Методические рекомендации. Магматические месторождения хрома

Связаны с комплексами ультрамафитов и мафитов. Выделяют два типа магматических месторождений хрома: ранне- и позднемагматические.

К раннемагматическим месторождениям хром относят месторождения Бушвельдского массива в ЮАР, Великой Дайки в Зимбабве, Сарановское в России, Стиллуотер в США и др. Эти месторождения приурочены к дифференцированным комплексам мафитов и улътрамафитов, с которыми связано примерно 95 % запасов хромитов развитых капиталистических и развивающихся стран и 5 % запасов в России. В Бушвельдском комплексе учтено свыше 1 млрд, т хромитов, а в Великой Дайке свыше 0,5 млрд. т. Форма хромитовых залежей в этом типе месторождений пластообразная, их относят к стратиформным.

Комплексы интрузивных пород связывают с основной магмой, приурочены они к платформенным областям. Хромитовые руды залегают среди ультрамафитов, анортозитов, редко среди норитов. Пласты хромитов в большинстве случаев приурочены к контактам разных по составу пород и являются составной частью ритмов типа дунит-хромитит-бронзитит, бронзитит-хромитит-анортозит-норит, гарцбургит-хромитит-ортопироксенит-вебстерит и т. п. Для этих месторождений характерна небольшая мощность хромититов (0,3-3 м, реже до 3,6 м и, как исключение, до 12 м), но большая протяженность (десятки километров).

Нижний контакт хромититов обычно резкий, верхний - постепенный. В низу пластов - массивные руды, в верху - густовкрапленные. Число пластов хромититов различно, в Бушвельде 27, Стиллуотере 13, комплексе Хартли Великой Дайки 12. Кроме хромита в состав руд входят:

  1. Оливин
  2. Ортопироксен
  3. Плагиоклаз
  4. Сульфиды

Минералы платиноидов - в основном палладия и . Встречаются также минералы , , . Для хромитов характерна повышенная железистость. Иногда (например, на Сарановском месторождении) железистость ниже, чем на других месторождениях этого типа. Степень окисления в хромитах высока (около 30%). В более кислых разностях пород хромиты богаче железом и , в улътрамафитах - хромом и магнием.

Формирование комплексов тесно связано с магматической дифференциацией . В частности, хромитовые пласты возникали при более раннем выделении хромитов из порции расплавов и их осаждении в расплаве благодаря повышенной плотности.

Позднемагматические месторождения хромитов приурочены к ультрамафитам. Примеры - месторождения Кемпирсайское в России, Гулеман в Турции, Каледония на Кубе. Хромитоносные массивы ультрамафитов слагаются в основном гарцбургитами и дуиитами. Дуниты обычно формируют зоны вокруг рудных тел хромититов. Рудные тела этих месторождений представлены в основном линзами и жилами, реже столбообразными телами и гнездами. Нередко рудные тела формируют зоны. Мощность тел обычно первые метры, реже - десятки метров и, как исключение, 230 м. Протяженность рудных тел - от метров до десятков и сотен метров. Длина рудоносных зон может достигать первых километров, при мощности десятки и сотни метров.

Руды представлены как массивными сплошными разностями, так и вкрапленными (густо-, средне- и убоговкрапленные разности). Хромит представлен высокохромистой разностью и богатым глиноземом хромпикотитом. Обычно с увеличением содержания хрома в рудах растет содержание в них хрома и магния. В состав хромитовых руд входят серпентин, оливин, орто- и клинопироксены, хромсодержащие хлориты и другие минералы. Встречаются минералы платиноидов - осмия, иридия, рутения, платины, родия, палладия. Хромитоносные ультрамафиты рассматриваемого типа расположены в геосипклиналытых (складчатых) областях различного возраста, в том числе и древних (Селюкве в Зимбабве). В России с этим типом месторождений связаны основные запасы хромитов.

