Открытие Леонардо Фибоначчи: числовой ряд. «Золотое сечение» и числа Фибоначчи

МОУ Таловская СОШ

Выполнили учащиеся 9 «в» класса

Руководитель Данкова Валентина Анатольевна

2015 год

Последовательность чисел Фибоначчи

1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

ФИБОНАЧЧИ (Леонардо из Пизы)
Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Итальянский купец Леонардо из Пизы(1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В век Фибоначчи возрождение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император(с 1220 года) Священной Римской империи. Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства.

Столь любимые его дедом рыцарские турниры Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонардо Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.

Покровительство Фридриха и стимулировало выпуск научных трактатов Фибоначчи:

Книга абака (Liber Abaci), написанная в 1202 году, но дошедшая до нас во втором своем варианте, который относится к 1228 г.

Практики геометрии"(1220г.)

Книга квадратов(1225г.)

По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта(XVII в.).

Как указано в документах 1240 года, восхищенные граждане Пизы говорили, что он был "рассудительный и эрудированный человек", а не так давно Жозеф Гиз (Joseph Gies), главный редактор Британской Энциклопедии заявил, что будущие ученые во все времена "будут отдавать свой долг Леонардо Пизанскому, как одному из величайших интеллектуальных первопроходцев мира". Его работы после долгих лет только сейчас переводятся с латинского языка на английский. Для тех, кто интересуется - книга, названная Ленардо Пизанский и новая математика Средних веков Жозефа и Франца Гиз (Joseph and Frances Gies) является прекрасным трактатом по веку Фибоначчи и его работам.

Наибольший интерес представляет для нас сочинение "Kнига абака" ("Liber Abaci"). Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами.

В "Liber Abaci" Фибоначчи приводит свою последовательность чисел как решение математической задачи - нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности).


На стр. 123- 124 данной рукописи, Фибоначчи поместил следующую задачу: "Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения."

На рисунке отрезок АВ разделен точкой С так, что АС: АВ = СВ: АС.

что составляет приблизительно 1,618... Таким образом, отношение большей части отрезка к меньшей и всей длины отрезка к большей его части (Ф) равно приблизительно 1,618... Обратная величина - отношение меньшей части отрезка к большей и большей части к всему отрезку - составляет примерно 0,618... Этот факт заложен в самом уравнении для числа Ф (**).

Если разделить любой отрезок на две части так, чтобы отношение большей части отрезка к целому было равно отношению меньшей части к большей, получим сечение, которое называют золотым.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

На плане пола Парфенона также можно заметить "золотые прямоугольники":

Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотрдам де Пари)

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Посмотрим внимательно на картину "Джоконда". Композиция портрета построена на"золотых треугольниках".

ЧИСЛА ФИБОНАЧЧИ - числовая последовательность, где каждый последующий член

ряда равен сумме двух предыдущих, то есть: 1, 1, 2, 3, 5, 8, 13, 21, 34,

55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,

28657, 46368,.. 75025,.. 3478759200, 5628750625,.. 260993908980000,..

422297015649625,.. 19581068021641812000,.. Изучением сложных и удивительных свойств чисел ряда Фибоначчи занимались самые различные профессиональные ученые и любители математики.

В 1997 году несколько странных особенностей ряда описал исследователь

Владимир МИХАЙЛОВ. [Компьютерный вестник РИА-Новости "Терра-Инкогнита" ]

32(209) от 08.08.1997]. Михайлов убежден, что Природа (в том числе и

Человек) развивается по законам, которые заложены в этой числовой

последовательности. В сосновой шишке, если посмотреть на нее со стороны

черенка, можно обнаружить две спирали, одна закручена против другая по

часовой стрелке. Число этих спиралей 8 и 13.

В подсолнухах встречаются пары спиралей: 13 и 21, 21 и 34, 34 и 55, 55 и 89. И отклонений от этих пар не бывает!..

Приглядимся внимательно к побегу цикория. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38. Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы.

У Человека в наборе хромосом соматической клетки (их 23 пары), источником наследственных болезней являются 8, 13 и 21 пары хромосом...Возможно, все это свидетельствует о том, что ряд чисел Фибоначчи представляет собой некий зашифрованный закон природы.

Из истории астрономии известно, что И.Тициус , немецкий астроном XVIII в., с помощью этого ряда нашел закономерность и порядок в расстояниях между планетами солнечной системы.
Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в. Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Направляя все свое внимание на изучение поведения фондового рынка. Это интересовало и интересует многих. Исследуя особенности ценовых моделей, После ряда успешных предсказаний он пришел к выводу о том что "Любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, - и все они подчиняются суммарной последовательности Фибоначчи".

