Уравнение с модулем и параметром примеры. §6. Решение уравнений с модулями и параметрами. Сбор и использование персональной информации

10x − 5y − 3z = − 9,

6 x + 4 y − 5 z = − 1,3 x − 4 y − 6 z = − 23.

Уравняем коэффициенты при x в первом и втором уравнениях, для этого умножим обе части первого уравнения на 6, а второго уравнения – на 10, получаем:

60x − 30 y − 18z = − 54,60x + 40 y − 50z = − 10.

Вычитаем из второго уравнения полученной системы первое урав-

нение, получаем: 70 y − 32 z = 44, 35 y − 16 z = 22.

Из второго уравнения исходной системы вычитаем третье уравнение, умноженное на 2, получаем: 4 y + 8 y − 5 z + 12 z = − 1 + 46,

12 y + 7z = 45.

Теперь решаем новую систему уравнений:

35y − 16z = 22,12 y + 7z = 45.

К первому уравнению новой системы, умноженному на 7, прибавляем второе уравнение, умноженное на 16, получаем:

35 7 y + 12 16y = 22 7 + 45 16,

Теперь подставляем y = 2, z = 3 в первое уравнение исходной сис-

темы, получаем: 10x − 5 2 − 3 3 = − 9, 10x − 10 − 9 = − 9, 10x = 10, x = 1.

Ответ: (1; 2;3) . ▲

§ 3. Решение систем с параметром и с модулями

ax + 4 y = 2 a,

Рассмотрим систему уравнений

x + ay = a.

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

В этой системе, на самом деле, три переменные, а именно: a , x , y . Неизвестными считают x и y , a называют параметром. Требуется найти решения (x , y ) данной системы при каждом значении параметра a .

Покажем, как решают такие системы. Выразим переменную x из второго уравнения системы: x = a − ay . Подставляем это значение для x в первое уравнение системы, получаем:

a (a − ay) + 4 y = 2 a,

(2 − a )(2 + a ) y = a (2 − a ) .

Если a = 2, то получаем уравнение 0 y = 0. Этому уравнению удовлетворяет любое число y , и тогда x = 2 − 2 y , т. е. при a = 2 пара чисел (2 − 2 y ; y ) является решением системы. Так как y может быть

любым числом, то система при a = 2 имеет бесконечно много решений.

Если a = − 2, то получаем уравнение 0 y = 8. Это уравнение не имеет ни одного решения.

Если теперь a ≠ ± 2,

то y =

a (2 − a)

(2 − a )(2 + a )

2 + a

x = a − ay = a −

2 + a

Ответ: При a = 2 система имеет бесконечно много решений вида (2 − 2 y ; y ) , где y − любое число;

при a = − 2 система не имеет решений;

при a ≠ ± 2, система имеет единственное решение

. ▲

2 + a

2 + a

Мы решили эту систему и установили, при каких значениях параметра a система имеет одно решение, когда имеет бесконечно много решений и при каких значениях параметра a она не имеет решений.

Пример 1. Решите систему уравнений

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

−3

y − 1

3x − 2 y = 5.

Из второго уравнения системы выражаем x через y , получаем

2 y + 5

подставляем это значение для x в первое уравнение сис-

темы, получаем:

2y + 5

−3

y − 1

−3

−1

5 = 0

Выражение

y = −

y > −

; если

−5

= −y

Выражение y − 1 = 0,

если y = 1. Если

y > 1, то

y − 1

Y − 1, а ес-

ли y < 1, то

y − 1

1 − y .

Если y ≥ 1, то

y − 1

Y −1 и

получаем уравнение:

−3 (y

− 1) = 3,

−3 y

3, −

(2 2 +

5 ) = 3. Число 2 > 1, так что пара (3;2) является ре-

шением системы.

Пусть теперь

5 ≤ y <1,

y − 1

− y ;

нахождения

получаем

уравнение

3 y −3

4 y + 10

3 y = 6,

13 y = 8

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

(2 y + 5) =

Но меньше, чем

поэтому пара чисел

является решением системы.

y < −

то получаем уравнение:

3 y −3

4 y −

3y = 6,

5 y =

28 , y = 28 .

значение

поэтому решений нет.

Таким образом, система имеет два решения (3;2) и 13 27 ; 13 8 . ▲

§ 4. Решение задач с помощью систем уравнений

Пример 1. Путь от города до посёлка автомобиль проезжает за 2,5 часа. Если он увеличит скорость на 20 км/ч, то за 2 часа он пройдёт путь на 15 км больший, чем расстояние от города до посёлка. Найдите это расстояние.

Обозначим через S расстояние между городом и посёлком и через V скорость автомобиля. Тогда для нахождения S получаем систему из двух уравнений

2,5V = S ,

(V + 20) 2 = S + 15.

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

во второе уравнение:

S + 20 2

S +15,

S = 25,

S = 125.

