Основные этапы эволюции живого мира. Этапы развития жизни на земле Основные этапы эволюции жизни

Существует несколько гипотез о происхождении жизни на Земле. Их можно разделить на

две группы.

Биогенез - происхождение живого от живого (гипотеза панспермии, стационарного состояния).

Абиогенез - происхождение живого от неживого (гипотеза самозарождения, биохимическая эволюция)

гипотеза стационарного состояния

Земля и жизнь на ней никогда не возникали, а существуют вечно.

Виды живых организмов могут вымирать или изменять свою численность, но не могут меняться.

Доказательство: из теории биогенеза как утверждения о том, что живые организмы могут происходить только от других живых организмов, неизбежно следует единственный логичный вывод: жизнь существовала вечно. Другими словами, если проследить цепочку порождающих друг друга живых организмов в прошлое, то она должна тянуться бесконечно.

креационизм

Многообразие форм органического мира является результатом сотворения их Богом.

Отрицает изменение видов и их эволюцию.

Практически все религиозные учения утверждают, что человек и все другие живые существа созданы Богом. Виды сразу были совершенными и всегда останутся такими, какими они были созданы. Никаких доказательств, что это так, не существует. Это вопрос веры.

Креационистами было большинство ученых до XIX в.

Основоположник систематики К. Линней считал, что все виды растений и животных существуют со времени «сотворения мира» и созданы Богом независимо друг от друга.

Французский анатом и палеонтолог Ж. Кювье считал, что в течение истории Земли происходили обширные катастрофы, или катаклизмы, после которых опустошенные места заселялись организмами, пережившими катастрофу в отдаленных районах (теория катастроф).

Доказательство креационизма : целесообразность устройства живых организмов и их сообществ, хорошая приспособленность к условиям обитания.

Некоторые современные последователи креационизма используют существование очень сложных, разнообразных молекулярно-генетических процессов у живых существ как аргумент в пользу неслучайности их появления. Другие же согласны с существованием эволюционного процесса, но считают, что само начало эволюции было связано с актом творения.

Гипотеза панспермии

Жизнь занесена из космоса

Не предлагает решения проблемы происхождения жизни во Вселенной, а объясняет только появление ее на нашей планете занесением из космоса.

Доказательство панспермии : некоторые микроорганизмы, а особенно их споры, могут сохранять жизнеспособность при очень жестких воздействиях (например, очень низких температурах).

Однако до настоящего времени при изучении метеоритов никаких форм жизни на них не найдено.

Гипотеза биохимической эволюции Опарина–Холдейна (гипотеза абиогенеза)

Возникновение жизни на нашей планете произошло в несколько этапов эволюции:

    Абиогенный синтез простых органических соединений.

    Образование биополимеров.

    Установление связей между биополимерами - образование коацерватов .

    Возникновение мембран, отделяющих первые подобия живых организмов - протобионтов - от окружающей среды.

    Возникновение обмена веществ и энергии с окружающей средой.

    Появление способности к самовоспроизведению.

    Формирование экологических связей и образование первых экосистем.

Гипотеза абиогенеза основывается на данных современной науки о формировании Земли примерно 4,5 миллиарда лет назад.
Гипотеза Опарина–Холдейна сформировалась и получила первые экспериментальные подтверждения в 1950 - 1960-е гг. В настоящее время на основе современных данных гипотеза абиогенеза претерпела значительные изменения, была расширена и дополнена. В частности, большинство ученых сегодня считают, что возникновение самовоспроизведения предшествовало формированию мембран и полноценного обмена веществ или происходило параллельно с ними. Самовоспроизведение предполагает сохранение свойств в ряду поколений организмов, лежит в основе естественного отбора (который, безусловно, уже действовал среди этих древних систем) и эволюции в целом.

После появления нашей планеты как твердого тела и ее постепенного остывания происходила конденсация водяного пара в первичной атмосфере Земли. Дождевая вода с растворенными в ней веществами накапливалась в углублениях рельефа.

В первичной атмосфере в значительных количествах присутствовал углекислый газ, сероводород, метан, аммиак, пары воды и почти полностью отсутствовал кислород (следовательно, не было озонового слоя). Земля была подвержена жесткому ультрафиолетовому излучению Солнца.

Среда в целом была насыщена энергией. Для образования или разрыва химических связей были важны следующие источники:

    жесткое ультрафиолетовое излучение;

    электрические разряды;

    естественная радиоактивность;

    солнечный ветер;

    вулканическая деятельность.

Американские исследователи Стэнли Миллер и Гарольд Юри в 1953 году в экспериментах показали, как в далеком прошлом могли появляться биологически важные химические соединения. Они подобрали разные газы в соотношении, близком к составу древней атмосферы, и пропускали через эту смесь искровые разряды. В результате получались такие биологически важные соединения, как муравьиная и молочная кислоты, мочевина и аминокислоты (глицин, аланин, глутаминовая кислота, аспарагиновая кислота). Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Ими были получены многие аминокислоты, пуриновые основания - аденин и гуанин (они получаются, если в смесь газов добавить синильную кислоту), четырех- и пятиуглеродные сахара. В 2008 году опыт повторили и выяснили, что образуется 22 различных аминокислоты.
Миллер и Юри основывались в своих экспериментах на представлениях 1950-х гг. о возможном составе земной атмосферы. В настоящее время взгляды на этот вопрос изменились. В частности, считается, что концентрация СО не могла быть такой высокой, при этом было показано, что даже небольшие изменения условий и состава газовой смеси приводят к очень существенным изменениям эффективности процесса синтеза органики. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похож на современные атмосферы Венеры и Марса - 98% СО2, 1,5% N2 и малые доли других газов, в основном аргона и SO2. Из такой атмосферы в аппарате Миллера не получается никакой органики. Для получения органики из CO2 необходим восстановитель, и ученые занялись его поисками.

Воды на поверхности и непосредственно под поверхностью Земли насыщались подобными веществами («первичный бульон» ). Состав и концентрация органических веществ зависели от окружающих условий и, вероятно, были разными в разных частях поверхности Земли. Часть образовавшихся органических веществ разрушалась. Однако другая часть могла концентрироваться, например, в пористых минералах, образуя полимеры. В экспериментах показано, что нагревание смеси аминокислот приводит к образованию достаточно длинных полипептидов со случайной последовательностью мономеров. Некоторые из этих полипептидов обладают каталитической активностью.

Жирные кислоты, соединяясь со спиртами, могли образовывать липидные пленки на поверхности водоемов.

Связи между разными биополимерами и другими веществами могли образоваться при изоляции небольших объемов биополимеров, например при образовании пузырьков из липидных пленок (коацерватов ) либо из пептидов (микросферы).