Ральф Нельсон Эллиотт

Исследование свойств

МОУ Таловская СОШ

Конспект интегрированного урока

по информатике и математике

Подготовил учитель

информатики и математики

Данкова Валентина Анатольевна

2009 год

Ход урока:

1. Орг.момент.

Приветствие. Определение отсутствующих. Проверка готовности учащихся к уроку.

2. Итоги исследовательской работы

Учитель: Запишем тему урока в тетрадь: “Последовательность чисел Фибоначчи”.

А кто он был этот человек? Ученый? Писатель? Математик? Почему последовательность чисел, носящая название «числа Фибоначчи до сих пор не дает покоя ученым, философам и даже нам с вами?

Готовясь к сегодняшнему уроку, вы кроме решения задач провели исследовательскую работу. И я думаю, что вам не составит особого труда ответить на вопрос: Что особенного в числах Фибоначчи и почему их связывают с золотым сечением, и что общего между этими числами и природой? Какое отношение данная последовательность имеет к нашей истории?

Прошу вас изложить суть вашего исследования и кратко записать в тетрадь особенности чисел Фибоначчи. …

Демонстрируется презентация, сопровождающая рассказом учащихся.

    Историческая справка жизни Фибоначчи.

    Числа Фибоначчи в природе

    Числа Фибоначчи в живописи, архитектуре.

    Математическая основа чисел Фибоначчи

Подводя итог сказанному, ответьте где проявила себя данная последовательность?

С какими науками она связана?

В каких областях человеческого познания она себя проявила?

О чем это свидетельствует?

Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Проведя исследование данной темы какие особенности данной последовательности вы заметили?

Все ли числа, записанные на доске четные? на каких местах они стоят?

Но можно ли утверждать, что на 27 месте тоже будет стоять четное число, а на 28 не четное

Что можно сказать о числах 5 и 8 они какие? А 13 и 21? А если взять числа стоящие на 37 и 38 месте?

Каждое пятнадцатое число оканчивается нулем

Итак, нам сегодня на уроке предстоит провести исследование некоторых свойств чисел

    каждое третье число Фибоначчи четное,

    каждое пятнадцатое оканчивается нулем ,

    два соседних числа Фибоначчи взаимно просты и др.

Нам с вами очевидны только первое и третье свойство для первых 12 чисел Фибоначчи, второе свойство нам необходимо выяснить экспериментальным путем. Вы сейчас в своих тетрадях составите программы утверждающие данные свойства или наоборот отрицающие их. Т.е мы с вами проведем исследование данных свойств чисел Фибоначчи с помощью языка программирования ПАСКАЛЯ. (Первая группа работает за компьютерами, вторая группа работает в тетрадях, один ученик за учительским компьютером осуществляет набор данной программы.) . По окончании работы, осуществляется само-проверка.

Задание для первой группы

1 . Заполнить массив A(N) элементами последовательности Фибоначчи. Проверим четность каждого числа стоящего на местах кратных 3.

Задание для второй группы

1. Заполнить массив A(N) элементами последовательности Фибоначчи. Проверить являются ли рядом стоящие числа Фибоначчи простыми

    Домашнее задание

    1. Заполнить массив A(N) элементами последовательности Фибоначчи. Проверить будет ли каждое пятнадцатое число из последовательности оканчиваться нулем ,

Согласно исследования историков можно утверждать: хронология и периодизация, исторического развития с помощью ряда Фибоначчи разделена на 18 временных ступеней, имеющих планетарный характер. События, хронология которых оказывается за пределами ряда, имеют региональный характер, т.е местный, подвижные границы. Хронологические границы археологических эпох и периодов, найденные с помощью ряда Фибоначчи, жесткие. В них нет соглашения: они либо приемлемы, либо - нет. Это потому, что в основе такого выбора лежит научное мировоззрение, которое всегда строго определенно.

Ральф Hельсон Эллиотт будучи простым инженером. После сеpьезной болезни в начале 1930-х г.г. занялся анализом биржевых цен. Направляя все свое внимание на изучение поведения фондового рынка. Это интересовало и интересует многих. Исследуя особенности ценовых моделей, После ряда успешных предсказаний он пришел к выводу о том что "Любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, и все они подчиняются суммарной последовательности Фибоначчи".

Анализ урока

Тип урока : интегрированный (математика и информатика)

Вид урока : Исследовательская работа.

Цели урока .

Образовательные :

    Создать условия для понимания термина “Последовательность чисел Фибоначчи”;

    Способствовать применению последовательности этих чисел при решении задач на заполнение и обработку одномерных массивов;

    Помочь в отработке имеющихся знаний по темам “Массив”, “Заполнение элементов массива при помощи формул” и навыков работы в среде ПАСКАЛЬ;

    Способствовать осуществлению межпредметных связей на уроке информатики.

    Развивать исследовательскую работу на уроке информатики.