На генезис хромитов этого типа существуют различные взгляды. Одни геологи рассматривают их как позднемагматические (Г. А. Соколов, Н. В. Павлов), другие относят к метасоматическим гидротермальным или даже метаморфогенным образованиям. Гидротермально-метасоматическая гипотеза обосновывается явно метасоматическим происхождением окружающих хромитовые тела дунитов, которые связываются таким образом единством происхождения (А. С. Варлаков). С. В. Москалева считала, что хромиты возникали в подкоровых условиях при экстракции хрома из перидотитов при их замещении дунитами. И. Ф. Романович предполагает, что в генезисе хромитов могла сыграть роль термодиффузия, приведшая к дифференциации веществ. Существуют и взгляды на генезис хромитов этой формации как ликвационный. Общее всех современных представлений о генезисе - хромитовые тела сформировались позднее вмещающих их ультрамафитов (исключая дунитовую оторочку).

Хромовые руды (хромиты) представляют собой минералы, из которых производится добыча хрома (твердого металла голубовато-белого цвета). Горная порода относится к семейству хромовой шпинели и достаточно распространённая в мире. По свойствам и особенностям месторождения вещества выделяются виды руды и способы извлечения.

Область применения хрома

Хром – это переходный металл. Он широко используется в промышленности благодаря своей прочности и устойчивости к нагреву и коррозии.

Производство стали

Хром составляет легирующий элемент (улучшающий физические и химические свойства) при плавке стали. Он повышает устойчивость металла к коррозии, который ржавеет и окисляется под действием кислорода. Железо становится тверже, а критическая скорость охлаждения при закалке снижается. Сталь используется для изготовления огнестрельных орудий, плит, огнеупорных шкафов и в строительстве кораблей.

Хромирование

Кислый хромат наносится тонким слоем на металлическую поверхность, делая ее износоустойчивой и красивой. Применяется для отделки деталей автомобилей, мотоциклов, велосипедов, часов, дверных ручек.





Сохранение древесины и обработка кожи

Соли хрома используются для сохранения древесины от повреждений и разрушений грибков, насекомых и термитов. Квасцы хрома используются в кожевенной промышленности, так как он помогает стабилизировать кожу.

Красящие вещества

Хром применяется в изготовлении красок и пигментирующих веществ. Стекло окрашивается обычно в зеленоватый цвет, реже желтый.

Ювелирная промышленность

Ювелирные изделия частично состоят из хрома. Он является составной частью драгоценных камней (уваровит, искусственный рубин, хромовая шпинель).



Иные способы использования

Хромовые соединения используются во многих отраслях промышленности:

  • фотографической деятельности (хромированный желатин);
  • полиграфической индустрии (травящий раствор, светочувствительный слой);
  • электронной (проводник поверхности деталей электроаппаратуры, радио, телевизоров, электрических приборов);
  • изготовление пластмассы;
  • химико-фармацевтической промышленности (синтез душистых веществ).

Виды хромовых руд

По промышленным типам месторождений выделяют несколько видов хромовых руд. Среди них различают:

  • эндогенные;
  • экзогенные;
  • техногенные.

Эндогенные

По условиям образования эндогенные руды делятся на два типа:

  • Месторождения образовались на ранней стадии образования интрузивов (магматические горные породы), залегают в нижних массивах. Руды среднехромистые, сплошные, огнеупорные (ЮАР, Финляндия, США, Индия).
  • Руды сформировались в поздний период формирования интрузивов. Главный источник высокохромистых металлургических и огнеупорных руд (Греция, Турция, Югославия, Албания).


Месторождения возникают в результате разрушений выветривания эндогенных хромитовых рудных залежей. Промышленное значение достаточно ограничено (Япония, Югославия, Филиппины, Куба).

Техногенные

Руды добываются на поверхности Земли или из спецотвалов забалансовых руд, образовавшиеся при разработке месторождений хрома в процессе обогащения руды. Сырье пригодно для промышленного применения. Экономическая выгода заключается в том, что разработка проводится на поверхности.

Способы добычи хрома

Основными соединениями для получения хрома является железо, свинец, манитохромит. Главным сырьем, из которого извлекают вещество - хромовая руда.

Разработка

Существует три способа разработки месторождений:

  • открытый;
  • подземный;
  • комбинированный.