Роль коацерватов исследовалась Александром Ивановичем Опариным и его английским коллегой Джоном Холдейном. Микросферам были посвящены исследования американского ученого Сиднея Фокса.

проблемы теории абиогенеза

    Проблема сложности самовоспроизводящейся системы . Сложность живых клеток огромна. Даже самые простые бактерии имеют геном из более миллиона нуклеотидов, кодирующий свыше тысячи белков. Для работы этого генома требуются специальные молекулярные машины синтеза белка (рибосомы), синтеза ДНК (репликативная вилка), энергоснабжения (как минимум 12 ферментов гликолиза, а обычно еще и электрон-транспортная цепь на мембране) и средства регуляции и управления (транскрипционные факторы и сигнальные белки). Сложность такой системы очень высока, а более простых самостоятельно воспроизводящихся систем, чем клетка, биология не знает. Вирусы не в счет - для их размножения требуется сложная живая клетка. Дарвиновский естественный отбор может порождать все более сложные системы, но для этого они с самого начала должны быть способны к репликации. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время - на много порядков больше возраста Вселенной.

    Проблема хиральной чистоты.
    Все живые системы содержат только определенные оптические изомеры аминокислот и сахаров (L-аминокислоты и D-сахара). Противоположные изомеры встречаются, но редко и в особых случаях (например, в клеточной стенке бактерий). Неживые же системы таким свойством не обладают. Это свойство живых систем называется хиральной чистотой . Она поддерживается за счет пространственного соответствия молекул биологических катализаторов - ферментов - только одному из оптических изомеров. Большинство химических реакций в неживых системах не являются стереоселективными, то есть в них участвуют оба оптических изомера с одной и той же вероятностью. Известно очень мало абиогенных процессов, которые стереоселективны, то есть в них участвует преимущественно один оптический изомер, но и они не дают достаточного обогащения системы нужными изомерами. Однако в последние годы открыто множество процессов, которые приводят к обогащению тем или иным оптическим изомером - см. далее в п.3.

    Проблема отсутствия восстановителя в первичной атмосфере (см. выше об опыте Миллера-Юри). По новым данным о составе первичной атмосферы, в ней практически не содержалось молекулярного водорода и CО, и описанные Миллером и Юри синтезы идти не могли.
    Во многих современных успешных экспериментах по абиогенному синтезу органики берут в качестве исходного вещества формальдегид. Он очень реакционноспособен и дает множество биологически значимых продуктов.
    Откуда мог взяться формальдегид? Он мог образовываться при восстановлении углекислого газа на неорганических катализаторах. Например, горячая вулканическая лава, содержащая самородное железо, при контакте с влажной СО2-атмосферой образует формальдегид. Водный раствор гидроксида железа (II) производит ту же реакцию при освещении ультрафиолетом.
    Сегодня существуют две подробно разработанные теории абиогенного синтеза органики, связывающие восстановление СО2, энергетический обмен и особенности содержания ионов металлов в живом веществе.
    Первая, предполагающая происхождение жизни в «железо-серном мире», на подводных геотермальных источниках, предложена немецким биофизиком Карлом Ваштерхаузером.
    Другой сценарий абиогенного синтеза органики на геотермальных источниках предложен Мулкиджаняном. Он следует из способности сульфидов цинка и марганца к восстановлению разных веществ на свету («цинковый мир»).
    Как происходил дальнейший синтез сложной биогенной органики? Учёные проводят множество экспериментов, стремясь подобрать условия для этих процессов, возможные на древней Земле. Большую роль в современных исследованиях играет реакция Бутлерова, открытая еще в 1865 году. В этой реакции водный раствор формальдегида (СH2O) с добавлением Ca(OH)2 или Mg(OH)2 при небольшом нагревании превращается в сложную смесь сахаров. Эта реакция оказалась автокаталитической, то есть продукты являются катализаторами. Также катализирует реакцию свет. В определенных условиях реакция Бутлерова позволяет решить проблему хиральной чистоты, приводя к появлению только определенных оптических изомеров сахаров. Для этого добавляют силикаты либо гидроксиапатит (фосфат кальция) - соединения, в которых нет недостатка в земной коре. Также к синтезу хирально чистых D-сахаров приводит добавление комплекса аминокислоты L-пролина с ионом цинка.
    Большой проблемой считался долгое время синтез нуклеотидов, так как условия синтеза его отдельных компонентов, а также 4 разных нуклеотидов оказались слабо совместимы. Однако в 2008 году Сандерлендом был осуществлен синтез нуклеотидов как целого, а не в виде отдельных компонентов, при этом получены все 4 варианта.

проблема самовоспроизведения и ГИПОТЕЗА РНК-МИРА

Как пробионты приобрели способность к саморепродукции, т.е. способность к воспроизводству структуры макромолекул? Точно сказать невозможно, однако есть гипотезы, объясняющие формирование самовоспроизводящихся систем на основе нуклеиновых кислот.

Современные ученые по-прежнему активно занимаются проблемой абиогенного синтеза и достигли значительных успехов. В частности, активно изучается автокаталитический синтез сахаров (реакция Бутлерова), открыт процесс синтеза целого нуклеотида (раньше образование нуклеотидов было неприступной крепостью - все его компоненты получить в сходных условиях не удавалось). Получив нуклеотиды, легко перейти к сборке первых нуклеиновых кислот, а эти молекулы уже содержат в себе потенциал к самовоспроизведению. Вероятно, первые самовоспроизводящиеся системы были построены на основе РНК.

Открытие в 1982 г. каталитической активности некоторых молекул РНК (рибозимов) позволяет предполагать, что именно молекулы РНК были первыми биополимерами, в которых способность к репликации сочеталась с ферментативной активностью. Искусственно получены самовоспроизводящиеся РНК (правда, небольшой длины), т. е. РНК, способные катализировать синтез своих копий. Более того, именно РНК играет важную роль во всех основополагающих и, как предполагается, древнейших процессах в клетке. Так, при биосинтезе белка на рибосомах каталитическая роль принадлежит именно рибосомной РНК. Безбелковая рибосома в настоящее время не существует - белки являются неотъемлемой частью этого комплекса, но она вполне могла существовать в прошлом.
Все эти факты говорят в пользу того, что именно РНК когда-то выполняла все биологически значимые функции в первых живых системах, а уже затем часть функций перешла к ДНК (хранение наследственной информации) и белкам (катализ, структурные функции и др.). Это предположение называется гипотезой РНК-мира и пользуется широкой поддержкой среди современных ученых.