Ответ: 125 км. ▲

Пример 2. Сумма цифр двузначного числа равна 15. Если эти цифры поменять местами, то получится число, которое на 27 больше исходного. Найдите эти числа.

Пусть данное число ab , т.е. число десятков равно a , а число единиц равно b . Из первого условия задачи имеем: a + b = 15. Если из числа ba вычесть число ab , то получится 27, отсюда получаем второе уравнение: 10 b + a − (10 a + b ) = 27. x

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

Умножим обе части уравнения на 20, получим: x + 8 y = 840. Для нахождения x и y получили систему уравнений

Ответ: 40 т, 100 т. ▲

Пример 4. Оператор ЭВМ, работая с учеником, обрабатывает задачу за 2 ч 24 мин. Если оператор будет работать 2 ч, а ученик 1 ч, то бу-

дет выполнено 2 3 всей работы. Сколько времени потребуется операто-

ру и ученику в отдельности на обработку задачи?

Обозначим всю работу за 1, производительность оператора за x и производительность ученика за y . Учитываем, что

2 ч 24 мин = 2 5 2 ч = 12 5 ч .

Из первого условия задачи следует, что (x+y ) 12 5 = 1. Из второго условия задачи следует, что 2 x + y = 2 3 . Получили систему уравнений

(x+y)

2 x + y =

Решаем эту систему методом подстановки:

− 2 x ;

−2 x

−x

− 1;

; x =

; y =

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока. Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения.

Задачи:

  • Образовательные : научить решать некоторые виды уравнений уравнений модулями и параметрами;
  • Развивающие : развивать культуру мысли, культуру речи и умение работать с тетрадью и доской.
  • Воспитательные : воспитывать самостоятельность и умение преодолевать трудности.

Оборудование: наглядный материал для устного счёта и объяснения новой темы. Интерактивная доска, мультимедийное оборудование урока.

Структура урока:

  1. Повторение изученного материала (устный счёт).
  2. Изучение нового материала.
  3. Закрепление изученного материала.
  4. Итог урока.
  5. Домашнее задание.

ХОД УРОКА

1. Повторение важнейшего теоретического материала по темам: «Уравнения, содержащие модуль», «Решение уравнений с параметрами»

1) «Уравнения, содержащие модуль»

Абсолютной величиной или модулем числа a называется число a , если a > 0, число – a , если a < 0, нуль, если a = 0. Или

Из определения следует, что | a | > 0 и | a | > a для всех a € R .
Неравенство | x | < a , (если a > 0) равносильно двойному неравенству – a < х < a .
Неравенство | x | < a , (если a < 0) не имеет смысла, так как | х | >0.
Неравенство | x | > a , (если a > 0) равносильно двум неравенствам
Неравенство | x | > a , (если a < 0) справедливо для любого х € R.

2) «Решение уравнений с параметрами»

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

а) определить множество допустимых значений неизвестного и параметров;

б) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнения.

2. Устные упражнения

1. Решить уравнение | x – 2 | = 5; Ответ : 7; – 3

| x – 2 | = – 5; Ответ : решения нет

| x – 2 | = х + 5; Ответ : решения нет; 1,5

| x – 2 | = | x + 5 |; Ответ : решения нет; – 1,5; решения нет; – 1,5;

2. Решить уравнение: | x + 3 | + | y – 2 | = 4;

Расcмотрим четыре случая

{ x + 3 > 0 { x > – 3
y – 2 > 0 y > 2
x + 3 + y – 2 = 4 y = – x + 3
{ x + 3 > 0 { x > – 3
y – 2 < 0 y < 2
x + 3 – y + 2 = 4 y = x + 1
{ x + 3 < 0 { x < – 3
y + 2 > 0 y > – 2
x – 3 – y – 2 = 4 y = x + 9
{ x + 3 < 0 { x < – 3
y + 2 < 0 y < – 2
x – 3 – y – 2 = 4 y = – x – 9

В результате мы получаем квадрат, центр которого (–3; 2), а длина диагонали равна 8, причем диагонали параллельны осям координат.

Из наглядных соображений можно сделать вывод: что уравнение вида | х + a | + | у + b | = с ; задает на плоскости квадрат с центром в точке (– а ; – b ), диагоналями параллельными осям OX и ОУ, и длина каждой диагонали равна 2с . Ответ : (– 3; 2).

2. Решить уравнение aх = 1

Ответ : если a = 0, то нет решения; если a = 0, то х = 1/ a

3. Решить уравнение (а 2 – 1) х = а + 1.

Решение .

Нетрудно сообразить, что при решении этого уравнения достаточно рассмотреть такие случаи:

1) а = 1; тогда уравнение принимает вид ОX = 2 и не имеет решения

2) а = – 1; получаем ОX = О, и очевидно х – любое.