Развивающие :

    Содействовать развитию познавательного интереса и творческой активности учащихся;

    Способствовать развитию логического мышления и умения моделировать задачу.

Воспитательные :

    Способствовать формированию познавательного интереса как компонента учебной мотивации;

    Способствовать повышению у учащихся интереса к историческим событиям, связанным с числами последовательности Фибоначчи;

    Способствовать развитию навыков сознательного и рационального использования ЭВМ в своей учебной, а затем профессиональной деятельности.

Методы и приемы обучения: объяснительно-иллюстративный; частично-поисковый; словесный (фронтальная беседа); наглядный (демонстрация компьютерной презентации); практический, метод исследования.

Средства обучения: авторская мультимедиа презентация интегрированная с программой ПАСКАЛЬ; технические (ЭВМ, мультимедиа проектор с экраном), доска, маркер. Компьютерное программное обеспечение : программы PowerPoint иПАСКАЛЬ.

1. Каждыйтретийчетный

program n1;

var i,w,f,k: longint;

begin

a:=1; a:=1;

for i:=3 to 40 do

a[i]:=a+a;

for i:=1 to 40 do

write(a[i]," ");

for i:=1 to 40 do begin

if (a[i] mod 2<>0)and (i mod 3=0) then begin w:=1; k:=i; end;

if (a[i] mod 2=0) and (i mod 3<>0) then f:=1;

end; writeln;

if w=0 then writeln (" каждыйтретийчетный")else writeln (k);

if f=0 then writeln (" если инденс не кратен 3 то число нечетное");

readln;

end.

2. Каждый пятнадцатый оканчивается нулем

program n 2;

var i,w,f,k: longint;

a:array of integer;

begin

a:=1; a:=1;

for i:=3 to 40 do

a[i]:=a+a;

for i:=1 to 40 do

write(a[i]," ");

for i:=1 to 40 do begin

if (a[i] mod 10<>0)and (i mod 15=0) then begin w:=1; k:=i; end;

if (a[i] mod 10=0) and (i mod 15<>0) then f:=1;

end; writeln;

if w=0 then writeln (" толькопятнадцатыйоканчиваетсянулем")else writeln (k);

if f=0 then writeln (" каждый пятнадцатый оканчивается нулем");

readln;

end.

3. Соседниеэлементывзаимнопросты.

program n3;

var x,y,i,w,f,k: longint;

a:array of integer;

begin

a:=1; a:=1;

for i:=3 to 40 do

a[i]:=a+a;

for i:=1 to 40 do

write(a[i]," ");

for i:=2 to 40 do begin

x:=a[i]; y:=a;

repeat

if x>y then x:=x mod y else y:=y mod x;

until (x=0) or (y=0);

if x+y<>1 then f:=1;

end; writeln;

if f=0 then writeln (" соседниеэлементывзаимнопросты");

readln;

end.

4. Вывести все числа Фибоначчи не превышающие 50.

program n 4;

var i,w,f,k,l: longint;

a:array of longint;

begin

a:=1; a:=1; i:=3;

While a[i]<50 do begin

a[i]:=a+a;

i:=i+1;

end;

l:= i-1;

for i:=1 to l do

write(a[i]," ");

readln;

end.

Задачи

Числа Фибоначчи... в природе и жизни

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение
Числа Фибоначчи или Последовательность Фибоначчи – числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

2.

Полное определение чисел Фибоначчи

3.


Свойства последовательности Фибоначчи

4.

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют(ФИ).

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

5.


Связь последовательности Фибоначчи и «золотого сечения»

6.

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A-–C--–B

7.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

8.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

9.

Пропорции Фибоначчи и золотого сечения в природе и истории

10.


Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

11.

Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.

12.

1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

ВЫСШЕЕ НАЗНАЧЕНИЕ МАТЕМАТИКИ СОСТОИТ В ТОМ, ЧТОБЫ НАХОДИТЬ СКРЫТЫЙ ПОРЯДОК В ХАОСЕ, КОТОРЫЙ НАС ОКРУЖАЕТ.

Винер Н.

Человек всю жизнь стремится к знаниям, пытается изучить окружающий его мир. И в процессе наблюдений у него возникают вопросы, на которые требуется найти ответы. Ответы находятся, но появляются новые вопросы. В археологических находках, в следах цивилизации, отдаленных друг от друга во времени и в пространстве, встречается один и тот же элемент - узор в виде спирали. Некоторые считают его символом солнца и связывают с легендарной Атлантидой, но истинное его значение неизвестно. Что общего между формами галактики и атмосферного циклона, расположением листьев на стебле и семян в подсолнухе? Эти закономерности сводятся к так называемой «золотой» спирали, удивительной последовательности Фибоначчи, открытой великим итальянским математиком XIII века.