Самым популярным способом добычи полезных ископаемых является открытый способ. Объясняется это экономичностью процесса, а также возможностью применения оборудования и техники высокой мощности. Открытый способ добычи хрома осуществляется разработкой карьеров, организовывается необходимая инфраструктура. Размеры необходимых строений определяются особенностями залежей.

Для больших глубин используется подземный метод. Способ дорогой, но позволяет осуществлять раскопки в местах, где на поверхности вести работу технически невозможно. Перед самим извлечением хрома, требуется вскрыть множество пород. Истощение запасов приводит к увеличению глубины разработки. Все чаще после извлечения руд, пустоты заполняются искусственной затвердевающей смесью.

Комбинированный способ объединяет разработку на поверхности и под землей. Они проводятся последовательно или одновременно. Экономический эффект достигается за счет наиболее полного извлечения хрома.

Методы извлечения хрома

Наиболее экологически безопасным является путь утилизации хромсодержащих шламов методом переработки с целью извлечения и использования хрома в различных отраслях промышленности. В настоящее время предложено несколько вариантов решения проблемы в этом направлении.

Металлотермическая плавка

Добыча производится в поворачивающей шахте, облицованной огнеупорным кирпичом. Особенностью является дифференцирование сырья следующим образом:

  • Запальная смесь состоит из 200 кг. хромового концентрата, 60 кг. алюминиевого порошка, 35 кг. натриевой селитры.
  • Для рудной части используется 875 кг. концентрата, 370 кг. извести.
  • Восстановительные материалы - 725 кг. концентрата, 442 кг. порошка алюминия.

Треть окислов шихты предварительно расплавляется, что увеличивает извлечение хрома на 5%, а расход алюминия уменьшается, в среднем на 47 кг. на тонну продукции. Сама плавка производится в электропечном агрегате. Запальная часть проплавляется. Во включенную электропечь вводится рудная часть шихты.

Длительность плавления 90-120 минут, дополнительно нагревают в течение четверти часа и нагрев отключают. Затем шихту помещают в плавильную камеру, а восстановительную смесь загружают в течение 5 минут. Расплав выдерживается несколько минут, для завершения восстановительного процесса. Сплав и шлак сливаются в изложницу. Состав хрома в таком способе извлечения равняется 80%.

Лабораторный метод

В основе лежит электролитический метод извлечения. Проводится получение хрома в лабораторных условиях, в специальном электролизере. Для процесса организовывается пропускание раствора хромового ангидрида в серной кислоте. На катодах выделяется водород и хром оседает в чистом содержании. Такой состав применяется редко, поэтому лабораторный метод менее востребованный.

Алюминотермический метод

Для извлечения хрома требуется специальная плавильная шахта определенной конструкции, смонтированной в вагонетке. А также она должна быть облицованная магнезитовым кирпичом.

Начальный этап включает загрузку шихтой массой 200-250 кг. Предварительно шихту тщательно перемешивают в барабане смесителем, минимально для этого требуется 30-40 минут. В один процесс плавки используется от 2 до 6 тысяч хромового концентрата либо оксида хрома.

Затем происходит добавление запальной смеси, которая потом подпаливается. Происходит процесс, в ходе которого восстанавливается Al2O3 (оксид алюминия), повышается уровень алюминия из-за разложения селитры. При этом увеличивается образование необходимого тепла. При устойчивом процессе производят непрерывную загрузку элеватором.

Последняя порция сырья дополняется флюсом (известь 200-250 кг., с размером зерна в пределах 0,3 см.). Применение извести рационально из-за способности поддерживания постоянного движения молекул и облегчения получения хрома. Длительность беспрерывного процесса плавления занимает 10-20 минут, затем производится выдержка. После этого, шлак переливают в изложницу. Толщина слоя должна равняться 20-30 см.

Плавильный горн возобновляется в начальную позицию, а через несколько минут металл со шлаком сливают. Шлаковый и хромовый блок охлаждается и вынимается. В результате сплав содержит 88-92% хрома. Могут присутствовать небольшие доли вредных примесей.