Структура самовоспроизводящейся РНК

экология первых организмов

Можно предполагать, что на начальных этапах развития жизни на Земле появилось очень большое разнообразие протобионтов, но все они являлись анаэробными гетеротрофами, т. е. обладали бескислородным типом дыхания и поглощали готовые органические вещества (первичную органику). Уже на этом этапе могло появиться хищничество и другие формы связей между видами, т.е. первичные сообщества. В начале биологической эволюции источником питания, вероятно, служили запасы органических веществ, созданных абиогенным путем. Когда эти запасы истощились, то преимущества в размножении должны были получить те организмы, у которых появились возможности автотрофного питания, и хищники, их поедающие.

Однако следует отметить, что самые древние бесспорные остатки живых существ принадлежат фотосинтезирующим, то есть автотрофным организмам (компоненты хлорофилла, строматолиты - окаменевшие цианобактериальные маты и т. п.). Самым древним сообществом, оставившим следы в палеонтологической летописи, является именно цианобактериальный мат. Современные маты включают в себя микробов-фотосинтетиков, хемосинтетиков и гетеротрофов, и есть данные, указывающие на наличие этих компонентов и в древних матах.


Спил строматолита Современные строматолиты, Австралия

Распространение пробионтов, да и просто биологически важных полимеров и олигомеров ограничивалось жестким ультрафиолетовым излучением в отсутствие озонового экрана.
Возникновение оксигенного фотосинтеза, то есть фотосинтеза с выделением кислорода, невозможно точно датировать, но существуют палеонтологические свидетельства наличия цианобактерий 3,4 млрд лет назад. Сначала кислород не накапливался в атмосфере, а расходовался на окисление различных компонентов земной коры, например двухвалентного железа. Затем началось медленное повышение концентрации кислорода, которое привело к так называемой кислородной революции - смене характера всей атмосферы с восстановительного на окислительный. Резкое ускорение накопления кислорода в атмосфере датируется примерно 2,3 млрд лет назад. Молекулярный кислород является ядом для анаэробных организмов, а многие обитатели древней Земли были именно такими. Многие ученые считают, что оксигенация атмосферы была первой глобальной экологической катастрофой и привела к вымиранию многих организмов. Выжившие приспособились, выработав системы защиты от токсического действия кислорода, а некоторые научились использовать его для окисления органических веществ - клеточного дыхания, что позволило получить дополнительную энергию по сравнению с бескислородным обменом веществ. Поэтому аэробы (существа, дышащие кислородом) получили конкурентное преимущество по сравнению с анаэробами. Именно от таких организмов произошло большинство современных видов, в том числе и эукариоты, включающие в себя растения, животные, грибы и условную (сборную) группу простейших.

Считается, что возникновение современных типов многоклеточных было невозможно раньше достижения определенной концентрации кислорода в среде.
Накопление кислорода в атмосфере привело к формированию озонового экрана, что позволило жизни выйти на сушу.

Гипотеза самозарождения жизни

Возникновения жизни абиогенным путем в далеком прошлом

Гипотеза существовала параллельно с креационизмом. Ее сторонники считали, что условия, необходимые для возникновения жизни, имеются и в настоящее время.

Доказательство: появление личинок мух в гниющем мясе; мышей из сухарей и тряпки (опыты Ван Гельмонта).

Эксперименты, в которых самозарождение не происходило после кипячения среды и запаивания сосуда, не являлись убедительными, т. к. считалось, что кипячение убивает «жизненную силу».

Через некоторое время в открытом сосуде появились личинки мух, т. к. мухи проникли в сосуд и отложили яйца. В закрытом сосуде «самозарождения» не произошло.


Позже, в начале XVIII в., Лаздзаро Спалланцани решил проверить результаты английского исследователя Джона Нидхема о самозарождении микроорганизмов в бараньей подливке. Он брал склянки с семенным отваром, некоторые из которых закрывал пробкой. другие же запаивал на огне горелки. Одни он кипятил по целому часу, другие же нагревал только несколько минут. По прошествии нескольких дней Спалланцани обнаружил, что в тех склянках, которые были плотно запаяны и хорошо нагреты, никаких "маленьких животных нет" - они появились только в тех бутылках, которые были неплотно закрыты и недостаточно долго прокипячены, причём вероятнее всего, проникли туда из воздуха или же сохранились после кипячения, а вовсе не зародились сами по себе. Таким образом, Спалланцани не только доказал несостоятельность концепции самозарождения, но также выявил существование мельчайших организмов, способных переносить непродолжительное - в течение нескольких минут - кипячение. Между тем, Нидхем объединился с графом Бюффоном, и вместе они выдвинули гипотезу о производящей силе- некоем животворящем элементе, который содержится в бараньем бульоне и семенном отваре и способен создать живые организмы из неживой материи. Спалланцани убивает Производящую силу когда кипятит целыми часами свои склянки, утверждали они, и совершенно естественно, что маленькие зверюшки не могут возникнуть там, где нет этой силы. В последующих опытах Спалланцани удалось доказать несостоятельность этих гипотез.

Решающими оказались эксперименты известного французского биолога и химика Луи Пастера . Он присоединил к колбе S-образную трубку со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то что доступ воздуха был обеспечен. В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.
Именно Пастеру медицина обязана рождением антисептики и асептики, открывших дорогу современной хирургии.

Колба с S-образным горлышком.

Биология, 11 класс

Урок 9. «Этапы развития жизни на Земле.»

3. Перечень вопросов, рассматриваемых в теме;

Материал этого урока познакомит учащихся с основными этапами развития жизни на Земле. В ходе урока будут рассмотрены основные события происходившие в доисторические времена. Учащиеся узнают как и почему изменялся растительный и животный мир.

4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);

Эон, Геологическая эра, Архейская эра, Протерозойская эра, Палеозойская эра, Мезозойская эра, Кайнозойская эра.

Эон (др.-греч. αἰών - век, эпоха) в геологии - отрезок времени геологической истории, объединяет несколько эр.

Геологи́ческая э́ра - отрезок геохронологической шкалы, под интервал эона. Большинство геологических эр разделяются на геологические периоды.

Архейская эра (эра древнейшей жизни) –от 3600 до 2600 млн лет назад, протяженность 1 млрд лет – примерно четверть всей истории жизни.

Протерозойская эра (эра ранней жизни), от 2600 до 570 млн лет назад, – самая протяженная эра, охватывающая около 2 млрд лет, то есть более половины всей истории жизни.

Палеозойская эра (эра древней жизни) – от 570 до 230 млн лет назад, общая протяженность 340 млн лет.