История возникновения чисел Фибоначчи

Впервые о том, что такое числа Фибоначчи, я услышал от учителя математики. Но, кроме того, каким образом складывается последовательность этих чисел, я не знал. Вот чем на самом деле знаменита эта последовательность, каким образом она влияет на человека, я и хочу вам рассказать. О Леонардо Фибоначчи известно немного. Нет даже точной даты его рождения. Известно, что он родился в 1170 году в семье купца, в городе Пизе в Италии. Отец Фибоначчи часто бывал в Алжире по торговым делам, и Леонардо изучал там математику у арабских учителей. Впоследствии он написал несколько математических трудов, наиболее известным из которых является «Книга об абаке», которая содержит почти все арифметические и алгебраические сведения того времени. 2

Числа Фибоначчи - это последовательность чисел, обладающая рядом свойств. Эту числовую последовательность Фибоначчи открыл случайно, когда пытался в 1202 году решить практическую задачу о кроликах. «Некто поместил пару кроликов в некоем месте, огороженном со всех сторон со всех сторон стеной, чтобы узнать, сколько пар кроликов родится в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения». При решении задачи он учел, что каждая пара кроликов порождает на протяжении жизни еще две пары, а затем погибает. Так появилась последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, … В этой последовательности каждое следующее число равно сумме двух предыдущих. Её назвали последовательностью Фибоначчи. Математические свойства последовательности

Мне захотелось исследовать эту последовательность, и я выявил некоторые её свойства. Эта закономерность имеет большое значение. Последовательность все медленнее приближается к некоему постоянному отношению, равному примерно 1, 618, а отношение любого числа к последующему примерно равно 0, 618.

Можно заметить ряд любопытных свойств чисел Фибоначчи: два соседних числа взаимно просты; каждое третье число четно; каждое пятнадцатое оканчивается нулем; каждое четвертое кратно трем. Если выбрать любые 10 соседних чисел из последовательности Фибоначчи и сложить их вместе, всегда получится число, кратное 11. Но это еще не все. Каждая сумма равна числу 11, умноженному на седьмой член взятой последовательности. А вот еще одна любопытная особенность. Для любого n сумма первыхn членов последовательности всегда будет равна разности (n+ 2) - го и первого члена последовательности. Этот факт можно выразить формулой: 1+1+2+3+5+…+an=a n+2 - 1. Теперь в нашем распоряжении имеется следующий трюк: чтобы найти сумму всех членов

последовательности между двумя данными членами, достаточно найти разность соответствующих (n+2)-x членов. Например, a 26 +…+a 40 =a 42 - a 27 . Теперь поищем связь между Фибоначчи, Пифагором и «золотым сечением». Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов: c 2 =b 2 +a 2 . С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника, как стороны трех построенных на них квадратов. Теорема Пифагора говорит о том, что общая площадь квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе. Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. С помощью последовательности Фибоначчи можно отыскать такие тройки. Возьмем любые четыре последовательные числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:1) произведение двух крайних чисел: 2*8=16;2) удвоенное произведение двух чисел в середине: 2*(3*5)=30;3) сумма квадратов двух средних чисел: 3 2 +5 2 =34; 34 2 =30 2 +16 2 . Этот метод работает для любых четырех последовательных чисел Фибоначчи. Предсказуемым образом ведут себя любые три последовательных числа ряда Фибоначчи. Если перемножить из них два крайних и результат сравнить с квадратом среднего числа, то результат всегда будет отличаться на единицу. Например, для чисел 5, 8 и 13 получим: 5*13=8 2 +1. Если рассмотреть это свойство с точки зрения геометрии, можно заметить нечто странное. Разделим квадрат

размером 8х8 (всего 64 маленьких квадратика) на четыре части, длины сторон которых равны числам Фибоначчи. Теперь из этих частей построим прямоугольник размером 5х13. Его площадь составляют 65 маленьких квадратиков. Откуда же берется дополнительный квадрат? Все дело в том, что идеальный прямоугольник не образуется, а остаются крошечные зазоры, которые в сумме и дают эту дополнительную единицу площади. Треугольник Паскаля также имеет связь с последовательностью Фибоначчи. Надо только написать строки треугольника Паскаля одну под другой, а затем складывать элементы по диагонали. Получится последовательность Фибоначчи.

Теперь рассмотрим «золотой» прямоугольник, одна сторона которого в 1,618 раз длиннее другой. На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее, давайте проделаем простой эксперимент с двумя обыкновенными банковскими картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на одной линии. Если в горизонтальной карте провести диагональную линию и продлить ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты - приятная неожиданность. Может быть, это случайность, а может, такие прямоугольники и другие геометрические формы, использующие «золотое сечение», особенно приятны глазу. Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром? Это кажется маловероятным. Однако можно утверждать, что он придавал большое значение связи между эстетикой и математикой.