Мировая добыча хрома

К крупнейшим производителям относится ЮАР (мировой лидер), Казахстан, Россия и Китай. Дополнительные месторождения находятся в Турции, Индии, Армении, Бразилии и на Филиппинах. В России основные залежи хромовой руды выделяют на Урале (Донское и Сарановское).

Содержание статьи

ХРОМ – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого crwma – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

Юрий Крутяков

Российской Федерации находятся 16 месторождений марганцевых руд: в Северо-Западном - 1 (Республика Коми), в Уральском - 9 (Свердловская область), в Сибирском - 4 (Кемеровская область - 2, Иркутская - 1, Читинская - 1) и в Дальневосточном - 2 (Еврейская автономная область). В целом по России балансовые запасы марганцевых руд составили 159,0 млн т (на 1 января 2004 г.).

Марганцевые руды в России характеризуются низким качеством. Среднее содержание марганца в них составляет 20 %, тогда как в других странах оно достигает 40–50 %. Большая часть месторождений относится к мелким с запасами от 0,5 до 12 млн т, в современных условиях они практически не разрабатываются. Основной объем балансовых запасов - 98,5 млн т (64 %) сосредоточен на крупном Усинском месторождении в Кемеровской области, которое относится к резервным. Прогнозные ресурсы марганцевых руд - 841 млн т (Сибирь - 40 %, Дальний Восток - 30%, Урал - 18%, центральная часть страны - 12 %). Крупным объектом является Порожинское месторождение (Красноярский край) с запасами оксидных марганцевых руд по категориям C1 + C2 - 78 млн т и карбонатных руд - 75 млн т. Это месторождение способно обеспечить до 30–50 % потребности российского рынка в марганце.

В начале 2003 г. добыча маргацевых руд составляла 67 тыс. т. Разрабатываются три месторождения: Парнокское в Республике Коми (15 тыс. т), Дурновское в Кемеровской области (6 тыс. т) и Громовское в Читинской области (31 тыс. т). До 1992 г. в России марганцевые концентраты не производились. Для обеспечения металлургической промышленности марганцем импортирует значительное количество марганцевых концентратов и сплавов, в основном из стран СНГ ( , ). Предполагается, что к 2010 г. потребление марганцевой продукции вырастет на 30 %. Обеспеченность металлургического комплекса России собственным марганцевым сырьем при ежегодной добыче 5 млн т в новом столетии составит 62 года, в том числе рентабельными - 43 года и нерентабельными - 18 лет.

Перспективы обеспечения промышленности России марганцем связаны также с планируемой разработкой железо-марганцевых конкреций со дна восточной части Финского залива.

В Российской Федерации учтено пять месторождений хромовых руд - в Северо-Западном федеральном округе - 1 (Мурманская область), в Приволжском - 4 (Пермский край - 3 и Оренбургская область - 1). Кроме того, на разрабатываемом собственно бокситовом Иксинском месторождении (Архангельская область) учтены запасы триоксида хрома в количестве 3,0 тыс. т.

В целом по России балансовые разведанные запасы хромовых руд на 1 января 2003 г. составили 16,2 млн т. Размещены балансовые запасы на четырех месторождениях: 48 % запасов на Главном Сарановском, 1,4 % на Сарановской группе россыпей, 40,8 % на подготавливаемом к освоению Южно-Сарановском ( , Пермская группа). Прогнозные ресурсы хромовых руд - 486 млн т., из них категории С2 - 60,7 млн т (Карело-Кольский и Полярно-Уральский регионы).

В 2003 г. добыто хромовых руд 167 тыс. т., из них: 28 тыс. т в Мурманской области, 76 тыс. т - в Пермской области (в настоящее время Пермский край), 21 тыс. т - в Свердловской и 87 тыс. т - в областях. Обеспеченность запасами эксплуатируемых месторождений хромовых руд составляет 29 лет, а всеми активными запасами - 47,5 лет.

Твердый и тугоплавкий металл хром очень востребован во многих сферах промышленности. Из него делают красители, устойчивые сплавы и покрытия для различных поверхностей, а также огнеупорные материалы. В природе он существует в виде многочисленных соединений в составе пород и минералов. В данной статье рассказано о хромовой руде, ее месторождениях и способах добычи.