Мезозойская эра (эра средней жизни) – от 230 до 67 млн лет назад, общая протяженность 163 млн лет.

Кайнозойская эра (эра новой жизни) – от 67 млн лет назад до настоящего времени. Это эра цветковых растений, насекомых, птиц и млекопитающих. В эту эру появился и человек.

5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);

  1. Учебник «Биология.10-11класс», созданный под редакцией академика Д.К.Беляева и профессора Г.М.Дымшица / авт.-сост. Г.М. Дымшиц и О.В.Саблина. - М.: Просвещение, 2018г., стр. 180-184 Базовый уровень.

Дополнительные источники:

1.Общая биология 10-11, дидактические материалы/ авт.-сост. С.С. Красновидова, С. А. Павлов, А. Б. Павлов, - М. Просвещение, 2000г., стр.83-104

2. Общая биология 10-11 классы: подготовка к ЕГЭ. Контрольные и самостоятельные работы/ Г. И. Лернер. – М.: Эксмо, 2007.стр 160-164

3. Биология: общая биология. 10-11 классы: учебник/ А. А. Каменский, Е. А. Криксунов, В. В. Пасечник. - М.: Дрофа, 2018. Стр.340-347

4. А.Ю. Ионцева, А. В. Торгалов «Биология в схемах и таблицах». .

5. Е.Н. Демьянков, А.Н. Соболев «Сборник задач и упражнений. Биология 10-11», учебное пособие для общеобразовательных организаций.

6. Открытые электронные ресурсы по теме урока (при наличии);

Интернет-ресурсы:

  • Образовательный портал для подготовки к экзаменам https://bio-ege.sdamgia.ru/?redir=1
  • Российский общеобразовательный Портал www.school.edu.ru

7. Теоретический материал для самостоятельного изучения;

Жизнь на Земле зародилась свыше 3,5 млрд лет назад, сразу после завершения формирования земной коры. На протяжении всего времени возникновение и развитие живых организмов влияло на формирование рельефа, климат. Также и тектонические, и климатические изменения, происходившие на протяжении многих лет, влияли на развитие жизни на Земле.

Эры жизни на Земле

Весь период существования жизни на Земле можно разделить на 2 периода: докембрий, или криптозой (первичный период, 3,6 до 0,6 млрд лет), и фанерозой. Криптозой включает в себя архейскую (древняя жизнь) и протерозойскую (первичная жизнь) эры. Фанерозой включает в себя палеозойскую (древняя жизнь), мезозойскую (средняя жизнь) и кайнозойскую (новая жизнь) эры. Эти 2 периода развития жизни принято делить на более мелкие – эры. Границы между эрами – это глобальные эволюционные события, вымирания. В свою очередь эры делятся на периоды, периоды - на эпохи. История развития жизни на Земле связана непосредственно с изменениями земной коры и климата планеты.

Эры развития

отсчет времени Наиболее значительные события принято выделять в специальные интервалы времени – эры. Отсчет времени ведется в обратном порядке, от древнейшей жизни до новой.

Существует 5 эр:

1. Архейская.

2. Протерозойская.

3. Палеозойская.

4. Мезозойская.

5. Кайнозойская.

Периоды развития жизни на Земле Палеозойская, мезозойская и кайнозойская эры включают в себя периоды развития. Это более мелкие отрезки времени, по сравнению с эрами.

Палеозойская эра:

· Кембрийский (кембрий).

· Ордовикский.

· Силурийский (силур).

· Девонский (девон).

· Каменноугольный (карбон).

· Пермский (пермь).

· Мезозойская эра:

· Триасовый (триас).

· Юрский (юра).

· Меловой (мел).

Кайнозойская эра:

· Нижнетретичный (палеоген).

· Верхнетретичный (неоген).

· Четвертичный, или антропоген (развитие человека)

Первые 2 периода входят в третичный период продолжительностью 59 млн. лет

Охарактеризуем кратко основные этапы развития жизни по эрам.

Катархей. В этот период истории развития жизни образовался «первичный бульон» в водах Мирового океана и начался процесс коацервации.

Архей. Появляются первые живые прокариотные организмы: бактерии и цианобактерии. Осадочные породы (возрастом 3,1-3,8 млрд лет) подтверждают их наличие в этой эре. Возникла биосфера. Архей - это эра расцвета прокариот. Появление цианобактерий (около 3,2 млрд лет назад) свидетельствует о наличии фотосинтеза и присутствии активного пигмента хлорофилла. В архее появляются первые эукариоты. Среди них организмы: одноклеточные водоросли (зеленые, желтозеленые, золотистые и др.) и простейшие - жгутиковые (эвгленовые, вольвоксовые), саркодовые (амебы, фораминиферы, радиолярии) и др. В архее произошел выход бактерий на сушу и начался активный процесс почвообразования.

На границе между архейской и протерозойской эрами появились половой процесс и многоклеточность. Началось формирование многоклеточных животных (беспозвоночных) и растений (водорослей).

Протерозой - огромная по продолжительности эра. Эукариотные формы живых организмов здесь пребывают в расцвете и по своему разнообразию намного опережают прокариот. Появление многоклеточности и дыхания обусловило прогрессивное развитие и среди гетеротрофов, и среди автотрофов. Наряду с плавающими формами (водорослями, простейшими, медузами) появляются прикрепленные ко дну («сидячие») или к другому субстрату: нитчатые зеленые, пластинчатые бурые и красные водоросли, а также губки, кораллы. Появились ползающие организмы, например, кольчатые черви. Они дали начало моллюскам и членистоногим. Наряду с различными кишечнополостными животными появляются сегментированные животные вроде кольчатых червей и членистоногих (ракообразные).

Палеозой - эра, которая характеризуется достаточно большими находками ископаемых организмов. Они свидетельствуют о том, что в водной среде (соленых и пресных водоемах) имеются представители почти всех основных типов беспозвоночных животных. В пресных, а затем и в морских водах появились разные позвоночные - бесчелюстные и рыбы. От предков костистых рыб возникли кистеперые, которые позже (в меле) почти полностью вымерли, но в середине девона от кистеперых произошли наземные позвоночные (древние амфибии).

В середине палеозойской эры произошел выход животных, растений и грибов на сушу. Началось бурное развитие высших растений. Появились моховидные и другие споровые растения. Образуются первые леса из гигантских папоротников, хвощей и плаунов. Но в конце палеозоя все они вымирают и дают основу образования залежей каменного угля (поскольку в природе еще не было достаточного количества животных, поедающих эту растительную массу). Появились животные, дышащие воздухом. По всей Земле распространились пресмыкающиеся (среди них есть растительноядные и хищные), возникли насекомые.