Числа Фибоначчи в природе

Связь золотого сечения с красотой - вопрос не только человеческого восприятия. Похоже, сама природа выделила Ф особую роль. Если в «золотой» прямоугольник последовательно вписать квадраты, затем в каждом квадрате провести дугу, то получится элегантная кривая, которая называется логарифмической спиралью. Она вовсе не является математическим курьезом. 5

Наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса до рукавов галактик, и в элегантной спирали лепестков распустившейся розы. Связи между золотым сечением и числами Фибоначчи многочисленны и неожиданны. Рассмотрим цветок, внешне сильно отличающийся от розы, - подсолнечник с семенами. Первое, что мы видим, - семена расположены по спиралям двух видов: по часовой стрелке и против часовой стрелки. Если посчитаем спирали почасовой стрелки, то получим два, казалось бы, обычных числа: 21 и 34. Это не единственный пример, когда можно встретить числа Фибоначчи в структуре растений.

Природа даёт нам многочисленные примеры расположения однородных предметов, описываемых числами Фибоначчи. В разнообразных спиралевидных расположениях мелких частей растений обычно можно усмотреть два семейства спиралей. В одном из этих семейств спирали завиваются по часовой стрелке, а в другом - против. Числа спиралей одного и другого типов часто оказываются соседними числами Фибоначчи. Так, взяв молодую сосновую веточку, легко заметить, что хвоинки образуют две спирали, идущие слева снизу вправо вверх. На многих шишках семена расположены в трёх спиралях, полого навивающихся на стержень шишки. Они же расположены в пяти спиралях, круто навивающихся в противоположном направлении. В крупных шишках удаётся наблюдать 5 и 8, и даже 8 и 13 спиралей. Хорошо заметны спирали Фибоначчи и на ананасе: обычно их бывает 8 и 13.

Отросток цикория делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок ещё меньшего размера и снова выброс. Импульсы его роста постепенно уменьшаются в пропорции «золотого» сечения. Чтобы оценить огромную роль чисел Фибоначчи, достаточно лишь взглянуть на красоту окружающей нас природы. Числа Фибоначчи можно найти в количестве

ответвлений на стебле каждого растущего растения и в числе лепестков.

Пересчитаем лепестки некоторых цветов —ириса с его 3 лепестками, примулы с 5 лепестками, амброзии с 13 лепестками, нивяника с 34 лепестками, астры с 55 лепестками и т.д. Случайно ли это, или это закон природы? Посмотрите на стебли и цветы тысячелистника. Таким образом, суммарной последовательностью Фибоначчи можно легко трактовать закономерность проявлений «Золотых» чисел, встречаемых в природе. Эти законы действуют независимо от нашего сознания и желания принимать их или нет. Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Числа Фибоначчи в архитектуре

«Золотое сечение» проявляется и во многих замечательных архитектурных творениях на протяжении всей истории человечества. Оказывается, еще древнегреческие и древнеегипетские математики знали эти коэффициенты задолго до Фибоначчи и называли их «золотым сечением». Принцип «золотого сечения» греки использовали при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Достижения в области строительной техники и разработки новых материалов открыли новые возможности для архитекторов ХХ века. Американец Фрэнк Ллойд Райт был одним из главных сторонников органической архитектуры. Незадолго до смерти он спроектировал музей Соломона Гуггенхайма в Нью-Йорке, представляющий собой опрокинутую спираль, а интерьер музея напоминает раковину наутилуса. Польско-израильский архитектор Цви Хекер также использовал спиральные конструкции в проекте школы имени Хайнца Галински в Берлине, построенной в 1995 году. Хекер начал с идеи подсолнечника с центральным кругом, откуда

расходятся все архитектурные элементы. Здание представляет собой сочетание

ортогональных и концентрических спиралей, символизируя взаимодействие ограниченных человеческих знаний и управляемого хаоса природы. Его архитектура имитирует растение, которое следует за движением Солнца, поэтому классные комнаты освещены в течение всего дня.

В Куинси-парке, расположенном в Кембридже, штат Массачусетс (США), «золотую» спираль можно встретить часто. Парк был спроектирован в 1997 году художником Дэвидом Филлипсом и находится недалеко от Математического института Клэя. Это заведение является известным центром математических исследований. В Куинси-парке можно прогуливаться среди «золотых» спиралей и металлических кривых, рельефов из двух раковин и скалы с символом квадратного корня. На табличке написана информация о «золотой» пропорции. Даже парковка для велосипедов использует символ Ф.

Числа Фибоначчи в психологии

В психологии отмечены переломные моменты, кризисы, перевороты, знаменующие на жизненном пути человека преобразования структуры и функций души. Если человек успешно преодолел эти кризисы, то становится способным решать задачи нового класса, о которых раньше даже не задумывался.