24-й элемент

Хром - элемент шестой группы таблицы Менделеева с атомным номером 24. В качестве простого вещества он является одним из самых твердых металлов, однако это качество сильно зависит от его чистоты. С различными примесями его твердость увеличивается, но в чистом виде хром может быть довольно пластичным.

Температура плавления металла составляет выше 1800 градусов Цельсия и тоже зависит от количества примесей. Благодаря своей тугоплавкости он становится активным лишь при нагревании, а при нормальных комнатных условиях сохраняет инертность. Так, с водой он реагирует, только будучи сильно раскаленным и измельченным в порошок. В обычном состоянии он не активен с воздухом, серной и азотной кислотами. Сталкиваясь с ними, он пассивирует, образуя тонкую защитную пленку, которая не позволяет ему вступать в дальнейшую реакцию. Однако в нагретом состоянии он легко растворяется в кислотах, а при температуре выше 600 градусов - сгорает в кислороде.

В нормальном состоянии хром - металл с выраженным бело-голубым оттенком. Окисляясь до степеней +2, +3 и +6, он образует огромное количество соединений, которые могут быть красными, зелеными, голубыми, оранжевыми и даже желтыми. Из-за этого его и прозвали «хромом», что в переводе с греческого означает «цвет».

Хромовая руда

Хром широко распространен на планете Земля - его содержание в земной коре составляет 0,012 % по массе. Он не образует самородков и не встречается сам по себе. В природе он существует только в соединениях различных минералов, например, в вокелените, дитцеите, уваровите, крокоите, меланхроите. Обычно они имеют темный, практически черный окрас и обладают характерным металлическим блеском.

Хромовые руды образуют минералы, которые относятся к группе хромшпинелидов. Именно в них содержится наибольшее количество металла, достаточное для его промышленного использования. Они включают в себя четыре основных вида сырья:

  • алюмохромит;
  • березовит (магнохромит);
  • пикотит;
  • хромит.

Имеют магматическое происхождение. Они сильно варьируются по составу, но по внешнему виду и строению очень похожи друг на друга. Отличить их можно только при помощи химического анализа.

Хромшпинелиды отличаются высокой твердостью, черным, буро-черным и серым окрасом, слабыми магнетическими свойствами. Вместе с ними часто залегает уваровит, оливин, брусит, серпентин, кеммерерит, бронзит. Основным источником металла является хромит.

Месторождения

Месторождения хромовых руд существуют на территории Евразии, Африки, а также Южной и Северной Америки. Крупнейшими запасами обладает ЮАР, на которую приходится больше 75 % общего разведанного объема хрома. После нее по количеству запасов руды лидируют Казахстан и Зимбабве, затем США, Индия, Оман, Турция.

Крупные залежи сосредоточены и в России, где они присутствуют в основном на территории Урала. В начале XIX века российские хромовые руды были основным источником металла в мире, но акценты сместились с открытием других месторождений. Сегодня объемы потребления этого ресурса страной превышают объемы добычи.

Руда, как правило, залегает на значительных глубинах, поэтому извлекается из недр планеты преимущественно шахтным способом. В 10-15 % случаев добыча происходит при помощи карьеров. Ежегодно извлекается около 15 млрд тонн руды.

Использование

В промышленности главная ценность металла состоит в том, что он очень устойчив к коррозии и не разрушается под действием воздуха и воды. Эти свойства применяются для производства нержавеющих сталей, которые характеризуются высокой прочностью и твердостью. Очищенным хромом также покрывают алюминий, магний, серебро, цинк, кадмий и некоторые другие металлы, чтобы защитить их от воздействий окружающей среды.

Хромовые руды, содержащие меньше хрома, но богатые окисями магния и алюминия, применяют для производства огнеупорных материалов, которые способны выдерживать высокие температуры плавления.

Его цветные соединения применяют для создания красителей, пигментов и цветных стекол. Из легированного трехвалентного хрома и расплавленного минерала корунда изготавливают синтетические рубины, которые используют в ювелирном деле.