Мезозой часто называют эпохой рептилий. Они представлены здесь разнообразными формами: плавающими, летающими, сухопутными, водными и околоводными. Существуя на Земле несколько миллионов лет и достигнув большого расцвета, рептилии почти все вымирают к конец мезозоя. Появляются птицы и примитивные млекопитающие (яйцекладущие и сумчатые), а немного позже - плацентарные. С изменением климата - похолоданием и сухостью на Земле широко распространяются голосеменные растения, особенно хвойные. Возникают первые покрытосеменные растения, но они представлены только древесными формами. В морях широко распространились костистые рыбы и головоногие моллюски.

Кайнозой характеризуется расцветом покрытосеменных растений, насекомых, птиц, млекопитающих. Уже в середине кайнозоя имеются почти все основные группы представителей известных нам царств живой природы. Среди покрытосеменных растений появились травы и кустарники. Большие территории земной поверхности заселяли степи и луга. Сформировались все основные типы природных биогеоценозов. В эту эру появился человек как особый вид живых существ. С появлением человека и развитием его культуры началось формирование культурной флоры и фауны. Возникали агроценозы, села и города. Природа стала активно использоваться человеком для удовлетворения его потребностей. В связи с этим происходят большие изменения в видовом составе органического мира, в окружающей среде и в природе в целом. Изменения в природе под воздействием человеческой деятельности ведут к серьезным изменениям в развитии жизни.

Как видим, история Земли характеризуется уникальным явлением: на основе физической и химической эволюции в природе возникла живая материя, которая затем с помощью биологической эволюции достигла высокого уровня сложности и многообразия форм. В этом историческом процессе развития жизни на Земле появилось огромное количество биологических видов, различных надвидовых биосистем, произошло становление человека и сформировалась современная биосфера с глобальным биологическим круговоротом веществ. Развитие жизни, осуществляющееся на протяжении длительного периода времени и в постоянно меняющихся условиях окружающей среды, продолжается в биосфере и в наше время.

8. Примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).

Задание 1.

Основные этапы эволюции растительного и животного мира

Геохронологическая история Земли. Историю Земли принято делить на промежутки времени, границами которых являются крупные геологические события: горообразовательные процессы, поднятие и опускание суши, изменение очертаний материков, уровня океанов. Движения и разломы земной коры, происходившие в разные геологические периоды, сопровождались усиленной вулканической деятельностью, в результате чего в атмосферу выбрасывалось огромное количество газов, пепла, что снижало прозрачность атмосферы и способствовало уменьшению количества поступающей на Землю солнечной радиации. Это было одной из причин развития оледенений, которые вызвали изменение климата, что оказало сильное влияние на развитие органического мира. В процессе эволюции постоянно возникали новые формы организмов, а прежние формы, оказавшиеся неприспособленными к новым условиям существования, вымирали.

В течение многих миллионов лет на планете накапливались остатки некогда живших организмов. На основе находок ископаемых форм в отложениях земных пластов удается проследить подлинную историю живой природы (табл. 4.2). Применение радио-изотопного метода позволяет с большой точностью определить возраст пород в местах залегания палеонтологических остатков и возраст ископаемых организмов.

На основе данных палеонтологии всю историю жизни на Земле подразделяют на эры и периоды.

Основные этапы эволюции растений. В протерозойскую эру (около 1 млрд. лет назад) ствол древнейших эукариот разделился на несколько ветвей, от которых возникли растения, грибы и животные. Большинство растений этого периода свободно плавало в воде, часть из них прикреплялась ко дну.

Табл. 4.2. Геохронологическая шкала Земли.

Период

Начало (млн. лет назад)

Эволюционные события

Кайнозойская (новой жизни)

Четвертичный

Растения: Вымирание многих видов растений, упадок древесных форм, расцвет травянистых; растительный мир приобретает современный облик.

Животные: Развитие многих групп морских и пресноводных моллюсков, кораллов, иглокожих и др. Формирование ныне существующих сообществ, возникновение и эволюция человека.

Неогеновый (неоген)

Растения: Преобладание покрытосеменных и хвойных, отступавшие лесов, увеличение площади степей.

Животные: Видовой состав беспозвоночных приближается к современному. Расцвет плацентарных млекопитающих, сходных с современными. Появление человекообразных обезьян.

Палеогеновый (палеоген)

Растения: Расцвет диатомовых водорослей и основных групп покрытосеменных. Господство двустворчатых и брюхоногих моллюсков.

Животные: Вымирание древнейших млекопитающих. Развитие сумчатых и примитивных плацентарных: насекомоядных, древних копытных, древних хищников. Начало развития антропоидов.

Мезозойская (средней жизни)

Меловой (мел)

Растения: В начале периода господство голосеменных и появление покрытосеменных, которые преобладают во второй половине периода.

Животные: Развитие двустворчатых и брюхоногих моллюсков, других беспозвоночных. Развитие крупных рептилий в первой половине периода и их вымирание во второй половине периода. Развитие млекопитающих и птиц.

Юрский (юра)

Растения: Появление диатомовых водорослей. Господство папоротников и голосеменных. Расцвет головоногих и двустворчатых моллюсков. Расцвет пресмыкающихся: наземных, водоплавающих, летающих. Появление древних птиц, развитие древних млекопитающих.

Триасовый (триас)

Растения: Вымирание семенных папоротников. Развитие голосеменных.

Животные: Вымирание многих животных, процветающих в палеозойскую эру. Вымирание стегоцефалов, развитие пресмыкающихся, появление древних млекопитающих.

Палеозойская (древней жизни)

Пермский

Растения: Распространение первых групп голосеменных. Животные: Уменьшение количества видов хрящевых, кистеперых и двоякодышащих рыб. Развитие стегоцефалов, пресмыкающихся, часть которых были предковыми по отношению к млекопитающим и птицам.

Каменноугольный (карбон)

Растения: Расцвет плауновидных, хвощевидных, папоротниковидных, семенных папоротников; появление хвойных.

Животные: Расцвет древних морских беспозвоночных. Появление первичнобескрылых и древнекрылых насекомых. Распространение акул, стегоцефалов. Появление и расцвет амфибий. Появление древних пресмыкающихся.

Девонский(девон)

Растения: Расцвет риниофитов, к началу позднего девона их вымирание. Появление современных типов сосудистых растении.

Животные: Расцвет древних беспозвоночных, появление паукообразных. Расцвет панцирных, кистеперых и двоякодышащих рыб. В конце периода появление первых четвероногих - стегоцефалов (древних земноводных).