Наличие коренных изменений дает основание рассматривать время жизни в качестве решающего фактора развития духовных качеств. Ведь природа отмеряет нам время не щедро, «ни сколько будет, столько и будет», а ровно столько, чтобы процесс развития материализовался:

    в структурах тела;

    в чувствах, мышлении и психомоторике — пока они не приобретут гармонию , необходимую для возникновения и запуска механизма

    творчества;

    в структуре энергопотенциала человека.

Развитие тела нельзя остановить: ребенок становится взрослым человеком. С механизмом же творчества не так все просто. Его развитие можно остановить и изменить его направление.

Существует ли шанс догнать время? Безусловно. Но для этого нужно выполнить огромную работу над собой. То, что развивается свободно, естественным путем, не требует специальных усилий: ребенок свободно развивается и не замечает этой огромной работы, потому что процесс свободного развития создается без насилия над собой.

Как понимается смысл жизненного пути в обыденном сознании? Обыватель видит его так: у подножия — рождение, на вершине — расцвет сил, а потом — все идет под горку.

Мудрец же скажет: все намного сложнее. Восхождение он разделяет на этапы: детство, отрочество, юность… Почему так? Мало, кто способен ответить, хотя каждый уверен, что это замкнутые, целостные этапы жизни.

Чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет: 0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

    1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

    2 — понимает речь и действует, пользуясь словесными указаниями;

    3 — действует посредством слова, задает вопросы;

    5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

    8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

    13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

    21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

    34— гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

    55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее…

Что же такое засечки «Чисел Фибоначчи»? Они могут быть сравнимы с плотинами на жизненном пути. Эти плотины ожидают каждого из нас. Прежде всего необходимо преодолеть каждую их них, а потом терпеливо поднимать свой уровень развития, пока в один прекрасный день она не развалится, открывая свободному течению путь к следующей.

Теперь, когда нам понятен смысл этих узловых точек возрастного развития, попробуем расшифровать, как все это происходит.

В1 год ребенок овладевает ходьбой. До этого он познавал мир передней частью головы. Теперь же он познает мир руками — исключительная привилегия человека. Животное передвигается в пространстве, а он, познавая, овладевает пространством и осваивает территорию, на которой живет.

2 года — понимает слово и действует в соответствии с ним. Это значит, что:

ребенок усваивает минимальное количество слов — смыслов и образов действий;

    пока что не отделяет себя от окружающей среды и слит в целостность с окружающим,

    поэтому действует по чужому указанию. В этом возрасте он самый послушный и приятный для родителей. Из человека чувственного ребенок превращается в человека познающего.

3 года — действие при помощи собственного слова. Уже произошло отделение этого человека от окружающей среды — и он учится быть самостоятельно действующей личностью. Отсюда он:

    сознательно противостоит среде и родителям, воспитателям в детском саду и т.д.;

    осознает свой суверенитет и борется за самостоятельность;

    старается подчинить своей воле близких и хорошо знакомых людей.

Теперь для ребенка слово — это действие. С этого начинается действующий человек.

5 лет — «возраст грации». Он — олицетворение гармонии. Игры, танцы, ловкие движения — все насыщено гармонией, которой человек старается овладеть собственными силами. Гармоничная психомоторика содействует приведению к новому состоянию. Поэтому ребенок направлен на психомоторную активность и стремится к максимально активным действиям.

Материализация продуктов работы чувствительности осуществляется посредством:

    способности к отображению окружающей среды и себя как части этого мира (мы слышим, видим, прикасаемся, нюхаем и т.д. — все органы чувств работают на этот процесс);

    способности к проектированию внешнего мира, в том числе и себя

    (создание второй природы, гипотез — сделать завтра то и другое, построить новую машину, решить проблему), силами критичности мышления, чувств и воображения;

    способности к созиданию второй, рукотворной природы, продуктов деятельности (реализация задуманного, конкретные умственные или психомоторные действия с конкретными предметами и процессами).

После 5 лет механизм воображения выходит вперед и начинает доминировать над остальными. Ребенок выполняет гигантскую работу, создавая фантастические образы, и живет в мире сказок и мифов. Гипертрофированность воображения ребенка вызывает у взрослых удивление, потому что воображение никак не соответствует действительности.

8 лет — на передний план выходят чувства и возникают собственные мерки чувств (познавательных, нравственных, эстетических), когда ребенок безошибочно:

    оценивает известное и неизвестное;

    отличает моральное от аморального, нравственное от безнравственного;

    прекрасное от того, что угрожает жизни, гармонию от хаоса.

