителями, некоторые парфюмерные и гигиенические средства, лекарства (аэрозольтерапия), средства дезинфекции и пр. Способность аэрозолей рассеивать и поглощать свет используется в военном деле (маскирующие дымы) и пиротехнике (цветные дымы).

Вредны для здоровья аэрозоли, возникающие в подземных выработках при добыче каменного угля и рудного сырья, в заводских цехах металлургических и химических предприятий, при взрывных работах, сжигании топлива или органических отходов производства и потребления. Они загрязняют воздух и, действуя на органы дыхания и кожные покровы человека, могут вызывать острые и хронические заболевания (в том числе различные пневмокониозы). Особенно вредны для здоровья радиоактивные аэрозоли (смотри в статье Горячие частицы), а также аэрозоли, содержащие болезнетворные микроорганизмы, токсичные химические вещества. Большую опасность представляют пожаро- и взрывоопасные пыли (например, угольная, мучная, древесная, хлопковая, алюминиевая), которые могут образоваться в угольных шахтах, а также на мукомольных, деревообрабатывающих, текстильных и других предприятиях, перерабатывающих сыпучие и пылящие материалы.

Существует много эффективных средств защиты от вредных аэрозолей: от промышленных воздушных фильтров и различного рода поглотителей (смотри Пылеулавливание, Туманоулавливание) до индивидуальных средств защиты (противогаз, противопылевой респиратор и пр.). В борьбе с высокодисперсными аэрозолями очень эффективен фильтр Петрянова - слой нетканого материала из тонких полимерных нитей, задерживающий аэрозольные частицы разного происхождения. Однако важнейшей проблемой современного производства, во многих случаях успешно решаемой, остаётся создание и освоение таких технологических процессов, при которых образование аэрозольных загрязнений было бы полностью исключено.

Процессы образования и разрушения аэрозолей в окружающем пространстве, в том числе космическом, никогда не прекращаются. За один год в аэрозольные частицы превращается около 20 тонн различных твёрдых и жидких веществ в расчёте на 1 км 2 земной поверхности. Аэрозольные частицы поступают в атмосферу с поверхности суши, открытых водоёмов, из космоса. Разрушение аэрозолей различного происхождения и состава происходит естественным путём или его вызывают искусственно. Основные процессы, приводящие к распаду аэрозолей, - седиментация укрупнённых аэрозольных частиц под действием гравитационных или центробежных сил и осаждение частиц на поверхности твёрдого тела или жидкости под действием сил притяжения молекулярной или электростатической природы, а также испарение частиц, если они образованы из летучих веществ.

Аэрозоли одного типа можно использовать для разрушения аэрозолей другого типа. Например, в угольных шахтах зоны образования вредной для здоровья и взрывоопасной угольной пыли орошают водным аэрозолем (обычно с добавками поверхностно-активных веществ), который получают с помощью специальных распылителей. Капельки воды захватывают угольные частицы и вместе с ними осаждаются на отбитый уголь, стенки выработки и другие поверхности, очищая окружающее воздушное пространство. Другой пример: искусственный вызов дождя путём распыления в атмосферные облака химических реагентов, инициирующих процесс укрупнения водяных микрокапель.

Лит.: Грин Х., Лейн В. Аэрозоли - пыли, дымы, туманы. Л., 1969; Руденко К. Г., Каминков А. В. Обеспыливание и пылеулавливание при обработке полезных ископаемых. 3-е изд. М., 1987; Петрянов Соколов И. В., Сутугин А. Г. Аэрозоли. М., 1989; Щукин Е.Д., Перцов А. В., Амелина Е.А. Коллоидная химия. М., 1992. С. 328-335; Зимон А. Д. Аэрозоли, или Джинн, вырвавшийся из бутылки. М., 1993.