Силурийский (силур)

Растения: Возникновение современных групп водорослей и грибов. В конце периода достоверное появление первых наземных растений. Появление наземных членистоногих -- скорпионов. Появление древних панцирных и хрящевых рыб.

Ордовикский (ордовик)

Растения: Обилие морских водорослей. Предположительное появление первых наземных растений - риниофитов. Появление первых позвоночных- бесчелюстных.

Кембрийский (кембрий)

Растения: Жизнь сосредоточена в морях. Эволюция водорослей.

Животные: Развитие многоклеточных форм. Расцвет морских беспозвоночных с хитиново-фосфатной раковиной.

Протерозойская (ранней жизни)

Поздний протерозой

Растения: Развитие водорослей,

Животные: Различных многоклеточных примитивных организмов, не имеющих скелетных образований.

Ранний протерозой

Растения и животные: Развитие одноклеточных прокариотических и эукариотических фотосинтезирующих организмов. Возникновение полового процесса.

Нет под разд.

: Возникновение жизни на Земле, появление первых клеток - начало биологической эволюции. Появление анаэробных автотрофных организмов, бактерий, цианобактерий.

Катархей

Нет под разд.

Химическая эволюция, приведшая к возникновению биополимеров.


1. Архейская эра - древнейший этап в истории Земли, когда в водах первичных морей возникла жизнь, которая была представлена первоначально доклеточными ее формами и первыми клеточными организмами. Aнализ оса дочных пород этого возраста показывает, что в водной среде обитали бактерии и синезеленые.

2 . Протерозойская эра. На грани архейской и протерозойской эры произошло усложнение строения и функции организмов: возникли многоклеточность, половой процесс, который усилил генетическую неоднородность организмов и дал обширный материал для отбора, более разнообразными стали фотосинтезирующие растения. Многоклеточность организмов сопровождалась повышением специализации клеток, их объединением в ткани и функциональные системы.

Проследить в деталях эволюцию животных и растений в протерозойскую эру довольно трудно из-за перекристаллизации осадочных пород и уничтожения органических остатков. В отложениях этой эры обнаружены лишь отпечатки бактерий, водорослей, низших типов беспозвоночных и низших хордовых. Крупным шагом в эволюции было появление организмов с двусторонней симметрией тела, дифференцированного на передний и задний отделы, левую и правую стороны, выделение спинной и брюшной поверхности. Спинная поверхность у животных служила защитой, а на брюшной располагались рот и органы захвата пищи.

3. Палеозойская эра. Животный и растительный мир достиг большого разнообразия, стала развиваться наземная жизнь.

В палеозое различают шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный, пермский. В кембрийском периоде жизнь была сосредоточена в воде (она покрывала значительную часть нашей планеты) и представлена более совершенными многоклеточными водорослями, имевшими расчлененное слоевище, благодаря которому они активнее синтезировали органические вещества и явились исходной ветвью для наземных листостебельных растений. Широкое распространение в морях получили беспозвоночные, в том числе плеченогие моллюски, а из членистоногих - трилобиты. Самостоятельным типом двухслойных животных того периода были археоциаты, формировавшие рифы в древних морях. Они вымерли, не оставив потомков. На суше обитали лишь бактерии и грибы.

В ордовикском периоде климат был теплым даже в Арктике. В пресных и солоноватых водах этого периода пышного развития достигли планктонные водоросли, разнообразные кораллы из типа кишечнополостных, существовали представители почти всех типов беспозвоночных в том числе трилобиты, моллюски, иглокожие. Широко представлены были бактерии. Появляются первые представители бесчелюстных позвоночных - щитковые.

В конце силурийского периода в связи с горообразовательными процессами и сокращением площади морей часть водорослей оказалась в новых условиях среды - в мелких водоемах и на суше. Многие из них погибли. Однако в результате разнонаправленной изменчивости и отбора отдельные представители приобрели признаки, способствовавшие выживанию в новых условиях. Появились первые наземные споровые растения - псилофиты. Они имели цилиндрический стебель около 25 см высоты, вместо листьев - чешуйки. Важнейшие приспособления у них - возникновение покровной и механической тканей, корнеподобных выростов - ризоидов, а также элементарной проводящей системы.

В девоне численность псилофитов резко сократилась, на смену им пришли их преобразованные потомки, высшие растения - плауновидные, моховидные и папоротниковидные, у которых развиваются настоящие вегетативные органы (корень, стебель, лист). Возникновение вегетативных органов повысило эффективность функции отдельных частей растений и их жизненность как гармонически целостной системы. Выход на сушу растений предшествовал выходу животных. На Земле растения накапливали биомассу, а в атмосфере - запас кислорода. Первыми обитателями суши из беспозвоночных были пауки, скорпионы, многоножки. В девонских морях было много рыб, среди них - челюстные панцирные, имевшие внутренний хрящевой скелет и внешний прочный панцирь, подвижные челюсти, парные плавники. Пресные водоемы населяли кистеперые рыбы, у которых было жаберное и примитивное легочное дыхание. С помощью мясистых плавников они перемещались по дну водоема, а при пересыхании переползали в другие водоемы. Группа кистеперых рыб явилась предками древних земноводных - стегоцефалов. Стегоцефалы обитали в болотистой местности, выходили на сушу, но размножались только в воде.

В каменноугольном периоде распространились гигантские папоротникообразные, которые в условиях теплого влажного климата расселились повсеместно. В этот период достигли расцвета древние земноводные.

В пермский период климат стал более сухим и холодным, что привело к вымиранию многих земноводных. К концу периода число видов земноводных стало резко сокращаться, и до наших дней сохранились лишь мелкие земноводные (тритоны, лягушки, жабы). На смену древовидным споровым папоротникообразным пришли семенные папоротники, давшие начало голосеменным растениям. Последние имели развитую стержневую корневую систему и семена, оплодотворение у них проходило в отсутствие воды. Вымерших земноводных сменила более прогрессивная группа животных, произошедшая от стегоцефалов,- пресмыкающиеся. У них были сухая кожа, более плотные ячеистые легкие, внутреннее оплодотворение, запас питательных веществ в яйце, защитные яйцевые оболочки.

4. Мезозойская эра включает три периода: триасовый, юрский, меловой.

В триасе широко распространились голосеменные растения, особенно хвойные, занявшие господствующее положение. Одновременно широко расселились пресмыкающиеся: в морях обитали ихтиозавры, плезиозавры в воздухе - летающие ящеры, разнообразно были пpeдставлены пресмыкающиеся и на земле. Гигантские пресмыкающиеся (бронтозавры, диплодоки и др.) вскоре вымерли. В самом начале триаса от пресмыкающихся отделилась группа мелких животных с более совершенным строением скелета и зубов. Эти животные npиобрели способность к живорождению, постоянную температуру тела, у них было четырехкамерное сердце и целый ряд других прогрессивных черт организации. Это были первые примитивные млекопитающие.
В отложениях юрского периода мезозоя o6наружены также останки первоптицы - археоптерикса. Он сочетал в своем строении признаки птиц и пресмыкающихся.