13 лет — начинает работать механизм творчества. Но это не значит, что он работает на полную мощность. На первый план выходит один из элементов механизма, а все остальные содействуют его работе. Если и в этом возрастном периоде развития сохраняется гармония, которая почти все время перестраивает свою структуру, то отрок безболезненно доберется до следующей плотины, незаметно для себя преодолеет ее и будет жить в возрасте революционера. В возрасте революционера отрок должен сделать новый шаг вперед: отделиться от ближайшего социума и жить в нем гармоничной жизнью и деятельностью. Не каждый может решить эту задачу, возникающую перед каждым из нас.

21 год. Если революционер успешно преодолел первую гармоничную вершину жизни, то его механизм таланта способен выполнять талантливую

работу. Чувства (познавательные, моральные или эстетические) иногда затмевают мышление, но в общем все элементы работают слаженно: чувства открыты миру, а логическое мышление способно с этой вершины называть и находить меры вещей.

Механизм творчества, развиваясь нормально, достигает состояния, позволяющего получать определенные плоды. Он начинает работать. В этом возрасте вперед выходит механизм чувств. По мере того, как воображение и его продукты оцениваются чувствами и мышлением, между ними возникает антагонизм. Побеждают чувства. Эта способность постепенно набирает мощность, и отрок начинает ею пользоваться.

34 года — уравновешенность и гармоничность, продуктивная действенность таланта. Гармония мышления, чувств и воображения, психомоторики, которая пополняется оптимальным энергопотенциалом, и механизм в целом — рождается возможность исполнять гениальную работу.

55 лет — человек может стать творцом. Третья гармоничная вершина жизни: мышление подчиняет себе силу чувств.

Числа Фибоначчи называют этапы развития человека. Пройдет ли человек этот путь без остановок, зависит от родителей и учителей, образовательной системы, а дальше — от него самого и от того, как человек будет познавать и преодолевать самого себя.

На жизненном пути человек открывает 7 предметов отношений:

    От дня рождения до 2-х лет — открытие физического и предметного мира ближайшего окружения.

    От 2-х до 3-х лет — открытие себя: «Я — Сам».

    От 3-х до 5-ти лет — речь, действенный мир слов, гармонии и системы «Я — Ты».

    От 5-ти до 8-ми лет — открытие мира чужих мыслей, чувств и образов — системы «Я — Мы».

    От 8 до 13 лет — открытие мира задач и проблем, решенных гениями и талантами человечества — системы «Я — Духовность».

    От 13 до 21 года — открытие способностей самостоятельно решать всем известные задачи, когда мысли, чувства и воображение начинают активно работать, возникает система «Я — Ноосфера».

    От 21 до 34 лет — открытие способности создавать новый мир или его фрагменты — осознание самоконцепции «Я — Творец».

Жизненный путь имеет пространственно-временную структуру. Он состоит из возрастных и индивидуальных фаз, определяемых по многим параметрам жизни. Человек овладевает в определенной мере обстоятельствами своей жизни, становится творцом своей истории и творцом истории общества. Подлинно творческое отношение к жизни, однако, появляется далеко не сразу и даже не у всякого человека. Между фазами жизненного пути существуют генетические связи, и это обусловливает закономерный его характер. Отсюда следует, что в принципе можно предсказывать будущее развитие на основе знания о ранних его фазах.

Числа Фибоначчи в астрономии

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII в., с помощью ряда Фибоначчи нашёл закономерность и порядок в расстояниях между планетами солнечной системы. Но один случай, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Но после смерти Тициуса в начале XIX в. сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов.

Заключение

В процессе исследования я выяснил, что числа Фибоначчи нашли широкое применение в техническом анализе цен на бирже. Один из простейших способов применения чисел Фибоначчи на практике - определение отрезков времени, через которое произойдёт то или иное событие, например, изменение цены. Аналитик отсчитывает определённое количество фибоначчиевских дней или недель (13,21,34,55 и т.д.) от предыдущего сходного события и делает прогноз. Но в этом мне ещё слишком сложно разобраться. Хотя Фибоначчи и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни и две улицы, которые носят его имя: одна - в Пизе, а другая - во Флоренции. И всё-таки, в связи со всем увиденным и прочитанным мною возникают вполне закономерные вопросы. Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Что же будет дальше? Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появятся ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, тринадцатью и т.д. Не забывайте, что на двух руках по пять пальцев, два из которых состоят из двух фаланг, а восемь - из трёх.

Литература:

    Волошинов А.В. «Математика и искусство», М., Просвещение, 1992г.

    Воробьёв Н.Н. «Числа Фибоначчи», М., Наука, 1984г.

    Стахов А.П. «Код да Винчи и ряд Фибоначчи», Питер формат, 2006 г.

    Ф. Корвалан «Золотое сечение. Математический язык красоты», М., Де Агостини, 2014 г.

    Максименко С.Д. «Сенситивные периоды жизни и их коды».