1
3) если а = + 1, то х = –––
а – 1

Ответ:
если а = – 1, то х – любое;
если а = 1, то нет решения;

1
если а = + 1 , то х = –––
а – 1

3. Решения примеров (из вариантов С)

1. При каком значении параметра р уравнение | х 2 – 5х + 6 | + | х 2 – 5х + 4 | = р имеет четыре корня.

Рассмотрим функцию у = | х 2 – 5х + 6 | + | х 2 – 5х + 4 |

Так как х 2 – 5х + 6 = (х – 2)(х – 3) и х 2 – 5х + 4 = (х – 1)(х – 4), то y = | (х – 2)(х – 3) | + | (х – 1)(х – 4) |, корни квадратных трехчленов отметим на числовой прямой

1 2 3 4 х

Числовая прямая при этом разбивает на 5 промежутков

{ x < 1 { x < 1
y = x 2 – 5x + 6 + x 2 – 5x + 4 y = 2x 2 – 10x + 10
{ 1 < x < 2 { 1 < x < 2
y = x 2 – 5x + 6 – x 2 + 5x – 4 y = 2
{ 2 < x < 3 { 2 < x <3
y = – 2x 2 + 10x – 10 y = – x 2 + 5x – 6 – x 2 + 5x – 4
{ 3 < x < 4 { 3 < x < 4
y = 2 y = x 2 – 5x + 6 – x 2 + 5x – 4
{ x > 4 { x > 4
y = 2x 2 – 10x + 10 y = x 2 – 5x + 6 + x 2 –5x + 4

Для случая 3) х 0 = – b | 2a = 2, y 0 = 25: 2 + 25 – 10 = 2,5

Итак, (2,5; 2,5) – координаты вершины параболы y = – 2x 2 + 10x – 10.

Построим график функции, заданной равенством

Как видно из рисунка, исходное уравнение имеет четыре корня, если 2 < а < 2,5

Ответ : при 2 < а < 2,5

4. Самостоятельная работа по уровням

1 уровень

1. Решить уравнение х 2 – | x | = 6
2. При каких целых значениях а имеет единственное решение уравнение ах 2 – (а + 1) + а 2 + а = 0?

2 уровень

1. Решить уравнение: | x – 5 | – | 2x + 3 | = 10
а –12) х 2 + 2 = 2(12 – а ) имеет два различных корня?

3 уровень

1. Решить уравнение | x – 5 | – | 2x + 3| = 10
2. Найти все значениях параметра а, при которых уравнение (а – 12) х 2 + 2 = 2(12 – а ) имеет два различных корня?

5. Итог урока

1. Определение модуля.
2. Что значит решить уравнение с параметром?

6. Задание на дом. C5 варианта №11 Ф.Ф. Лысенко. Математика, 2012

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

«Линейное уравнение с двумя переменными» - Равенство, содержащее две переменные, называется уравнением с двумя переменными. -Что называется уравнением с двумя переменными? Приведите примеры. -Какое уравнение с двумя переменными называется линейным? Линейное уравнение с двумя переменными. Определение: Алгоритм доказательства, что данная пара чисел является решением уравнения:

«Решение показательных уравнений» - Сведение к одному основанию. Вынесение за скобки. Т. Виета. Графический способ. Показательным уравнением называют уравнение, содержащее переменную в показателе степени. Решение показательных уравнений. Устная работа. ab+ac=a(b+c). Степени. 2.Решить уравнение: Свойство. Виды и способы решения показательных уравнений.

«Графический способ решения уравнений» - Ответ: один корень, х=-1. Два корня. Решить графически уравнение (х+1)/(х-2)=2. Построить график функции y=x?+6x+8. Практикум по решению уравнений графическим способом Подготовка к зачету. Построить графики функций. Построить график функции y=(x+1)/(x-2). 1. Перенесем 8 в правую часть уравнения. Корней нет.

«Решение целых уравнений» - «Уравнения, в которых скопом Корни, степень, неравенств бездна. Три великих математика. Удачи в дальнейшем изучении методов решения уравнений. Осевая симметрия присуща большинству видов растений и животных. Центральная. В животном мире 2 вида симметрии. Диктант. Осевая. Определите методы решения уравнений.

«Уравнения с логарифмами» - Логарифмические уравнения. Реши устно уравнения. Формулы преобразования логарифмов. Уравнение. Определение. Таблицы логарифмов. Определение логарифма. Определение и свойства логарифма. Логарифмическая линейка. Функция. Наушники или колонки. Область определения. Подходы к решению. Решить уравнение. Гимназия.

«Иррациональные уравнения» - На контроль д/з выполнили: №419 (в,г) Сафиуллина, №418(в,г) Кульмухаметов, №420(в,г)Шагеев. 2 урок Решение систем уравнений. Урок 1 Тема: Решение иррациональных уравнений. 1.Какие из следующих уравнений являются иррациональными: Цели: Познакомить учащихся с решениями некоторых видов иррациональных уравнений.

Всего в теме 49 презентаций

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.