В меловом периоде мезозоя от голосеменных отделилась ветвь растений, имевших орган семенного размножения - цветок. После оплодотворения завязи цветка превращается в плод, поэтому развивающиеся семена внутри плода защищены мякотью и оболочками от неблагоприятных условий среды. Многообразие цветков различных приспособлений для опыления и распространения плодов и семян позволило покрытосеменным (цветковым) растениям широко распространиться в природе и занять господствующее положение. Параллельно с ними развивалась группа членистоногих - насекомых которые, будучи опылителями цветковых растений в большой мере способствовали их прогрессивной эволюции. В этом же периоде появились настоящие птицы и плацентарные млекопитающие. Признаки высокой степени организации у них - постоянная температура тела| полное разделение артериального и венозного тока крови, повышенный обмен веществ, совершенная терморегуляция, а у млекопитающих, кроме того, живорождение, вскармливание детенышей молоком, развитие коры головного мозга - позволили этим группам также занять господствующее положение на Земле.

5. Кайнозойская эра подразделяется на три периода: палеоген, неоген и четвертичный.

В палеогене, неогене и начале четвертичного периода цветковые растения благодаря приобретению многочисленных частных приспособлений заняли большую часть суши и представляли субтропическую и тропическую флору. В связи с похолоданием, вызванным наступлением ледника, субтропическая флора отступила к югу. В составе наземной растительности умеренных широт стали преобладать листопадные деревья, приспособленные к сезонному ритму температур, а также кустарники и травянистые растения. Расцвет травянистых приходится на четвертичный период. Большое распространение получили теплокровные животные:
птицы и млекопитающие. В ледниковое время обитали пещерные медведи, львы, мамонты, шерстистые носороги, которые после отступления ледников и потепления климата постепенно вымирали, а животный мир приобрел современный облик.

Главное событие этой эры - формирование человека. К концу неогена в лесах обитали небольшие хвостатые млекопитающие - лемуры и долгопяты. От них произошли древние формы обезьян - парапитеки, ведшие древесный образ жизни и питавшиеся растениями и насекомыми. Их далекие потомки - ныне живущие гиббоны, орангутанги и вымершие мелкие древесные обезьяны - дриопитеки. Дриопитеки дали начало трем линиям развития, которые привели к шимпанзе, горилле, а также вымершему австралопитеку. От австралопитеков в конце неогена произошел человек разумный.

Основные особенности эволюции животного мира следующие:

  1. прогрессивное развитие многоклеточности и, как следствие, специализация тканей и всех систем органов;
  2. свободный образ жизни, который определил выработку различных механизмов поведения, а также относительную независимость онтогенеза от колебаний факторов окружающей среды;
  3. возникновение твердого скелета: наружного у некоторых беспозвоночных (членистоногие) и внутреннего у хордовых;
  4. прогрессивное развитие нервной системы, которое стало основой для возникновения условно-рефлекторной деятельности
Взято с сайтов.

В течении длительного исторического развития жизни на Земле возникло великое разнообразие биологических видов и систем.

1) В какой среде возникли первые живые существа на Земле? Охарактеризуйте их.

    Ответ: Формирование и развитие происходило в водной среде, котора по насыщенности органическими и неорганическими веществами была подобна бульону.

2) На основании каких данных историю Земле делят на крупные этапы. На какие еще этапы их подразделяют?

    Ответ: Историю Земле и развития жизни на планете подразделяют на этапы - эры. В эрах выделяются периоды, а в периодых - эпохи.

3) Заполните таблицу "Развитие жизни на Земле".

  • Название эры Продолжительность млн лет Животный и растительный мир
    Катархей начался около 4500 млн лет назад синтез первых органических соединений
    Архей начался примерно 3500 млн лет назад фотосинтез, эукариотические клетки, половой процесс, многоклеточность
    Протерозой начался 2500 млн лет назад двусторонняя симметрия, трехслойность, системы органив, задний отдел кишечника и анальное отверстие
    Палеозой начался 534 млн лет назад появление организмов с минеральным скелетом, дифференцировка тела растений на ткани, разделение тела животных на отделы, образование челюстей, появления поясов конечноустей у позвоночных. Расчленение тела растений на органы, преобразование плавников в наземные конечности, появление органов воздушного дыхания, внутреннее оплодотворение, плотные яйцевые оболочки, ороговевание кожи, образование семян, образование пыльцевой трубки и семени
    Мезозой начался около 248 млн лет назад 4-х камерное сердце, полное раздерение артериального и венозного кровотока, молочные железы, возникновение цветка и плода, образование матки
    Кайнозой начался более 65 млн лет назад интенсивное развитие коры головного мозга, мышление, прямохождение

4) Почему начало палеозойской эры можно назвать ключевым рубежом в истории развития жизни на Земле?

    Ответ: Появились позвоночные, в пресных водах - акулы и костные рыбы - двоякодышащие и кистеперые рыбы; растения, животные и грибы вышли на сушу.

5) Какими были первые организмы, покинувшие водную среду и начавшие свое "триумфальное шествие" по суше? Когда и как сформировалась почва?

    Ответ: Первыми на сушу вышли прокариоты (бактерии и цианобактерии). Это произошло еще в архее. С выходом прокариот на сушу начался процесс образования почвы.

6) Какие особенности были характерны для первых обитателей суши?

    Ответ: Появление у организмов ночного и древнего образа жизни, выработались ритмы развития, у растений развились листья и ветвление побегов.

7) Почему в настоящее время в одной и той же среде обитания одновлеменно существуют древнейшие, примитивные и высокоорганизованные животные? Ответ проиллюстрируйте примерами.

    Ответ: Все организмы взаимосвязаны между собой.

История развития Жизни на Земле

Палеонтология - наука, изучающая историю живых организмов на Земле, по сохранившимся остаткам, отпечаткам и другим следам их жизнедеятельности.

РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ

КРИПТОЗОЙ(скрытая жизнь)

Около 85 % всего времени существования жизни на Земле

АРХЕЙ

(древнейший)

около

3500 млн.