    «Числа Фибоначчи». Википедия

Числа Фибоначчи... в природе и жизни

Леонардо Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Определение
Числа Фибоначчи или Последовательность Фибоначчи – числовая последовательность, обладающая рядом свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Последовательность Фибоначчи начинается так: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

2.

Полное определение чисел Фибоначчи

3.


Свойства последовательности Фибоначчи

4.

1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют(ФИ).

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

5.


Связь последовательности Фибоначчи и «золотого сечения»

6.

Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи pазделить на пpедшествующий ему (напpимеp, 13:8), pезультатом будет величина, колеблющаяся около иppационального значения 1.61803398875… и чеpез pаз то пpевосходящая, то не достигающая его. Hо даже затpатив на это Вечность, невозможно узнать сотношение точно, до последней десятичной цифpы. Kpаткости pади, мы будем пpиводить его в виде 1.618. Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (сpедневековый математик) назвал его Божественной пpопоpцией. Cpеди его совpеменных названий есть такие, как Золотое сечение, Золотое сpеднее и oтношение веpтящихся квадpатов. Kеплеp назвал это соотношение одним из «сокpовищ геометpии». В алгебpе общепpинято его обозначение гpеческой буквой фи

Представим золотое сечение на примере отрезка.

Рассмотрим отрезок с концами A и B. Пусть точка С делит отрезок AB так что,

AC/CB = CB/AB или

AB/CB = CB/AC.

Представить это можно примерно так: A-–C--–B

7.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

8.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618…, если AB принять за единицу, AC = 0,382.. Kак мы уже знаем числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи.

9.

Пропорции Фибоначчи и золотого сечения в природе и истории

10.


Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

11.

Пpиводимые ниже примеры показывают некоторые интересные приложения этой математической последовательности.

12.

1. Pаковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали. Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

2. Растения и животные. Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Cпиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Cреди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Ящерица живородящая. В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

3. Космос. Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты – свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

4. Пирамиды. Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина ребра основания пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина ребра основания, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) – это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью – передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике. Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего происхождения.

Среди множества изобретений, сделанных великими учеными в прошлых веках, открытие закономерности развития нашего мироздания в виде системы чисел является наиболее интересным и полезным. Этот факт описал в своем труде итальянский математик Леонардо Фибоначчи. Числовой ряд представляет собой последовательность цифр, в которой каждая величина члена является суммой двух предыдущих. Эта система выражает информацию, заложенную в структуру все живого согласно гармоническому развитию.

Великий ученый Фибоначчи

Итальянский ученый жил и творил в XIII веке в городе Пиза. Родился он в купеческой семье и первое время работал с отцом в торговле. К математическим открытиям Леонардо Фибоначчи пришел, когда пытался установить контакты в то время с деловыми партнерами.

Свое открытие ученый сделал при подсчете планирования приплода кроликов по просьбе одного из дальних родственников. Он открыл числовой ряд, по которому будет производиться размножение животных. Эту закономерность он описал в своем труде «Книга вычислений», где также представил информацию о десятичной для европейских стран.

«Золотое» открытие

Числовой ряд можно выразить графически в виде раскрывающейся спирали. Можно отметить, что в природе имеется множество примеров, в основе которых заложена эта фигура, например, накатывающиеся волны, строение галактик, микрокапилляры в организме человека и

Интересно, что цифры в данной системе (коэффициенты Фибоначчи) считают «живыми» числами, так как по данной прогрессии эволюционирует все живое. Эта закономерность была известна еще людям древних цивилизаций. Существует версия, что уже в то время было известно, как исследовать на сходимость числовой ряд - наиболее важный вопрос при последовательности цифр.

Применение теории Фибоначчи

Исследовав свой числовой ряд, итальянский ученый открыл, что отношение цифры из данной последовательности к последующему члену равно 0,618. Это значение принято называть коэффициентом пропорциональности, или «золотым сечением». Известно, что это число использовали египтяне при строительстве знаменитой пирамиды, а также древние греки и русские зодчие при возведении классических сооружений - храмов, церквей и т. п.

Но интересен факт того, что числовой ряд Фибоначчи используется также при оценке движения цен на Использование этой последовательности в техническом анализе предложил инженер Ральф Эллиот еще в начале прошлого столетия. В 30-х годах американский финансист занимался прогнозированием биржевых цен, в частности исследованием индекса Доу-Джонса, который является одним из главных составляющих на фондовом рынке. После серии удачных предсказаний он опубликовал несколько своих статей, в которых описал методы использования ряда Фибоначчи.

На данный момент практически все трейдеры используют теорию Фибоначчи при прогнозировании ценового движения. Также эту зависимость используют и при многих научных исследованиях в различных сферах. Благодаря открытию великого ученого можно создать множество полезных изобретений даже спустя много столетий.