(длит. около 900 млн)

Активная вулканическая деятельность. Анаэробные условия жизни в мелководном древнем море. Развитие кислородосодержащей атмосферы

Возникновение жизни на Земле. Эра прокариот: бактерий и цианобактерий.Появление первых клеток (прокариоты)- цианобактери. Возникновение процесса фотосинтеза, появление эукариотических клеток

Ароморфозы: появление оформленного ядра, фотосинтеза

ПРОТЕРОЗОЙ

(первичная жизнь)

около 2600 млн. (длит. около2000 млн)

самая длинная в истории Земли

Поверхность планеты- голая пустыня, Климат холодный. Активное образование осадочных пород. В конце эры содержание кислорода в атмосфере около 1%. Суша - единый суперконтинент

( Панге я ) Процесс почвообразования.

Появление многоклеточности, процесса дыхания. Возникли все типы беспозвоночных животных. Широко распространены простейшие, кишечнополостные, губки, черви. Из растений преимущественно распространены одноклеточные водоросли

Ароморфозы у животных: появление многоклеточности, 2-х сторонней симметрии тела, мышц, сегментации тела.

ФАНЕРОЗОЙ

(явная жизнь)

ПАЛЕОЗОЙ

(древняя жизнь)

Длительность ок. 340 млн

Кембрий

ок. 570 млн

дл. 80 млн

Вначале умеренный влажный, затем теплый сухой климат. Суша раскололась на материки

Расцвет морских беспозвоночных, большинство которых - трилобиты (древние членистоногие) около 60% всех видов морской фауны. Появление организмов с минерализованным скелетом. Возникновение многоклеточных водорослей

Ордовик

ок. 490 млн

дл. 55 млн

Умеренный влажный климат с постепенным повышением сред. Температуры. Интенсивное горообразование, освобождение от воды значительных территорий

Появление первых позвоночных (хордовых)- бесчелюстных. Разнообразие головоногих и брюхоногих моллюсков, разнообразие водорослей: зеленые, бурые, красные. Появление коралловых полипов

Силур

ок. 435 млн

дл. 35 млн

Интенсивное горообразование, возникновение коралловых рифов

Пышное развитие кораллов и трилобитов, появляются ракоскорпионы, широкое распространение панцирных бесчелюстных (первые настоящие позвоночные), появление иглокожих, первые наземные животные - паукообразные . Выход на суши растений, первые наземные растения ( псилофиты )

Девон

ок. 400 млн

дл. 55млн

Климат: смена сухих и дождливых сезонов. Оледенение на территории современных Южной Америки и Южной Африки

Век рыб: Появление рыб всех систематических групп,(в наши дни можно встретить: латимерия(кистеперые рыбы), протоптер (двоякодышащая)) вымирание значительного кол-ва беспозвоночных и большинства бесчелюстных, появление аммонитов-головоногих моллюсков со спирально закрученными раковинами Освоение животными суши: пауки, клещи. Появление наземных позвоночных – стегоцефалы (панцирноголовые )(первые земноводные; произошли от кистеперых рыб) Развитие и вымирание псилофитов. Возникновение споровых растений: плауновидных, хвощевидных, папоротниковидных. Возникновение грибов

Карбон

(каменноугольный период)

ок. 345

млн.

дл. 65 млн

Всемирное распространение болот. Теплый влажный климат сменяется холодным и сухим.

Расцвет земноводных, появление первых рептилий- котилозавры , летающих насекомых, сокращение численности трилобитов. На суше – леса споровых растений, появление первых хвойных

Пермь

280 млн.

Дл. 50 млн

Зональность климата. Завершение горообразования, отступление морей, формирование полузамкнутых водоемов. Рифообразование

Быстрое развитие рептилий, возникновение звероподобных пресмыкающихся. Вымирание трилобитов. Исчезновения лесов, за счет вымирания древовидных папоротников, хвощей и плаунов. Пермское вымирание (96 % всех морских видов, 70 % наземных позвоночных)

В палеозое происходит важное эволюционное событие: заселение суши растениями и животными.

Ароморфозы у растений: появление тканей и органов (псилофиты); корневой системы и листьев (папоротники, хвощи, плауны); семени (семенные папоротники)

Ароморфозы у животных: формирование костных челюстей (челюстноротых панцирных рыб); пятипалой конечности и легочного дыхания (земноводные); внутреннего оплодотворения и накопления питательных веществ (желток) в яйцеклетке (пресмыкающиеся)

МЕЗОЗОЙ

(средняя жизнь) эра пресмыкающихся

Триас

230 млн.

Дл.40 млн

Раскол суперконинента

(Лавразия,Гондвана) движение материков

Расцвет рептилий «век динозавров», появляются черепахи, крокодилы, гаттерии. Возникновение первых примитивных млекопитающих (предки-древние зверозубые пресмыкающиеся), настоящих костистых рыб. Семенные папоротники вымирают, распространены папоротниковидные, хвощевидные, плауновидные, широкое распространение голосеменных

Юра

190 млн.

Дл.60 млн

Климат влажный, потом сменяется засушливым в области экватора, движение континентов

Господство пресмыкающихся на суше, в океане и воздухе,(летающие пресмыкающиеся- птеродактили) появление первых птиц - археоптерикс. Широко распространены папоротники и голосеменные

Мел

136 млн.

Дл. 70 млн.

Похолодание климата, отступление морей, сменяется увеличением s океана

Появление настоящих птиц, сумчатых и плацентарных млекопитающих, расцвет насекомых, появляются покрытосеменные растения, сокращение численности папоротников и голосеменных вымирание крупных рептилий

Ароморфозы животных: появление 4-камерного сердца и теплокровности, перьев, более развитой нервной системы, увеличение запаса питательных веществ в желтке (птицы)

Вынашивание детенышей в теле матери, питание эмбриона через плаценту (млекопитающие)

Ароморфозы растений: возникновение цветка, защита семени оболочками (покрытосеменные)

КАЙНОЗОЙ

Палеоген

66 млн.

дл. 41 млн.

Устанавливается теплый равномерный климат

Широко распространены рыбы, вымирают многие головоногие моллюски, на суше: амфибии, крокодилы, ящерицы, появляются многие отряды млекопитающих, в том числе и приматы. Расцвет насекомых. Господство покрытосеменных, появляется тундра и тайга, у животных и растений появляются многочисленные идиоадаптации(н-р: самоопыляющиеся, перекрестноопыляемые растения, многообразие плодов и семян)

Неоген

25 млн.

дл.23 млн.

Движение материков

Господство млекопитающих, распространены: приматы, предки лошадей, жирафов, слонов; саблезубые тигры, мамонты

Антропоген

1,5 млн.

Характерны неоднократные смены климата. Крупные оледенения Северного полушария

Появление и развитие человека, животный и растительный мир приобретают современные черты